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Abstract

This report deals with reducing the high costs resulting from the wear and
tear of the fork-lifts used to store or collect items in a warehouse. Two
problems were identified and addressed separately. One concerns the way
items should be stored or collected at storage locations on the shelves of one
corridor. The other problem seeks for an efficient way to define which fork-
lift should operate on each corridor, and the order by which the fork-lifts
should visit the corridors. We give to both problems formulations that fit
in the framework of combinatorial optimization.
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1 Introduction

GROHE is a manufacturer and supplier of sanitary fittings. GROHE pre-
sented a specific operating planning problem on one of the company’s ware-
houses in Portugal.

Warehouse operating planning is a sensible matter given the large contri-
bution of this sector to the total costs of many companies. This justifies the
intense work directed to this subject. We refer to [4] for a recent extensive
review of the topic, linking views from academic researchers and warehouse
practitioners.

GROHE is interested in reducing the costs resulting from storing and
collecting items, such as traps, waste traps, flow straighteners, . . ., in the
warehouse.

The warehouse consists of several corridors of shelves crossed by a per-
pendicular passageway as depicted in Figure 1.1.

Figure 1.1: Warehouse template.

The reports with the orders for storing or collecting items, together with
the location of each item in the warehouse, are given in the format (spread-
sheet style) shown in Figure 1.2, specifying the flow (in - store or out -
collect), and the storage locations where the items should be placed or col-
lected. Each storage location is identified by the corridor number, the shelf’s
level, the rack number, and the bin number.

The items that shall be stored or collected at storage locations of the
same corridor will be referred as corridor’s items.

Storage and collecting operations are accomplished by three fork-lifts
that operate inside the corridors. Each fork-lift cannot carry more than one
item in each career. Hence, a career consists of:

a) collecting an item from a depot located near the corridor, carrying it
to a store position i, move to some store position j to pick another
item, and take it to the depot; or
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Figure 1.2: A typical working order from the company.

b) carry an item from the depot to a store position i, and come back to
the depot; or

c) leaving the depot unloaded to collect an item at storage location j and
return to the depot.

It should be noted that, if the storage locations i and j are not on the
same side of the corridor, the careers of type a) require some extra work.
Indeed, once inside the corridor, the fork-lift can only work on one side. To
operate on the opposite side requires that the orientation of the forks has
been previously reversed, which has to be done outside the corridor.

Let us call corridor task a feasible assignment of the corridor’s items to
careers a), b) or c).

The greatest concern of the company is to reduce the high costs due
to the wear and tear of the fork-lifts. This is directly proportional to their
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usage and is mostly determined by the distances covered on the store/collect
operations. The company believes that costs could be significantly reduced
if the corridor tasks were careful settled. This was by far considered the
most important question of the store/collect planning.

Additionally, the company would like to find an efficient way to define
which fork-lift should operate on each corridor, and the order by which the
fork-lifts should visit the corridors.

We address these issues in Sections 2 and 3, and finish this report with
some comments about the layout optimization in Section 4.

2 Optimization within one corridor

Here we show how to determine optimal corridor tasks.
Let S and C denote the sets of the storage locations of the corridor’s

items that are going to be stored and to be collected, respectively.
If an artificial store position, say 0, is used to refer the depot located near

the entrance of the corridor, every career can be identified with an ordered
pair of “store positions” (i, j), that will be

• from type a) if i ∈ S and j ∈ C,

• from type b) if i ∈ S and j = 0,

• from type c) if i = 0 and j ∈ C, or

• an empty career if i = j = 0.

As previously referred the main concern is the lifetime of the fork-lifts.
To estimate the wear and tear resulting from the store/collect operations, a
number of features should be taken into consideration, including distances
and differences between the shelf levels of pairs of storage locations, and the
extra amount of work required for pairs of locations on opposite sides of the
corridor.

Let cij be the cost estimated for the pair of positions (i, j), and define
c00 = 0 to be the cost of the empty career.

We now extend sets S and C with as many copies of the “store position”
0, so that the resulting collections, denoted by S̄ and C̄, respectively, have
both size |S|+ |C|.

Note that we can identify the feasible corridor tasks with the bijections
π : S̄ → C̄. The corridor task corresponding to π is the set of careers
Tπ = {(i, π(i)), with i ∈ S̄}. Moreover, the cost of the corridor task Tπ is
c(π) =

∑
i∈S̄ ciπ(i).

To illustrate this construction, consider the fictitious locations sets S =
{a, b} and C = {c, d, e}. The resulting collections are S̄ = {a, b, 0, 0, 0} and
C̄ = {c, d, e, 0, 0}, and Table 1.1 shows how the costs extend to S̄ and C̄.
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c d e 0 0
a cac cad cae ca0 ca0

b cbc cbd cbe cb0 cb0
0 c0c c0d c0e 0 0
0 c0c c0d c0e 0 0
0 c0c c0d c0e 0 0

Table 1.1: Costs of careers (i, j), for i ∈ S̄ = {a, b, 0, 0, 0} and j ∈ C̄ =
{c, d, e, 0, 0}.

Hence, to search for an optimal corridor task reduces to finding π that
minimizes c(π). This is a well-known combinatorial optimization problem,
the assignment problem, which can be polynomially solved, for instance, by
the “Hungarian algorithm” [6, 8].

A MATLAB5 implementation is available at the end of this report. In
order to be able to simulate an execution of the code a fictitious cost matrix
was created, based on the Euclidean distance of the storage locations. Figure
1.3 shows the result for the provided working order (Figure 1.2), where the
unpaired items appear at the end along with the ”N/A” (Not-Available)
mention.

Figure 1.3: The output from an order storing/collecting.

Before tackling the routing problem for the warehouse, we may suggest
to consider settling a 2-level buffer shell at each depot. This would facilitate
the interface between fork-lifts and the vehicles bringing and collecting items
from the depot. However, an overlapping between the two types of vehicles
may have to be addressed.

5MATLAB is a trademark and product of The MathWorks, Inc.
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3 Optimization in the warehouse

In this section we address the problem of assigning fork-lifts to corridors and
settling how each fork-lift should visit the corridors assigned to it.

Let D denote the place in the warehouse where the fork-lifts stand when
they are not operating. We will refer to D as the depot. Let N be the set
that includes D and every corridor where a storage or collecting operation
will take place. For i, j ∈ N , let dij be the distance estimated in terms of the
wear and tear experienced by the fork-lifts when they move directly from i
to j.

If only a fork-lift existed, the problem would be the traveling salesman
problem [7, 1], which asks for a route of minimum total distance that starts
in D, visits every other point of N exactly once, and then returns to D.
The traveling salesman problem (TSP) is NP-hard [3] and, perhaps, it is
the most studied problem in combinatorial optimization.

When more than one vehicle is available at the depot and no constraint
exists on the size of the route of each vehicle, the problem is the multi-
traveling salesman problem, which can be easily reduced to the (single)
TSP.

If we modeled the problem as a multi (3 fork-lifts) TSP, optimal solutions
would probably include very unbalanced routes. Indeed, since the times
spent working inside the corridors are not considered, solutions of small
total distances would most certainly assign long working periods to one (or
two) fork-lift while the other(s) operates only a short (or even no) period
(at all). Solutions would therefore tend to require excessively long periods
of time to complete all the store/collect operations.

We propose a way to incorporate, within the vehicle routing framework,
the working times spent inside the corridors, and which allows to balance
the routes in order to reduce the total time.

The capacitated vehicle routing problem [9] is a generalization of the
multi-TSP where the vehicles have limited carrying capacities to supply
customers with known quantities of certain goods.

Our approach works as follows. Let us establish for each corridor (cus-
tomer) in N a demand equal to the time estimated to execute the corridor
task defined by the procedure of Section 2. Let T be a reasonable guess for
the completion time of all the corridors tasks. Define the capacity of each of
the three fork-lifts to be equal to T

3 , and use one of the numerous algorithms
for the capacitated vehicle routing problem [9] to run on this input.

If no feasible solution exists, the value of T should be increased. Other-
wise, it may be considered the reduction of the value of T . In both cases run
the algorithm again to check whether a feasible solution exists. This proce-
dure can be repeated, using for instance the bisection method on T , until
some satisfying solution is reached. Solutions obtained this way can combine
small distances with limited total operation times, equitably divided by the
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three fork-lifts.

4 Conclusions and recommendations

Layout design concerns the layout of the facility and the aisle configura-
tion, factors that can significantly contribute to reduce costs. We strongly
recommend a visit to the Erasmus-Logistica Warehouse website [10] and to
the Interactive Warehouse website [11] where, along with an immense roll
of bibliography on the subject, several on-line procedures can be interac-
tively used to experiment and compare different layouts for several storage
and routing strategies. We believe that a number of layout design options
may be considered which may further help saving the wear and tear of the
fork-lifts.

The company may also want to consider alternative strategies for the
storage of items. There are several possibilities which may be seen in [5],
for instance. Here we enumerate a few:

1. Random strategy: Items are allocated randomly. This is a strategy
well suited for a computer-controlled warehouse. This policy may not
be the best for the company since it allows a high space utilization but
at the cost of increased travel distance.

2. Closest open location: Items are allocated at the first empty location
resulting in a warehouse where racks are full around the depots.

3. Full-turnover scheme: Items are distributed as a function of their
turnover. This is a good choice if items do not change frequently. Ap-
parently the company can benefit from a combination of this scheme
together with a dedicated strategy, where each item has a fixed loca-
tion. The drawback is the reserved empty space for items that are out
of stock and the advantages are the familiarity of order pickers with
the locations and a suitable storage of items with different weights and
sizes.

4. Family-grouping: Similar items or items which tend to be collected
or stored together are allocated close together, preferably in the same
corridor. This can greatly reduce fork-lifts usage.
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Appendix

clear; clc;
[AA,TXT,RAW]=XLSREAD(’GW’,1,’A2:F25’);
to=size(RAW,1); i=1; flag=0; tipo=char(RAW(:,1));
corredor=char(RAW(2,2));

while i<=to & flag==0
if strfind(tipo(i,:),’out’)

flag=1; n_in=i-1;
end
m_out=to-i+1; i=i+1;

end

temp=RAW(:,6); temp1=char(temp);
IN(1:n_in,1)=str2num(temp1(1:n_in,1:2));
IN(1:n_in,2)=str2num(temp1(1:n_in,4:5));
IN(1:n_in,3)=str2num(temp1(1:n_in,7:8));
IN(1:n_in,4)=str2num(temp1(1:n_in,10));
OUT(1:m_out,1)=str2num(temp1(n_in+1:n_in+m_out,1:2));
OUT(1:m_out,2)=str2num(temp1(n_in+1:n_in+m_out,4:5));
OUT(1:m_out,3)=str2num(temp1(n_in+1:n_in+m_out,7:8));
OUT(1:m_out,4)=str2num(temp1(n_in+1:n_in+m_out,10));

j=0; k=0; in_par=[]; in_impar=[];
for i=1:n_in

if rem(IN(i,2),2)==0
j=j+1; in_par=[in_par,i];
[DIST_PAR(j,:),r]=distcorr(IN(i,2:3),OUT(:,2:3));
out_par=[r];

else
k=k+1; in_impar=[in_impar,i];
[DIST_IMPAR(k,:),r]=distcorr(IN(i,2:3),OUT(:,2:3));
out_impar=[r];

end
end
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[assignment,cost]=assignmentoptimal(DIST_IMPAR);
INImpares=in_impar’; OUTImpares=out_impar(assignment);
if n_in>m_out

nesci=ones(size(INImpares));
for i=1:size(assignment)

nesci(assignment)=0;
end

end
ORDEM1STR=[RAW(INImpares,6),RAW(n_in+OUTImpares,6)];

if size(DIST_IMPAR,1)>size(DIST_IMPAR,2)
nesci=ones(size(in_impar)); nesci(assignment)=0;
p=find(nesci==1); ORDEM1STR=[ORDEM1STR ;RAW(p,6),{’ N.A.’}];

elseif size(DIST_IMPAR,1)<size(DIST_IMPAR,2)
nescon=ones(size(out_impar)); nescon(assignment)=0;
p=find(nescon==1);
ORDEM1STR=[ORDEM1STR ;{’ N.A.’}, RAW(n_in+p,6)];

end

[assignment,cost]=assignmentoptimal(DIST_PAR);
INpares=in_par’; OUTpares=out_par(assignment);
ORDEM2=[IN(INpares,:),OUT(OUTpares,:)];
ORDEM2STR=[RAW(INpares,6),RAW(n_in+OUTpares,6)];
if size(DIST_PAR,1)>size(DIST_PAR,2)

nesci=ones(size(in_par)); nesci(assignment)=0;
p=find(nesci==1);
ORDEM2STR=[ORDEM2STR ;RAW(p,6),{’ N.A.’}];

elseif size(DIST_PAR,1)<size(DIST_PAR,2)
nescon=ones(size(out_par)); nescon(assignment)=0;
p=find(nescon==1);
ORDEM2STR=[ORDEM2STR ;{’ N.A.’}, RAW(n_in+p,6)];

end

sprintf(’Output for corridor %s’,corredor)
disp(’odd RACK’)
ORDEM1STR
disp(’even RACK’)
ORDEM2STR
xlswrite(’ORDER’,ORDEM1STR,1)
xlswrite(’ORDER’,ORDEM2STR,2)

function [dstE_R,r]=distcorr(coord_ent,recolhas);
p_or_i=rem(coord_ent(:,1),2); [r]=find(rem(recolhas(:,1),2)==p_or_i);
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n=size(r);
for j=1:n

dstE_R(j)=sqrt((coord_ent(1)-recolhas(r(j),1))^2+...
(coord_ent(2)-recolhas(r(j),2))^2);

end

The ”assignmentoptimal” function, returns an optimal assignment, in
the sense of minimum cost using the Hungarian algorithm, and can be ob-
tained from Matlab Central [12].


