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Figure 1: Summary of the process under study: spin-coating of polymer onto patterned substrates leads to
a dry polymer profile; after annealing the polymer has flowed into trenches and phase-separates to create
the desired patterns. Both under-fill and over-fill cases are undesirable, as the resulting nanostructures are
not suitably patterned.

0.1 Introduction

Diblock copolymer thin films have attracted significant recent interest because of their potential applications
in nanofabrication. Diblock copolymers are macromolecules consisting of two chemically distinct polymer
chains covalently bonded together at one junction point. It is well-known that a molten collection of
these molecules microphase-segregates below an order-disorder transition temperature to form a myriad of
interesting nano/microstructures [1].

In the process under study at CRANN, various diblock copolymers are dissolved in solvent and spin-
coated onto a patterned silicon wafer, see Figure 1. Several possible configurations for the trenches are
employed, see Figures 2 and 3 for examples. Following the spin-coating the nanostructured films undergo
a thermal anneal at approximately 200◦C for up to 24 hours, and the polymer flows, phase-separates and
self-assembles into well defined nanostructures with periodicities approaching 10 nm (right hand panel of
Figure 1).

CRANN researchers are interested in mathematical modelling of all aspects of the process, with the
aim of removing expensive trial and error design cycles. Of particular interest is the flow of the polymer
during spin-coating, and also during the subsequent annealing process. This defines Problem 1:

• Problem 1: Describe how the spin-coating process is affected by the geometrical configuration of
trenches (see side profiles in Figure 3). How should parameters be adjusted to optimize quality of
trench-filling (so over-filling or under-filling are avoided or minimized)?

Also of considerable interest is the chemical process of phase-separation and self-assembly of the diblock
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Figure 2: Schematic of possible trench arrangements and dimensions (top view).

copolymer. Existing models in the literature rely heavily on computationally expensive Monte-Carlo sim-
ulation methods. Problem 2 may be expressed as:

• Problem 2: Model the phase-separation process for the polymers, with a particular interest in how
polymers self-organize in a corner geometry.

The modelling work performed during the study group in summarized in this report (and in a pre-
sentation to the CRANN researchers). The report is split into four main sections, with discussion and
suggestions for experiments in the concluding section. The content of the sections is as follows:

• Section 0.2: Mathematical modelling of spin-coating onto a flat substrate; no annealing considered.

• Section 0.3: Modelling of spin-coating onto a substrate with topography (i.e. trenches); no annealing
considered.

• Section 0.4: Flow of polymer during annealing.

• Section 0.5: Models for self-assembly of polymers into nanostructures.

Sections 0.2 to 0.4 are focussed on the fluid flow problems for the polymer, and go some way to providing
useful answers to Problem 1. On the other hand, Problem 2 was found to be extremely challenging, and
the efforts described in section 0.5 represent only a relatively modest impact on this problem.

0.2 Spin-coating onto flat substrates

Emslie, Bonner and Peck described the flow of a viscous Newtonian liquid on a rotating planar surface
first [2]. In their model, only centrifugal and viscous forces are considered while surface tension, gravity
and Coriolis forces are neglected. In addition, they assume that the radial expansion is large relative to
the film thickness. Thus, lubrication theory is applicable. The centrifugal force balances the viscous forces
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Figure 3: Schematic of possible trench arrangements and dimensions (side view).

and the solution of the resulting hydrodynamic equation is a uniform film independent of the initial fluid
profile. This model is not sufficient for the present study since it only describes the behaviour of a fluid, it
does not account for solvent evaporation which is ultimately responsible for the final solid film thickness.

Meyerhofer [3] was the first to acknowledge the importance of evaporation in the spin-coating model.
The approach he developed allows for evaporation of the solvent at the end of process and this leads to a
solid film similar to the phenomenon investigated in the present study. The solution is valid for Newtonian
fluids and approximately Newtonian fluid/particle mixtures.

Meyerhofer assumed the process could be approximated by two sub-processes, each of them lasting for
about the same amount of time.

1. Evaporation is neglected for the initial stage and the film thins via flow. This initial stage ends when
evaporation balances the flow. This occurs at the time:

t1/2 =

(
1

l21/2

− 1
L2

0

)
3µ

4ρω2
, (1)

where L0 represents the initial solvent height, defined as the liquid thickness obtained by removing
all the solute, ω/(2π) is the number of rotations per second, µ denotes the dynamic viscosity and ρ
is the density. At t1/2, the solvent height, l1/2, and the solute height, defined as the liquid thickness
obtained by removing all the solvent, s1/2, are:

l1/2 =
(

3µE

2ρω2

)1/3

, s1/2 =
S0

L0

(
3µE

2ρω2

)1/3

, (2)

where S0 is the initial solute height and E denotes the evaporation rate.
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2. During the final stage, the flow may be completely neglected and the film thins via evaporation.
The process concludes at time t = tf , when the solvent has been completely evaporated off. The
remaining solute thickness, sf , and the final time tf may be calculated as:

tf =
1
E

(
l1/2 + Et1/2

)
, sf =

S0

L0

(
3µE

2ρω2

)1/3

. (3)

While Meyerhofer gives a good approximation for the final film thickness, his assumption about the
length of the two sub-processes is incorrect: during most of the process, flow and evaporation have the
same order of magnitude, see Figure 5. Flow only dominates for a short period at the start of the process
and evaporation only becomes the leading order process at the very end when solute concentration is high.
Cregan and O’ Brien [4] used perturbation theory to evaluate the length of each stage. They show that
the initial stage lasts for ∆t ∼ (3µ)/(2L2

0ρω2). The flow dominates until the solvent thickness is:

L ∼
(

3µE

2ρω2

)1/3

. (4)

The second relatively long stage lasts for ∆t ∼ [(3µ)/(2ρω2E2)]1/3. Evaporation only dominates during a
very short time interval at the end ∆t ∼ (S0/L0)[(3µ)/(2ρω2E2)]1/3.

The asymptotic solution for the final solute thickness is identical to Meyerhofer’s solution. The drying
time however differs from Equation (1) and becomes:

t∗f =
2π

3
√

3

(
3µ

2ρω2E2

)1/3

. (5)

This drying time is 10% to 20% shorter than the value calculated using Meyerhofer value.
The results presented in this section will be used in future work validate numerical results.
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Figure 5: Time comparisons

0.3 Model for spin-coating with topography

A model for the thin film flow over topography is derived using lubrication theory. Two complementary
approaches to solving this equation are pursued: in Section 0.3.2 we examine a perturbation method valid
for small topography, while Section 0.3.3 gives the description and results of computational solutions of
the full equation.

0.3.1 Thin-film flow over topography

z=0

Fluid height

z=−s(x,y)

Substrate

Geometry height

z=h(x,y,t)

Typical length L

Figure 6: Definition of the typical geometry

The governing equation for the phenomenon will now be derived. A typical configuration is shown on
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Figure 6. A thin fluid layer flows over an irregular substrate: the level z = 0 is defined by the highest point
of the substrate and the fluid height above and below this reference level are denoted h and −s respectively.
As many problems in Computational Fluid Dynamics, the equations governing the fluid flow are based on
the Navier Stokes and continuity equations. Since the typical fluid height, h0, is much smaller than the
typical length L, there is no need to solve for the complete system, the Navier Stokes equations may be
simplified using lubrication theory [5, 6]. This leads to the following equations for the components (u, v, w)
of the velocity vector and the pressure p (see Nomenclature section for list of symbols):

µ
∂2u

∂z2
=

∂p

∂x
+ ρω2x +O (

ε2, ε2Re
)

, (6)

µ
∂2v

∂z2
=

∂p

∂y
+ ρω2y +O (

ε2, ε2Re
)

, (7)

∂p

∂z
= −ρg +O (

ε2, ε2Re
)

, (8)

0 =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
, (9)

where ε = h0/L is the aspect ratio of the flow and ε2Re is the reduced Reynolds number. Both the density
ρ and the dynamic viscosity µ vary linearly with the composition of the fluid:

µ = µ0(1− c) + µ1c , ρ = ρ0(1− c) + ρ1c ,

and the quantities with the subscripts 0 and 1 denote the values for solvent and polymer respectively. The
governing equations may be non-dimensionalised using the following scales:

x = Lx′ , y = Ly′ , z = h0z
′ = εLz′ , µ = µ0µ

′ , ρ = ρ0ρ
′ , u = Uu′ =

ε2L3ρω2

3µ0
u′ ,

v = Uv′ , w = εUw′ , t = τt′ =
L

U
t′ , p = Pp′ =

3µ0U

ε2L
p′ = L2ρω2p′ , E = εUE′ =

h3
0ρω2E′

3µ0
.

The pressure scale, P , is standard for lubrication theory. The velocity scale, U , is determined by the driving
force of the flow, the centrifugal force ρω2(x, y). The length scale, L, and the height scale, h0, impose the
velocity scale in the z direction, εU . The evaporation scale leads to the standard wetting scale. This leads
to the wetting height:

hw =
(

3µ0E

ρω2

)1/3

. (10)

This height differs from the Meyerhofer value by a factor 3
√

2. This modification leads to a simpler
governing equation but does not fundamentally change the results. Using the scaled parameters and
dropping the primes immediately, these governing equations become:

µ
∂2u

∂z2
= 3

∂p

∂x
+ 3ρx +O (

ε2, ε2Re
)

, (11)

µ
∂2v

∂z2
= 3

∂p

∂y
+ 3ρy +O (

ε2, ε2Re
)

, (12)

∂p

∂z
= −ρβ +O (

ε2, ε2Re
)

, (13)

0 =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
, (14)

where

β =
ε3ρ0gL2

3µ0U
=

εg

Lω2
.
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The equations are solved using the following boundary conditions:

• No slip at the fluid-substrate interface:

u(−s) = v(−s) = w(−s) = 0 ,

• No shear stress at the air-fluid interface:

µ
∂u

∂x

∣∣∣∣
z=h

= µ
∂v

∂y

∣∣∣∣
z=h

= 0 ,

• Pressure jump at the air-fluid interface:

p(h) = p0 − α∇2h = p0 − ε3σ

3µU
∇2h = p0 − εσ

ρω2L3
∇2h ,

• The standard kinematic condition, including the evaporation term, is also applied at the free surface:

w(h) =
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
+ E .

A straightforward integration of Equations (11–13) provides expressions for the pressure and velocities.
Integrating the continuity equation (14) across the fluid layer with respect to the kinematic condition leads
to the mass balance:

∂h

∂t
+

∂

∂x

(∫ h

−s

udz

)
+

∂

∂y

(∫ h

−s

vdz

)
=

∂h

∂t
+

∂Qx

∂x
+

∂Qy

∂y
= −E . (15)

where Qx and Qy denote the fluxes in the x and y directions respectively,

Qx = (h + s)3
[
α

µ

(
∂3h

∂x3
+

∂3h

∂x∂y2

)
− βρ

µ

∂h

∂x
+

ρx

µ

]

Qx = (h + s)3
[
α

µ

(
∂3h

∂x2∂y
+

∂3h

∂y3

)
− βρ

µ

∂h

∂y
+

ρy

µ

]

The governing equation (15) may then be written as:

∂h

∂t
+∇ ·

[
(h + s)3

µ

(
α∇(∇2h)− βρ∇h

)]
+∇ ·

(
ρr(h + s)3

µ
er

)
= −E. (16)

If the density and viscosity are constant, this equation becomes:

∂h

∂t
+∇ · [(h + s)3

(
α∇(∇2h)− β∇h

)]
+∇ · (r(h + s)3er

)
= −E. (17)

These governing equations are typical for thin film flows over a surface with a varying topography. The
steady-state version of Equation (17) is derived for a gravity driven flow over topography in [7]. Time
dependent versions of (17) is found for a general driving force in [8] and in the spin coating context in
[9]. The gravity driven version of (16) over a flat surface may be found in [10]. In the present study,
the standard Equation (16) governing fluid height is coupled with another equation governing the solute
concentration c. This equation is a straightforward extension of Equation (16):

∂ (ch)
∂t

+∇ · (cQ) = 0 (18)

where Q = (Qx, Qy) are the the fluxes defined above.
The model is now complete and the equations will be solved, first using a perturbation method and

then numerically.
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0.3.2 Perturbation approach

If the surface topography is small compared to the fluid thickness, the film height h is dominated by a
spatially-independent term h0(t), and the first order perturbation term h1(x, y) is time independent. We
may seek a solution of Equation (17) in the form of a regular perturbation series:

h(x,y, t) = h0(t) + δ h1(x,y) + . . . . (19)

The small parameter δ represents the size of the topography scale compared to the spatially-independent
film height h0(t). At the end of the process h0 = 0 and the first order perturbation h1 and its spatial
derivatives vanish at infinity. The first term in the corresponding series for the topography s is therefore
of order δ:

s(x) = δ s1(x) + . . . (20)

Combining Equations (17) and (19) provides the leading order film height equation:

dh0

dt
= −2h3

0 − 1. (21)

The corresponding first order film height equation is:

6 (h1 + s1) + 3
[
x

∂(h1 + s1)
∂x

+ y
∂(h1 + s1)

∂y

]
+ αh0

[
∂4h1

∂x4
+ 2

∂4h1

∂x2y2
+

∂4h1

∂y4

]
− βh0

[
∂2h1

∂x2
+

∂2h1

∂y2

]
= 0.

(22)
To check the consistency between the perturbation method and the numerical method, we will compute

the first order scaled fluid thickness h1 with some simplifications using the Green function method, see
Appendix .1.

• The last term in (22) is neglected because it results from pressure due to fluid thickness which is
negligible in comparison to the centrifugal effect.

• The first term which does not include derivatives is also neglected as it is much smaller than the
other terms - this can be easily seen a posteriori.

• We will look at radially symmetric topographies. To approximately solve for h1 with these topogra-
phies, we will temporally change to polar coordinates and define r to be the scaled radial distance
from the centre of rotation.

Making the coordinate change and assuming we are looking for a solution in the region of r = 1, Equation
(22) simplifies to:

(αh0/3)
d3h1(r)

dr3
+ h1(r) = −s1. (23)

The Green function g associated with (23) satisfies the equation:

(αh0/3)
d3g(r − r0)

dr3
+ g(r − r0) = δ(r − r0). (24)

The Green function may then be written as:

g(r − r0) =





2
3

(
3

αh0

)1/3

exp
[

1
2

(
3

αh0

)1/3

(r − r0)
]

cos
[√

3
2

(
3

αh0

)1/3

(r − r0) + π
3

]
r < r0

1
3

(
3

αh0

)1/3

exp
[
−

(
3

αh0

)1/3

(r − r0)
]

r > r0.

(25)
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Using the Green function, the first order perturbation may be expressed as:

h1(r) = −
∫ ∞

−∞
s1(r0)g(r − r0)dr0. (26)

In most cases, the integral in Equation (26) may only be calculated numerically or lead to rather complex
expressions. A simple analytical solution may however be found for a step of one unit at r = 1 (δH in
dimensional units)

s1(r) =
{

1 r < 1
0 r > 1.

(27)

Inserting this into Equation (26) leads to

h1(r) =





2
3 exp

[
1
2

(
3

αh0

)1/3

(r − 1)
]

cos
[√

3
2

(
3

αh0

)1/3

(r − 1)
]
− 1 r < 1

− 1
3 exp

[
−

(
3

αh0

)1/3

(r − 1)
]

r > 1.
(28)

This curve may be seen on Figure 7. As could be expected, the fluid surface is mainly perturbed for
0.7 ≤ r ≤ 1.1 and a hump typical of thin films with high surface tension forms before the step. Very
quickly, the fluid height on either side is constant with its value imposed by the underlying topography,
h1 = −1 to the left of the step and h1 = 0 to the right.
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Figure 7: First order perturbation for a step at r = 1

The topography described here leads to an analytical solution. There is no simple analytical solution
for all the other cases studied in the report. In the following, when using the Green function method,
the integral (26) will be evaluated numerically. However, according to the values of the Green function,
the perturbation should extend over a length similar to that seen in Figure 7 even for the series of small
trenches considered in the following sections.

The solution provided by this method is not valid all the time, it describes a radially symmetric
geometry. When considering the typical cases suggested by CRANN, comparison may only be performed
at specific locations, as will be performed in the following.
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0.3.3 Numerical solution of full equations

The system will now be solved numerically over the surface [xmin;xmax][ymin; ymax], using a standard
numerical method. The system rotates around (0, 0). The fluid height, h, and the concentration, c, are
calculated on equally spaced points numbered from 0 to nx and 0 to ny, including the boundaries, separated
by the space steps ∆x and ∆y. The simulation time tm is divided in nt time steps denoted ∆t = tm/nt.
The fluid height and concentration at x = xmin + i∆x, y = ymin + j∆y and t = k∆t are denoted hk

i,j and
ck
i,j respectively.

Numerical scheme

A typical numerical scheme in conservative form for the governing Equations (17) and (18) may be written:

hk+1
i,j = hk

i,j −
∆t

∆x

(
Qx

i+1/2,j −Qx
i−1/2,j

)
− ∆t

∆y

(
Qy

i,j+1/2 −Qy
i,j−1/2

)
− E∆t , (29)

ck+1
i,j =

1
hk+1

i,j

[
ck
i,jh

k
i,j −

∆t

∆x

(
ck
i+1/2,jQ

x
i+1/2,j − ck

i−1/2,jQ
x
i−1/2,j

)

−∆t

∆y

(
ck
i,j+1/2Q

y
i,j+1/2 − ck

i,j−1/2Q
y
i,j−1/2

)]
, (30)

where Wi+1/2,j represents the value of W at x = xmin + (i + 1/2)∆x, y = ymin + j∆y.
Since the fluxes are non linear, calculating all terms implicitly is not possible. An alternative is presented

in [11] for a one dimensional domain: the derivatives of the film height are evaluated at time t = (k +1)∆t
and all the other terms are calculated explicitly at time t = k∆t. Solving for the fluid height at time
(k + 1)∆t requires the inversion of a penta-diagonal matrix that may be performed easily using a LU
algorithm. The generalization to a two dimensional space would require the inversion of a broadly banded
matrix. An alternative method is to replace the semi implicit scheme by an Alternative Direction Implicit
(ADI) scheme, or Peaceman-Rachford non-homogeneous scheme [12, 13]. The time step is then divided into
two equal parts: when t ∈ [k, k + 1/2]∆t the flux is evaluated implicitly in the x direction and explicitly
in the y direction; during t ∈ [k + 1/2, k + 1]∆t the flux is evaluated explicitly in the x direction and
implicitly in the y direction. The cross derivatives terms could be calculated implicitly but they would add
non penta-diagonal terms to the matrix. If the cross terms are evaluated explicitly, the film height may be
determined by inverting two penta-diagonal matrices during each time step.

Results with constant concentration

The fluid layer will now be simulated with a constant concentration using the values detailed in the
Nomenclature section. For the aspect ratio ε = 0.0025, the wetting height and the non-dimensional
parameters may be estimated as

hw = 3.72 · 10−6m , α = 2 · 10−4 , β = 1.5 · 10−4 .

The parameters α and β are nearly equal. The first order derivative of the height being generally of
significantly lower magnitude than the third order derivative, this leads to

|β∇h| ¿ ∣∣ α∇ (∇2h
)∣∣ .

Consequently, the gravity term |β∇h| may be neglected in the governing equation. The following simu-
lations are performed over a surface. However, for practical reasons, all of the curves presented here are
cross sections: this makes comparisons between the various results much easier.

The evolution of the fluid layer is first studied over a single infinitely long trench of depth 0.02 and
located between 1 ≤ x ≤ 1.5. At t = 0, the fluid layer is initialised at 100 times the wetting height. The
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Figure 8: Fluid surface shape over the trench

trench affects the surface of the fluid right from the start. Very quickly, two humps appear on either side
of the trench, due to the effects of surface tension and higher fluid velocity in the trench as may be seen
on Figure 8. This shape remains approximately constant over time but remains small compared to the
average height over the surface during most of the simulation. This solution may be compared around y ∼ 0
with the radially symmetric solution calculated using the Green function. The first order perturbations
calculated with both methods compare well as may be seen on Figure 8 and this validates the numerical
scheme.
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Figure 9: Evolution of the height over the surface

Except for the small oscillations above the trench, the fluid layer is flat. The evolution of the height
is shown in Figure 9. The fluid height is compared with the amount of fluid evaporated and a compari-
son with the analytical results calculated using Equation (21). The numerical and analytical curves are
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Figure 10: Final fluid shape over the trench

indistinguishable for the entire simulation. This again validates the numerical scheme developed. The
curve labelled ‘evaporation’ shows the amount of fluid evaporated during the process. At the start of the
simulation, until t ∼ 0.01. Flow and evaporation are of similar order of magnitude for 0.01 ≤ t ≤ 0.4
and evaporation dominates afterwards. This description does not really fit with the model developed by
Meyerhofer [3] but is consistent with the study conducted by Cregan and O’Brien [4] but the times they
calculate may not be compared since they consider a fluid solute mixture.

Figure 10 shows the fluid layer at the end of the simulation. At this stage, fluid disappears from
the surface. The complete layer is shown on Figure 10a and a close up around the trench is shown on
Figure 10b. The fluid thickness has not been significantly affected over the entire simulation. This could
however change if the simulation was extended. However, the process is no longer realistic at this stage:
in practice,the polymer dissolved in the fluid may not evaporate and a minimum height of fluid should
always remain. The complete equation (16) coupled with the concentration equation (18) will prevent
this inconsistency. This will not be performed in this report. However, the final polymer height could be
approximated by the product of height and initial concentration when the wetting height is reached away
from the perturbation.

The fluid height is now studied for a set of trenches shown on Figure 11: the distances are non-
dimensionalised but they correspond to 240nm wide trenches separated by 240nm and 60nm deep. These
topography variations are only located around x = 1 but the oscillation created on the fluid surface
is considerably wider—compare the horizontal scales of Figure 11 and Figure 12. This perturbation is
the same order of magnitude as the perturbation created with the previous geometry. Here again, the
numerical solution compares extremely well with the analytical solution calculated using the Green function
of Equation (26).

Finally, Figures 13 and 14 show the fluid layer at the end of the simulation when the fluid disappears.
The layer becomes zero ahead of the trenches. The oscillations above the trenches, see Figure 13b, are
present during the entire simulation but may only be noticed when the fluid layer is extremely thin because
of their very small amplitude. However, as already mentioned, the model may no longer be valid at this
point and the concentration equation (18) must also be solved numerically. This will be investigated in a
further study.
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Figure 11: Geometry of the trenches
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Figure 12: Fluid surface shape over the set of trenches

0.4 Flow during annealing

It is clear from the results of section 0.3 that the detailed profile of the polymer following spin-coating onto
a surface with topography (but before annealing) is rather complicated. One of the challenges posed by
CRANN researchers is to find a set of design rules for high-density mesa/trench configurations (with spin-
coating parameters) which lead to perfect filling of trenches. In this section we therefore assume that the
dry polymer is simply conformal with the topography (i.e. the same height of polymer is deposited on all
meass and into all trenches). In light of the results of section 0.3 this may be a rather crude approximation,
as the local variations in polymer height (as depicted in Figure 12, say) may be up to approximately 10%
of the total height. Nevertheless, it is possible to derive some simple design rules using this assumption,
and we can directly compare with experimental results.

We begin by assuming that the spin-coating process deposits a layer of polymer of uniform height hdry

(e.g., the quantity sf from equation (2)) on top of all mesas and all trenches. The main question of this
section is: how does this polymer move during the annealing process? An answer to this question is needed
in order to determine how much polymer eventually resides in the trenches, and how much remains on the
mesas. Again, a complete model of the flow during annealing was outside the scope of the study group,
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Figure 13: Final fluid layer over the set of trenches (1-2)
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Figure 14: Final fluid layer over the set of trenches (3)

but we noted that if the annealing is sufficiently long, all models would predict that the polymer surface
would become as flat as possible.

Figure 15 shows the two extreme scenarios we considered. If no flow of polymer occurs during the anneal
process, then there will be a polymer depth of exactly hdry everywhere, and in particular the depth in each
trench is hdry. On the other hand, if the molten (or glassy) polymer flows easily during the annealing,
then after a sufficiently long time all polymer should be in the trenches (as in bottom part of Figure 15).
Conservation of polymer mass then implies a simple relationship between the polymer in-trench depth in
both cases. Now if we are looking at a high density array of trenches (periodic in one direction) with trench
width w and mesa width m, then the arguments above imply a lower bound hlow and and upper bound
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Figure 15: Limiting cases for flow under annealing. Top: no flow during anneal leaves polymer of constant
depth on all mesas and in trenches: this gives a lower bound for the amount of polymer in a trench.
Bottom: upper bound for depth of fill is given by the situation where all polymer from the local mesa flows
into the trench.

hmax on the depth of polymer in each trench given by:

hlow = hdry; hmax = hdry
w + m

w
, (31)

where m is the total mesa width between each trench, and w is the trench width. Figure 16 shows
a comparison of these bounds with experimentally measured polymer depths for various mesa/trench
configurations [14, 15]. The theoretical bounds bracket the measured value in the majority of cases, but
for several of the most-filled cases the bounds are violated. It is noteworthy that these cases correspond to
the highest initial polymer concentrations, and we hypothesize that the formula used for the height hdry

may not be applicable here, perhaps because of nonlinear dependence of the viscosity upon concentration.
If this explanation is correct, it would be most easily verified by experimentally measuring the polymer
height on a flat surface to test the formula for hdry: this suggested experiment (and others) are described
in section 0.6 below.

0.5 Pattern formation due to self-assembly of polymers

Following a study of the existing literature on Monte-Carlo modelling of the self-assembly process, it became
clear that full numerical simulation of the equations requires extensive computational resources. For the
purposes of the study group, we therefore restricted our attention to two toy models which exhibit pattern-
formation phenomena which bear at least some superficial resemblance to the actual complex process of
diblock copolymer self-assembly. A particular focus of interest for CRANN is the problem of creating
polymer patterns which can bend around corners without incurring defects. A coarse-grained model based
on an extended Cahn-Hilliard approach is solved numerically in section 0.5.1, but the numerical solution
breaks down when we attempt to apply to corner geometries. An independent mesocopic Monte-Carlo
model was also developed, and its results are described in section 0.5.2
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Figure 16: Table showing lower and upper bounds from equation (31) and experimentally measured values
for the depth of polymer in trenches, following annealing for a time period of 1 to 3 hours. For the first five
rows the theoretical bounds bracket the measured value, but the last rows show measured values outside
the theoretically attainable range (in red).

0.5.1 Extended Cahn-Hilliard equation

An extension of the Cahn-Hillirad model for ordering processes in binary alloys is described and imple-
mented in [16]. In this phenomenological approach, the concentration field φ(x, t) represents the local
concentration difference between the two components (here the two types of polymer). The dynamical
evolution following a quench from a high-temperature disordered state is modeled by the equation

∂φ

∂t
= ∇2

(−φ + φ3 − α∇2φ
)− γφ. (32)

This dimensionless form of the equation contains two parameters α and γ, and spontaneous formation
of patterns may be observed when these parameters have sufficiently low values. A detailed study of this
equation has not been carried out, but the qualitative behaviour is as shown in Figure 17. The three panels
of this Figure show the field φ(x, t) in a square geometry at (nondimensional) times t = 0, t = 0.005, and
t = 0.1; the solution is obtained using the finite element package Comsol Multiphysics. By the last of
these times the field has entered a steady-state configuration, with a characteristic stripe width. Note the
x-independent initial condition φ(x, y, 0) = sin(0.05y) was chosen as a seed for the formation of stripes
oriented in the x-direction, but the steady-state stripe width is independent of the initial condition. By
seeded with a y-independent initial condition it is also possible to generate stripes in the vertical direction.
Interestingly, however, we were unable to find steady-state solutions for a corner geometry, where it would
be desirable for a horizontally-striped solution and vertically-striped solution to merge. It is not clear
at this stage whether this inability to find a steady-state corner solution is related to the experimental
difficulties experienced in assembling polymer in defect-free patterns at corners.
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Figure 17: Snapshots of the solution field φ of the equation (32) in a square geometry, with parameters
α = γ = 10−4: (a) initial condition is a small perturbation of the zero state (φ(x, y, 0) = sin(0.05y)); (b)
shows the field at time t = 0.005; (c) steady state reached by t = 0.1. Note the formation of the periodic
stripe structure, with a well-defined wavelength.
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Figure 18: The local conservation of A and B blocks in a diblock copolymer microstructure makes it
impossible to form a microstructure in which lamellae turn corners. The microstructure can only be
accommodated by introducing isolated A and B blocks (shown in red).

0.5.2 Mesoscopic Monte Carlo Modelling

A diblock copolymer has the structure

. . . -a-a-a-a-a-b-b-b-b-b-b-. . .

which can be abbreviated as A-B for simplicity. -a- and -b- are monomer groups with heterogeneous
properties, for instance -a- may be hydrophobic while -b- is hydrophilic. While at high temperatures the
two monomer chains intermingle freely, at lower temperatures an order-disorder transition occurs in which
the two chains attempt to segregate. If the two blocks are of roughly equal size, the polymers segregate into
lamellae. Since the A and B blocks are joined by covalent bonds the microstructure must locally conserve
the ratio of A to B. This constraint does not affect straight lamellae but is violated in corner geometries
as shown in Figure 18.

We use Monte Carlo simulations to investigate ordering at corner geometries and the effect of adding
homogeneous polymers. Monte Carlo simulations are ideal for investigating order-disorder transitions.
Since the simulations anneal the system, they can be used to explore the energy landscape. In this
mesoscopic approach we treat a whole polymer block as a single entity, neglecting the internal degrees of
freedom of the individual monomer units. For instance, this model does not make any distinction between
the case when the polymer chains of two distinct molecules are entangled and when they are merely
adjacent. To reduce computing time and to keep the simulations simple we work in two dimensions.

The Hamiltonian of the system is given by

H = −
∑

6 i,j

JSiSj −
∑

6 i,wall

JSi (33)

where the notation
∑
6 i,j means summation over nearest neighbour blocks which are part of distinct

polymer chains, and
∑
6 i,wall means summation over cells closest to the walls. We assume that lithography

has been used to coat the walls with a compound which mimics the effect of a nearby A polymer chain.
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(a) (b) (c)

(d) (e) (f)

Figure 19: Degenerate ground states found for the six state system. A blocks are shown in black and B
blocks in white.

In practice the algorithm breaks down the system into two by two blocks which can be in one of the
six states shown below. This restriction imposes local conservation of A and B blocks.

[
A B
A B

] [
B A
B A

] [
A A
B B

]

[
B B
A A

] [
A B
B A

] [
B A
A B

]

Annealing this system finds a degenerate ground state with ordered lamellae leading into the corner but
without a unique ordered state at the corner. This behaviour is characteristic of geometrically frustrated
systems in which it is impossible to satisfy all the interactions of a system due to geometrical constraints [17,
18, 19]. Examples of degenerate ground states found by the simulation are shown in Figure 19.

The degeneracy can be broken by allowing the inclusion of homogeneous polymers. If the states
[
A B
B B

] [
B A
A A

]

are included then the simulation finds a unique ordered ground state in which the lamellae persist around
the corner. This ground state is shown in Figure 20.

0.6 Conclusions and further work

To summarize: this report details work on several aspects of the complex modelling problem presented
by CRANN researchers. In section 0.2 we have included a review of modelling work for spin-coating onto
flat substrate, including some recent progress on improving Meyerhofer’s solution method. Section 0.3
documents our work on developing a model for the flow of the solvent (with dilute solute) over a non-flat
topography, and includes analytical and numerical solutions for flow over trenches. To provide a (partial)
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Figure 20: Unique ground state found for the eight state model.

answer to CRANN’s query regarding optimizing mesa/trench configurations in high-density arrays, we use
a simple mass-balance argument in section 0.4 to obtain bounds on the in-trench polymer height—these
appear to agree quite well with the available experimental data. Exceptions arise at higher concentrations
of polymer, which possibly indicates a strong effect of the concentration-dependent viscosity in these cases.
Finally, in section 0.5 we review our work on models of pattern formation for the self-assembly process—
though very phenomenological, it is possible that further work or one or both of the models suggested
could lead to useful insights.

An important part of the modelling process involves suggesting experiments which would provide useful
information or feedback to the models. With this in mind, we propose the following experiments:

1. Spin-coat onto a flat surface and measure the dry film thickness. This will validate the model of
section 0.2, and permit calibration of parameters appearing in the Meyerhofer formula.

2. If these experimental results do not match the predictions (especially at higher concentrations of
polymer), it will be necessary to include the concentration-dependence of viscosity in our equations.
Measurement of the viscosity of the solutions used at various concentrations would therefore be very
useful.

3. Measure the profile of polymer following flow over topography (but before annealing) and compare
with the predictions in section 0.3.

4. Measure the profile of the polymer (on topography) after annealing for various times. Results of
these experiments are required to extend the modelling of section 0.4 beyond the rather simplistic
steady-state assumptions used here.
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Nomenclature

c Solute concentration 0-1 ND
g Gravity 9.8 m·s−2

h Fluid height ND
p Pressure ND
s Solute height ND
t Time ND
~u = (u, v, w) Velocity vector ND
(x, y, z) Cartesian coordinates ND
E Evaporation velocity 2.5833 · 10−6 m·s−1

Q = (Qx, Qy) Cartesian flux ND
U Velocity scale m·s−1

α εσ/(ρω2L3) ND
β εg/(Lω2) ND
δ Surface topography to fluid thickness ratio ND
ε = H/L Aspect ratio 0.0025 ND
µ Dynamic viscosity 62 · 10−5 kg ·m−1·s−1

ρ Fluid density 867 kg·m−3

σ Surface tension 28.4 · 10−3 kg·s−2

ω Angular velocity 335 rad·s−1

.1 General solution of Equation (17) using the Green function

The leading order solution of Equation (17) only depends on time and may be approximated as:

dh0

dt
= −2h3

0 − 1. (34)

The corresponding first order film height equation is:

6 (h1 + s1) + 3
[
x

∂(h1 + s1)
∂x

+ y
∂(h1 + s1)

∂y

]
+ αh0

[
∂4h1

∂x4
+ 2

∂4h1

∂x2y2
+

∂4h1

∂y4

]
− βh0

[
∂2h1

∂x2
+

∂2h1

∂y2

]
= 0.

(35)
The first order film height may be solved using the Green function, G(x − x0, y − y0), defined as the

solution of equation and the function f(x, y):

6G + 3
[
x

∂G

∂x
+ y

∂G

∂y

]
+ αh0

[
∂4G

∂x4
+ 2

∂4G

∂x2y2
+

∂4G

∂y4

]
− βh0

[
∂2G

∂x2
+

∂2G

∂y2

]
= δ(x− x0)δ(y − y0), (36)

where δ(x− x0)δ(y − y0) is the Dirac Delta function in R2 and the function f(x, y) is defined as:

f(x, y) = −3
[
x

∂s1

∂x
+ y

∂s1

∂y

]
− 6s1. (37)

Applying the transform

Ḡ(v, y) =
∫ ∞

−∞
exp (−ivx)G(x, y)dx, (38)

to Equation (35), we obtain

αh0

[
v4Ḡ− 2v2 d2Ḡ

dy2
+

d4Ḡ

dy4

]
− βh0

[
−v2Ḡ +

d2Ḡ

dy2

]
+ 6Ḡ + 3

[
Ḡ

iv − 1
+ y

dḠ

dy

]
= δ(y − y0)e−ivx0 . (39)
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Applying the transform
˜̄G(v, w) =

∫ ∞

−∞
exp (−iwy)Ḡ(v, y)dy, (40)

to (39), we obtain

αh0

[
v4 ˜̄G + 2v2w2 ˜̄G + w4 ˜̄G

]
− βh0

[
−v2 ˜̄G− w2 ˜̄G

]
+ 6 ˜̄G− 3

[
˜̄G

iv − 1
+

˜̄G
iw − 1

]
= exp [−i(vx0 + wy0)].

(41)
Rearranging (41), we find

˜̄G =
exp [−i(vx0 + wy0)]

h0(v2 + w2) [α(v2 + w2) + β] + 6− 3
[

1+iv
1+v2 + 1+iw

1+w2

] . (42)

Applying two inverse transforms to (42), we get an expression for G, as follows

G(x− x0, y − y0) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

exp [i(v(x− x0) + w(y − y0))]dvdw

h0(v2 + w2) [α(v2 + w2) + β] + 6− 3
[

1+iv
1+v2 + 1+iw

1+w2

] . (43)

The first order perturbation, h1, may then be calculated using the function f(x, y):

h1(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(x0, y0)G(x− x0, y − y0)dx0dy0, (44)

where f(x, y) and G(x− x0, y − y0) are given by (37) and (43) respectively.
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