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1 Problem description

In this report, we consider the problem concerned with incorporating estimation error
into optimal consumption and portfolio selection in continuous time. The original optimal
consumption and asset allocation problem in continuous time was solved by Merton in a
series of papers [4, 5] and became widely known as “Merton’s Problem”. Merton made
the assumption that the asset price processes {Si}

N
i=1 are given by Geometric Brownian

Motion (GBM), where the parameter values are known. He was able to prove that the
investment opportunity set can be generated by two portfolios or mutual funds of assets,
which themselves obey Geometric Brownian Motion. This result is sometimes known as
a two-fund separation theorem, and does not depend on the market being in equilibrium.
Merton utilized the separation theorem in his development of the Inter-temporal Capital
Asset Pricing Model in [6], but the mutual fund theorem is only dependent on the assumed
properties of the asset price processes.

Subsequent work on this problem has sought to generalize Merton’s work in numerous
ways. For instance, some authors have considered more general asset price processes than
GBM, e.g. Ito processes with deterministic (and even stochastic) time-dependent drift and
diffusion parameters, and other general diffusion and Markov processes, or general semi-
martingales. In the latter case, the additional assumption that the market is complete
(or more generally, effectively complete) is required, and the method of solution uses the
so-called Cox-Huang-Pliska method [9], which involves the use of the Martingale Represen-
tation Theorem. Another generalization of the Merton problem involves the inclusion of
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18 Incorporating Estimation Error into Optimal Portfolio �llocation

stochastic income for the investor, with various degrees of generality regarding the structure
of the income process and transaction costs, and with investor preferences given by expected
utility functions that are non-time-separable (e.g. recursive or stochastic differential util-
ities), or even non-expected utility preference orderings. However, most of the published
work on the consumption/portfolio allocation problem in continuous time has assumed that
the parameters of the asset price processes are known with perfect certainty [3, 2, 10, 8].
In reality, these parameters must be estimated, and there will always be some measure of
estimation risk [8, 10].

The result of the unavoidable nature of estimation risk is that the optimized consump-
tion/portfolio selection strategy will only truly be optimal in the unlikely event that there
is no estimation error; in all other cases, it will be suboptimal. The goal of the workshop
is to formulate the optimal consumption and portfolio investment problem such that, given
any data sample of the asset price processes, we have a prescription that associates to that
sample an optimal strategy; note that this prescription is dynamic, since the sample will
enlarge over time, likely resulting in a different optimal strategy from the previous one,
going forward. To eliminate unnecessary complications, it would be easiest to work within
the original Merton model, except that we wish to consider the case that investors do derive
benefit from end-of-period wealth (instead of the overall consumption), and investor wealth
is constrained to be nonnegative.

2 Mathematical models

To address the issue related to estimation error and investment strategies, we recall the
Merton framework of optimal asset allocation in continuous time. To simplify the discussion,
we consider only asset allocation and ignore consumption in this report. Following Merton’s
approach [4, 5], we assume that

• we have an initial wealth w0 at time t0;
• we can choose a combination of one risky asset (St) and one risk-free asset (Rt), e.g.
a bond;

• St follows the GBM

St

S0
= exp

��

µ−
σ2

2

�

t+ σBt

�

(2.1)

with drift µ and volatility σ;
• the risk-free asset has a rate of return r, and is given by

Rt

R0
= exp(rt). (2.2)

Let πt be a fraction of wealth allocated to St such that the utility of wealth is maximized
at the end of a fixed period, i.e.,

J = max
πt

� [u(WT )|Ft] � (2.3)

where u(·) is a (convex) utility function and the wealth of the portfolio is given by

Wt = πt
Wt

St
dSt + (1− πt)

Wt

Rt
dRt. (2.4)

With the assumption that the parameters µ and σ are known with certainty, Merton [4, 5]
obtained analytical expressions for the dynamic allocation strategy, πt when the utility
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function takes certain forms. For example, when

u(w) =
wp

p
� p < 1� (2.5)

the optimal allocation is given by

πt =
µ− r

(1− p)σ2
� (2.6)

and the value function is given as

J =
W p

p
V� (2.7)

where

V = exp

��

pr +
p(µ− r)2

2(1− p)σ2

�

(T − t)

�

. (2.8)

2.1 Asset allocation under estimation error. During the workshop, we decided
to approach the problem as follows. We assume that the risky asset follows the stochastic
equation (2.1), where the return of the asset is given by

µ = µ0 + σ0U� (2.9)

where U ∼ N(0� 1). Solving the asset equation (2.1) yields

St

S0
= exp

��

µ0 −
σ2

2

�

+ σXt

�

� (2.10a)

where

Xt = aUt+Bt� a =
σ0

σ
. (2.10b)

We now write

dXt = Htdt+KtdZt� (2.11a)

where Zt is a Brownian motion with respect to the same filtration as the asset St. It can
be shown that

Ht = agtXt� Kt = 1� (2.11b)

where

gt =
a

1 + a2t
. (2.11c)

Thus,

dXt = agtXtdt+ dZt.

Applying Ito’s lemma, we can rewrite the process for the risky asset in terms of the
observable parameters:

dSt

St
= (µ0 + σagtXt)dt+ σdZt. (2.12)

Therefore, the wealth process can now be written as

dWt

Wt
= [r + πt(µ0 + σagtXt − r)] dt+ πtσdZt. (2.13)

We now write the value function defined in (2.3) as J = J(Wt� Xt� t), and apply Ito’s lemma
(note J is a martingale when we use the optimal allocation strategy) to obtain

dJ = (Jt +�tJ)dt+ JwdWt + JxdXt� (2.14a)
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with

�tJ =
1

2
Jxx +

π2
t

2
σ2w2Jww + πtσwJwx. (2.14b)

Because J is a martingale, we have Jt +�tJ = 0 when πt is optimal; or

Jt+
1

2
Jxx+rwJw+agtxJx+

1

2
π2

t σ
2w2Jww+πt [(µ0 + aσgtx− r)wJw + σwJwx] = 0� (2.15)

with J(w� x� T ) = u(w). Using the constant relative risk aversion (CRRA) utility u(w) =
wp/p, and assuming J = V (x� t)u(w), we obtain the following Hamilton-Jacobi-Bellman
(HJB) equation for V :

Vt +
1

2
Vxx + agtxVx + prV

+max
πt

�
p(p− 1)

2
π2

t σ
2V + pπt [(µ0 + σagtx− r)V + σVx]

�

= 0 (2.16)

for p > 0, and

Vt +
1

2
Vxx + agtxVx + prV

+min
πt

�
p(p− 1)

2
π2

t σ
2V + pπt [(µ0 + σagtx− r)V + σVx]

�

= 0 (2.17)

for p < 0. The terminal condition is V (x� T ) = 1. The allocation strategy is given by the
first order condition

π∗t =
µ0 + aσgtx− r

(1− p)σ2
+

Vx

(1− p)σV
. (2.18)

The first order condition is only the necessary condition for optimality. Applying the second
order condition yields

p(1− p)σ2V < 0� for p > 0; and p(1− p)σ2V > 0� for p < 0. (2.19)

Because V > 0 and p < 1, this condition is satisfied for both positive and negative values
of p.

2.2 An alternative formulation. One approach to incorporate estimation error is
to treat the problem as an optimal asset allocation problem with learning. In [1], Brennan
analyzes the effect of uncertainty about the mean return on the risky asset on the portfolio
decision, while assuming the volatility is a known constant. To be more specific, he assumes
that the change in the conditional expectation of the stock return is given by

dm =
vt

σ2

�
dS

S
−mdt

�

� (2.20)

where the conditional variance, vt, is determined by its initial value v0 and the differential
equation

dvt = −
v2
t

σ2
dt. (2.21)

We can solve for the conditional variance to get

vt =
v0σ

2

v0(t− t0) + σ2
. (2.22)



Incorporating Estimation Error into Optimal Portfolio �llocation 21

Using Bellman’s principle, under the optimal allocation policy, we have �[dJ ] = 0, which
leads to the following Hamilton-Jacobi-Bellman (HJB) equation (after applying Ito’s lemma):

Jt + rwJw +
v2

2σ2
Jmm +max

πt

�

πt(m− r)wJw + πtvwJwm +
1

2
(πtσw)

2Jww

�

= 0� (2.23)

with terminal condition J(w�m� T ) = wp/p. If we assume J = V wp/p, (2.23) can be further
simplified as

Vt + rpV +
v2

2σ2
Vmm +max

πt

p

�

πt(m− r)V + πtvVm +
p− 1

2
(πtσ)

2V

�

= 0 (2.24)

for p > 0 and

Vt + rpV +
v2

2σ2
Vmm +min

πt

p

�

πt(m− r)V + πtvVm +
p− 1

2
(πtσ)

2V

�

= 0 (2.25)

for p < 0. The terminal condition now becomes V (m�T ) = 1.
Once again, the optimal allocation strategy is given by the first order condition

π∗t =
m− r

(1− p)σ2
+

vVm

(1− p)σ2V
. (2.26)

Note that π∗t consists of two terms where the first term, denoted by πm
t , corresponds to the

ad hoc strategy in which Merton’s formula is used by replacing µ with m. Note that the
Merton’s formula should only be applicable when there is no uncertainty, in which case the
initially estimated return m0 is used. The second term in (2.26) is the “correction” due
to learning. This correction reflects how well the ad hoc strategy approximates the true
strategy.

2.3 Relationship between the two formulations. We now show that the two ap-
proaches described above are equivalent. Note that the two variables m of (2.23) and x of
(2.16) are related by the following equation

m = µ0 + σagtx = m0 + σ0gtx. (2.27)

Treating (2.27) as a coordinate transformation, and using simple straightforward calcula-
tions, we have the following:

Vt|x = Vt|m + Vm
∂m

∂t
= Vt + σag�txVm� (2.28a)

Vx = Vm
∂m

∂x
= σagtVm� (2.28b)

Vxx = (σagt)
2Vmm. (2.28c)

Substituting these equations into the HJB equation (2.16) (with πt the optimal strategy),
we obtain

Vt +
1

2
(σagt)

2Vmm + [σa
2g2

t x+ pσ2agtπt + σag�tx]Vm

+p

�

r + πt(µ0 + σagtx− r) +
p− 1

2
σ2π2

t

�

V = 0. (2.29)

Using (2.11c), we have g� = −ag2
t . Noting that v0 = σ2

0, we obtain

σagt =
σa2

a2t+ 1
=

σσ2
0

σ2
0t+ σ2

=
σv0

v0t+ σ2
=

v

σ
�
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and (2.29) becomes

Vt +
v2

2σ2
Vmm + pvπtVm + p

�

r + πt(m− r) +
p− 1

2
σ2π2

t

�

V = 0� (2.30)

which is the same as (2.31) derived by Brennan [1] when πt is optimal.

Remark 2.1 In [1], the HJB equation is solved directly using a finite difference method.
In this report, we will present a more efficient method, which reduces the problem to solving
a system of ordinary differential equations instead of the highly nonlinear partial differential
HJB equation. We will also extend the model by including constraints on the allocation
strategy. In practise, there are often restrictions on short selling of the risky asset as well as
on the amount one can borrow. Therefore, we will impose a constraint on borrowing as well
as on short-selling by considering portfolio strategies in a bounded region, i.e., 0 ≤ πt ≤ 1.
Finally, learning, as well as portfolio selection, are carried out in discrete time. Therefore,
it is of practical interest to study the problem under discrete time settings. We will present
the continuous time approach first, and defer discussion of the discrete time approach to
later in the report.

2.4 Asset allocation under estimation error and borrowing constraints. It is
straightforward to implement the constraint 0 ≤ πt ≤ 1. Bellman’s principle applies in a
similar fashion and the simplified HJB equation can be written as

Vt + rpV +
v2

2σ2
Vmm + max

0≤πt≤1
p

�

πt(m− r)V + πtvVm +
p− 1

2
(πtσ)

2V

�

= 0� (2.31)

where the value function is J = V wp/p, and the terminal condition is also the same
V (m�T ) = 1. We have implicitly assumed that p > 0. Otherwise, we take the minimum
instead of the maximum.

The asset allocation strategy can be obtained by applying the first order condition to
(2.31), which is

πt = max{0�min{1� π
∗
t }}� π

∗
t =

m− r

(1− p)σ2
+

vVm

(1− p)σ2V
. (2.32)

3 Solution methodologies

In this report we discuss two methods for solving the HJB equation: direct numerical
method and a dimension reduction technique.

3.1 Numerical method for solving the Hamilton-Jacobi-Bellman �HJB) equa-
tion. For simplicity, instead of solving (2.16) or (2.17) backwards in time from terminal
time T , we introduce the following change of variable:

s = T − t� V (x� t) −→ V (x� s)� gt −→ gs =
a

1 + a2(T − s)
.

We thus get an initial value problem for V :

Vs =
1

2
Vxx + [pπsσ + agsx]Vx + pmax

πs

�

r + πs (µ0 + σagsx− r) +
(p− 1)π2

sσ
2

2

�

� (3.1)
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with initial condition V (x� 0) = 1. In this case, using the first order condition, the optimal
allocation strategy (unconstrained) is

πs =
µ0 + σagsx− r

(1− p)σ2
+

Vx

(1− p)σV
� (3.2)

with constraints 0 ≤ πs ≤ 1.
At this juncture, we must fully specify the conditions on V for large x. Because the

partial differential equation (PDE) is defined for x ∈ R� we need to truncate the compu-
tational region to x ∈ [−Xmax� Xmax]. This requires us to impose boundary conditions at
the endpoint ±Xmax. Assuming that for large x, the solution V behaves like the Merton
solution V ∼ exp(sp[r + (µ0 − r)2/(2(1 − p)σ2]), we shall impose the time-varying Robin
conditions

Vx =
p(x− r)s

(1− p)σ2
V� x = ±Xmax. (3.3)

Even though other choices of numerical boundary conditions are possible, we will provide
more insights in Section 3.2 to show that (3.3) is probably the best choice.

A few qualitative comments are in order. First, the same method can be applied to
(2.24) or (2.25). Second, the constrained problem can be solved similarly. In all the cases,
the PDE is highly nonlinear. However, one may naively expect that the linear diffusive term
will ameliorate numerical difficulties, as long as p is much smaller than 0. This observation
motivates the choice of the method of lines for discretizing the PDE.

In the x direction, we pick a mesh size h � 1, and define a uniform grid {xi}
N
i=1 on

[−Xmax� Xmax]. We use a centred difference scheme to evaluate both the first and second
“spatial” derivatives, taking care to incorporate the Robin condition specified above. The
resulting nonlinear system of ordinary differential equations (ODEs) is solved using a built-
in Matlab routine.

3.2 A dimension reduction solution method. Even though we could apply the
numerical method directly to the HJB equations, as in [1] for the unconstrained case, we
are able to find a semi-analytic method that gives more insight into the solution behaviour.
In addition it is much more efficient and avoids the problem of seeking artificial boundary
conditions. Motivated by the Merton solution (2.8), we seek the solution in the following
form

V = exp[α(t)(m− r)2 + β(t)(m− r) + γ(t)]� (3.4a)

where α, β and γ are functions of t. It is a simply calculation to verify from (3.4a) that

Vt =
�
α̇(m− r)2 + β̇(m− r) + γ̇

�
V� (3.4b)

Vm = [2α(m− r) + β]V� (3.4c)

Vmm =
�
2α+ (2α(m− r) + β)2

�
V� (3.4d)

where the dots denote the derivative with respect to time.
3.2.1 Optimal allocation strategy� Using (3.4a)–(3.4d), the optimal allocation becomes

π∗t =
2αv + 1

(1− p)σ2
(m− r) +

βv

(1− p)σ2
. (3.5)
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Substituting (3.4b)-(3.5) into (2.24) and rearranging the terms, we obtain

α̇+
2v2

σ2
α2 +

p

2(1− p)σ2
(1 + 2αv)2 = 0� (3.6a)

β̇ = 0� (3.6b)

γ̇ + rp+
� v

σ

�2
α = 0� (3.6c)

subject to

α(T ) = β(T ) = γ(T ) = 0. (3.6d)

We note immediately in this case that β ≡ 0. Thus the optimal allocation strategy becomes

π∗t =
2αv + 1

(1− p)σ2
(m− r)� (3.7)

and the problem at hand becomes extremely simple: in order to find the optimal allocation
strategy, we only need to solve (3.6a), an ordinary differential equation (ODE) instead of the
full HJB equation. Furthermore, the optimal asset allocation strategy is a linear function
of m. Because the Merton solution is

πm
t =

m− r

(1− p)σ2
� (3.8)

the difference between the current strategy and the Merton solution is also a linear function
of m, i.e.,

Δπt =
2αv

(1− p)σ2
(m− r). (3.9)

We note that the value of γ has no effect on the allocation strategy, and its value is only
needed if we want to compute the value function V (or J). The value function defined in
(3.4a) becomes

V = exp[α(t)(m− r)2 + γ(t)]� (3.10)

which takes a similar form as the original Merton solution (2.8). Furthermore, when v � σ
and v � 1, (3.6a) and (3.6c) can be approximated by

α̇+
p

2(1− p)σ2
= 0� (3.11a)

γ̇ + rp = 0. (3.11b)

In this case we recover the Merton solution. This explains that the numerical boundary
condition (3.3) is indeed a very good choice.

Finally, we note that there is a difference between the Merton strategy (where m is a
constant) and the Merton’s solution. If we use Merton’s solution as an allocation strategy
for stochastic return, we would be using the ad hoc strategy, and the solution of the value
function could also be obtained using a similar approach, which is shown below.

3.2.2 Solution using the ad hoc strategy� When the ad hoc strategy

πm
t =

m− r

(1− p)σ2
(3.12)
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is used, the HJB equation (2.31) can also be simplified by substituting (3.4b)-(3.4d) and
(3.12) into (2.31). In this case, we need to solve the following system of three ODEs

α̇+
2v2

σ2
α2 +

1 + 4vα

2(1− p)σ2
= 0� (3.13a)

β̇ + 2
� v

σ

�2
αβ +

pvβ

(1− p)σ2
= 0� (3.13b)

γ̇ + rp+
� v

σ

�2
�

α+
β

2

�

= 0� (3.13c)

subject to
α(T ) = β(T ) = γ(T ) = 0. (3.13d)

Note that from (3.13b) and β(T ) = 0, we have β ≡ 0. As a consequence, the equation
for γ is the same as (3.6c). Compared with the solution using optimal allocation, the
solution using the ad hoc strategy takes a similar form with minor differences, reflected in
the equations for α. The difference in the equations for α in the two equations (3.6a) and
(3.13a) is 2v2α2/(1− p)σ2. Since (v/σ)2 is normally small, the difference in the solution is
also small except when α is large.

Remark 3.1 For the unconstrained case, the solution methodology used here is very
effective and provides insights into the behaviour of the solution. It also gives justification for
the boundary conditions when numerical methods are applied directly to the HJB equation.
However, for the optimal allocation with constraints, the methodology is not applicable in
general, despite the fact that similar procedure can be applied to πt = 0 or 1 separately.
It is possible that approximate solutions can be found under special circumstances, such as
when v/σ � 1 and v � 1. Since we can solve the HJB with constraints using the finite
difference method, we will not discuss it any further in this report.

4 Numerical experiments

4.1 Outline. We now describe some numerical experiments and our investigations
include:

• The allocation strategy in the presence of uncertainty in the parameters, but without
constraints on the allocation (Brennan’s approach);

• The allocation strategy with constraints;
• A comparison of the actual allocation strategy to the “ad hoc” strategy obtained by
simply replacing µ = m = µ0 + σagtx in the Merton solution, i.e. using

πm
t =

m− r

(1− p)σ2
=

µ0 + aσgx− r

(1− p)σ2
;

• Computations using the simpler dimension reduction formulation when applicable.

4.2 Results. In order to compare with the results presented by Brennan [1], in this
section we make the following choices for parameters:

• Rate of return on risk-free asset r = 5�;
• Volatility of the market σ = 20.2�;
• Initial mean return of the risky asset µ0 = 13�;
• Variance around the mean return v0 = 0.0243

2;
• Risk aversion parameter p = −2 and p = 0.2;
• Time horizon T = 5 and T = 20;
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• Size of the computational domain for HJB is set to be Xmax = 0.5 (or mmax = 0.5
when Brennan’s formulation is used).

Table � Comparisons of the optimal allocations obtained by solving the HJB, using the
dimension reduction technique as well from the case with constraint. The results from
Brennan [1] are also presented.

p T σ π∗t πm
t πm

t − π∗t
HJB (2.24) -2 5 0.202 0.6236 0.6535 0.02995
Brennan [1] 0.624 0.654 0.030
Dimension reduction (3.5)-(3.6c) 0.6235 0.6535 0.03007
HJB (2.31) 0.6236 0.6535 0.02995
HJB (2.24) -2 20 0.202 0.5497 0.6535 0.1039
Brennan [1] 0.551 0.654 0.103
Dimension reduction (3.5)-(3.6c) 0.5478 0.6535 0.1039
HJB (2.31) 0.5497 0.6535 0.1039
HJB (2.25) 0.2 5 0.202 2.4960 2.4507 -0.0453
Brennan [1] 2.495 2.451 -0.044
Dimension reduction (3.5)-(3.6c) 2.4959 2.4507 -0.0451
HJB (2.31) 1 2.4517 1.4507
HJB (2.25) 0.2 20 0.202 2.6449 2.4507 -0.1941
Brennan [1] 2.643 2.451 -0.192
Dimension reduction (3.5)-(3.6c) 2.6419 2.4507 -0.1997
HJB (2.31) 1 2.4507 1.4507

In Table 1, we have presented the results obtained using the finite difference method
for HJB equations (2.24) and (2.25), the dimension reduction method, and those from
Brennan [1]. We have also presented the results for the constrained allocation case, obtained
by solving the HJB equation (2.31) by finite difference method. It can be seen that all the
results for the unconstrained case agree with each other. It is interesting to note that
when the constraint is not active, the values of the optimal allocation stay unchanged. As
pointed by in [1], the correction to the ad hoc strategy is positive for p > 0 and negative
for p < 0, under economic viable conditions. This can also be explained by the sign of α in
the dimension reduction solution. Because the correction is given by

2αv

(1− p)σ2
(m− r)�

and v > 0 and p < 1, the sign of the correction is determined by the sign of α for m >
r (“economically viable”). The sign of α, on the other hand, is the same as p, which
can be seen clearly from (3.6a), when v/σ � 1, as is the case here. In Figure 1, the
numerically computed values of α and γ are given for the optimal allocation (both exact
and approximated) and the ad hoc allocation strategies. We can see from the graphs that the
difference between the optimal and ad hoc strategies is small. The approximation (Merton’s
solution) is reasonably close to the exact value of α. We also present the numerically
computed value functions in Figure 2. Finally, the optimal allocation π∗t at t = 0 is given in
Figure 3. Linear variation with m is apparent in all cases, even for the constrained problem
when the constraints are not active.
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Figure � Numerically computed values of α and γ, using �3.6a) and �3.6c). The solid line
corresponds to the optimal allocation and the circles are for the ad hoc allocation. The
dashed line is from the approximation of the optimal allocation �Merton’s solution).

5 Discrete time model

In this section we describe a time-discrete formulation of the asset allocation problem
with learning. This is a more realistic approach in the sense that both market transactions
and learning occur in discrete time intervals (rather than continuously).

5.1 Illustration A: one period. Consider a market consisting of one risky asset St

and a bond Rt. The prices can be written as (with respect to the ‘full’ sigma field Gt )
�
dSt = µStdt+ σStdZt

dRt = rRtdt
⇒

�
St = S0e

�µ− 1

2
σ2)t+σZt

Rt = R0e
rt

where we take µ to be Gaussian with mean µ0 and standard deviation σ0. With respect to
the sigma field generated by the market up to time t0, Ft0 = σ{Sk� k < t0}, the price of the
stock can then be written

St = St0e
�µ0−

1

2
σ2)�t−t0)+σ�Xt−Xt0

)�

where

Xt = X0 +
σ0

σ
tU + Zt� U ∼ U(0� 1).
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Figure 2 Numerically computed value function � , using �2.24) and �2.25).

We now consider the discrete time one period portfolio allocation problem. Let us assume
t0 = 0 and (t− t0) = 1. The total wealth after investing in the market for one period with
a strategy given by the starting strategy π0 will be

W1 =W0

�

π0
S1

S0
+ (1− π0)

R1

R0

�

.

The goal of the investor is to maximize the expectation of the utility of wealth

V (π0�W0� t0) = �(U(W1)|F0).

If we take a linear utility function, U(x) = x, we can easily calculate the expectation and
solve the maximizing problem explicitly:

V (π0�W0� t0) = �(W1|F0)

=W0�

�
π0e

µ0−
1

2
σ2+σ�X1−X0) + (1− π0)e

r
�

=W0

�
π0

�
eµ0+ 1

2
σ0

2

− er
�
+ er

�

=W0
1

2π

� �

π exp

�

µ0 −
1

2
σ2 −

−X2 − 2σ̂2X + σ̂4

2σ̂2
+

σ̂2

2

�

+(1− π) exp(r −
X2

2σ̂2
)

�

dX.
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Figure 3 Numerically computed values of optimal allocation π∗t at t = 0. The solid line is
the solution by solving the HJB equation using finite difference method, the dashed line is
the ad hoc strategy, and the circles are the solution using the dimension reduction method.

Here X is a normally distributed random variable with mean zero and standard deviation
σ̂ =

�
σ2 + σ2

0. V is maximized with the allocation strategy

π0 =

�
0 if µ0 +

1
2σ

2
0 < r�

1 if µ0 +
1
2σ

2
0 > r�

and the investor is indifferent if µ0 + σ2
0/2 = r. In other words, the allocation strategy is

determined by the relation of the uncertainty in the market parameter µ, and not on the
standard deviation σ of the stock. This is to be contrasted to the result for the optimal
allocation problem with deterministic µ, where the optimal strategy π0 is

π0 =

�
0 if µ+ 1

2σ
2 < r�

1 if µ+ 1
2σ

2 > r.

5.2 Illustration B: two periods. Now consider investing in the same market for two
investment periods. The investor must make two allocation decisions represented by π0 and
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π1 (at time 0 and 1 respectively). The problem facing the investor can be phrased

max
�π0�π1)

� (U(W2)|F0) � W2 =W1

�

π1
S2

S1
+ (1− π1)

R2

R1

�

.

The expectation can be rewritten

� (� (W2|F1) |F0)

= �

�

�

�

W0

�

π0
S1

S0
+ (1− π0)

R1

R0

� �

π1
S2

S1
+ (1− π1)

R2

R1

� �
�
�F1

� �
�
�F0

�

= �

�

W0

�

π0
S1

S0
+ (1− π0)

R1

R0

� �

π1�(
S2

S1
|F1) + (1− π1)

R2

R1

� �
�
�F0

�

=W0π0�(π1
S1

S0
�(

S2

S1
|F1)|F0) +W0π0

R2

R1
�((1− π1)

S1

S0
|F0)

+W0(1− π0)
R1

R0
�(π1�(

S2

S1
|F1)|F0) +W0(1− π0)

R2

R0
�((1− π1)|F0).

Writing out S1 and S2 explicitly in the above expression, we see that we only need to
calculate

�(π1
S1

S0
�(

S2

S1
|F1)|F0)� (5.1)

�((1− π1)
S1

S0
|F0)� (5.2)

�(π1�(
S2

S1
|F1)|F0)� (5.3)

� [1− π1|F0] . (5.4)

Note that π1 depends on the market σ field F1 (i.e. π1 = π1(S1)) in an, as yet, undetermined
way. To simplify these expectations as much as possible we note that with respect to Ft0 ,
we have

dXt = agtXtdt+ dZt� a =
σ0

σ
� gt =

a

a2t+ 1
.

Thus, Xt with respect to Ft0 is an Ornstein-Uhlenbeck process, and

Xt ∼ N (µx(t0� t)� σx(t0� t)
2) = N

�

e
� t

t0
agsds

Xt0 �

� t

t0

e2
� t

t�
agsdsdt�

�

. (5.5)

We then have

�

�
S2

S1
|F1

�

= eµ0−
1

2
σ2−σX1�

�
eσX2 |F1

�

= eµ0−
1

2
σ2+σµx�1�2)+ 1

2
σ2σx�1�2)2−σX1 .
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The expectations (5.1), (5.2), (5.3), (5.4) then simplify to

�(π1
S1

S0
�(

S2

S1
|F1)|F0) = �(π1|F0)e

2�µ0−
1

2
σ2)+σµx�1�2)+ 1

2
σ2σx�1�2)2−σX0 �

�((1− π1)
S1

S0
|F0) = �((1− π1)e

σX1 |F0)e
µ0−

1

2
σ2−σX0 �

�(π1�(
S2

S1
|F1)|F0) = �(π1e

−σX1 |F0)e
µ0−

1

2
σ2+σµx�1�2)+ 1

2
σ2σx�1�2)2 �

� [1− π1|F0] = 1− � [π1|F0] .

In principle one could now attempt to solve the constrained optimization problem by setting
up the Lagrangian and differentiating with respect to {π1}, being careful about switching
the order of expectation and differentiation. That is for each s we would need to set the
derivative of the expected utility of wealth (E.U.W.) to zero. However, we can save a lot
of effort by noting that the E.U.W. depends only linearly on {π1}. This means that, once
again, the optimal solution for each path s = {St� 0 ≤ t ≤ 1} is either zero or one. Writing
the E.U.W. as

E.U.W. = �(A(X1) +B(X1)π1(s)|F0)�

we see that the optimal π1 only depends on X1. Since π1 can only depend on information
derived from observables (St), we must build a ‘best inference’ of X1, say X̂1(s), in order
to estimate the sign of B(X1). Then the optimal investment decision for the second period
would be

π∗1 =

�
0 if B(X̂1(s)) > 0�

1 if B(X̂1(s)) <= 0.

5.3 A non-linear utility function. In researching the best possible utility function
that describes investment portfolio strategies, a concave function of the form u(W ) =

−e
1

γ
W0 � γ > 0� was found to capture the required behaviour [8] (p.419).
The solution to the one-step discrete model is already analytically not possible without

making some approximations. The solution process is the following:

max
�π}

E[u(W0)|π] = const

�

e
−W0

1

γ
πeµ�σ2

2
�σ�

e
−W0

1

γ
�1−π)er

e−
z2

2 dz

≈ −
1

γ
e
− 1

γ
�1−π)er

πemu− 1

2
σ2+σ2

2 +
1

γ2
e
− 1

γ
�1−π)er

π2e2µ−σ4

4
+σ2

.

When the above is provided as input in Maple, the solution obtained is of the form

−
1

2
γ

�
−er + 2eµ−σ4/4+σ2

−
�

e2r + 4e2µ−σ4/2+2σ2

�
e−µ−r+σ4/4−σ2

.

6 Conclusion

In this report, we investigate the impact of uncertainty in the market parameters to the
optimal allocation problem. An alternative derivation to the one proposed by Brennan is
presented. A dimension reduction solution is obtained by reducing the HJB equation into
a system of simpler ODEs. Numerical results demonstrate the validity of these approaches,
and the impact of the constraints on the allocation strategy is discussed. Discrete-time
allocation models are also presented. To simplify the discussion, we focus on asset allocation
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and do not consider consumption. The methodology that we present in this report can be
extended to include consumption, which will be pursued in a future study.
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