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1 Introduction

Figure 1: A UK wind farm.

(1.1) When wind is used to generate electricity, intermittency can be a problem.
Since it is unlikely to be calm simultaneously over a large area, one way to
make intermittency less of a problem is to have a portfolio of wind farms
spread over a wide geographical area. To run simulations to estimate this
effect quantitatively, and for other purposes, E.ON wish to have a method of
generating wind speed time series at a set of sites, with the correct statistical
properties.

(1.2) One property is that the correlation coefficient R between the wind speeds
at 2 sites separated by a distance d should be a decreasing function of d,
for instance of the form

R2 ≈ αe−d + β. (1)

(1.3) Another property is that the correlation in time of the wind speed at a single
site should be correct. E.ON consider that enough accuracy is provided by
an auto-regressive first-order (AR(1)) model of the form

yt = Ayt−1 + nt (2)

where yt is the wind speed and nt is random noise. If t is measured in
half-hours, A is usually at least 0.95.
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(1.4) The third property that E.ON wish to have correct is the distribution of
wind speed at a single site, which should follow a Weibull distribution with
scale λ and shape k, so the density function is

p(y) =
kyk−1

λk
exp

(

−(y/λ)k
)

, (y > 0). (3)

We call this the Weibull(k) distribution. Typical values of k obtained by
fitting to observed data are in the range 1.6 to 2.3.

(1.5) If the simulation method can fit the joint spatio-temporal correlation struc-
ture as well as the space and time correlations individually, that would be
an added advantage.

1.1 Data available

(1.6) The data provided by E.ON for this study was wind speed data averaged
over 10-minute intervals from 7 wind farm sites taken at various times during
the 4 years 2002–2005. The data (after some cleaning described in Section 7)
is displayed in Figure 2. Data for an individual site is present for between
8 and 20 months out of the 4 years, so coverage is somewhat sparse, but
there is, for instance, a 3-month period in which there is synchronized data
for 5 sites.

2 Outline of modelling approaches

(2.1) Models of various kinds were proposed, and were tested and pursued to
various extents. In this section we describe them briefly.

(2.2) One suggested approach was to use a stochastic differential equation model
for the wind speed process at a point. These models were closely related to
the discrete-time models, broadly taking the form of replacing a discrete-
time model of the form (2) by

dy = −(1 − A)y dt + dξ(t) (4)

where ξ(t) is a noise process.

(2.3) The distribution of the differences of successive values dt = yt − yt−1 was
found to have, very closely, a 2-sided exponential distribution. This led
to some suggested models for the wind speed process. In particular the
GARCH model, which has a stochastic volatility, appeared to provide many
of the desired features observed in the (dt) time series. Any resulting nega-
tive speeds yt would have to be replaced by 0.

(2.4) Various models that fall under the broad heading of regime-switching were
proposed. For instance, one could have an underlying Markov process that
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Figure 2: Measured wind speeds in m/s averaged over 10-minute in-
tervals from 7 sites. The horizontal axis is the row index. In the data
this runs from 1 to 210384 but here we only display from the start of
the main record in column 2. This covers the 38 month period from
November 2002 to December 2005.

switches between calm and stormy weather, with certain transition rates,
and then a random process for wind speed whose parameters differ depend-
ing on the calm/stormy state. In mathematical finance, analogous models
are sometimes called mixing models.

(2.5) The Weibull(2) distribution is also called the Rayleigh distribution, and
can also be viewed as the square root of the χ2

2 distribution. In fact, if
the wind velocity vector V in r dimensions has zero mean and independent
components of equal variance, then |V|2 is a χ2

r random variable and so |V|
has the square root of that distribution. Hence when r = 2, this “Gaussian
wind” blowing in 2 dimensions has exactly a Weibull(2) distribution.

(2.6) Some models attempted to bring about a Weibull(2) distribution for y by
assuming an underlying Gaussian model for a wind speed vector (u, v) with
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zero mean and equal variances in the East and North directions. This can
lead to some success, as we shall see in Section 3, but is difficult to validate
in detail without wind direction data, which at the moment we do not have.

(2.7) A wind farm position that was particularly exposed or sheltered (compared
with being on a large flat plain) might be modelled by a distribution like
that of |V| above with a larger or smaller value of r, not necessarily an
integer. That distribution could then be approximated by a Weibull(k)
distribution, and there would be a correspondence (which could be made
precise by moment-matching or in other ways) between values of r and the
k. However, we did not have data on how the fitted values of k deviate from
2 at different kinds of sites, so this was not pursued in detail.

(2.8) Lastly, some models attempted to incorporate a prevailing wind velocity
into the model of the preceding paragraph, since this is one of the most
obvious ways in which it fails to represent reality. In this case, if the mean
wind velocity is non-zero and the deviations from that are Gaussian and
independent in the 2 directions, then the square of the speed is a non-
central χ2

2 distribution. This is more complicated and we shall here only
describe the simpler case where the mean velocity is taken as zero.

3 Preliminary data analysis

(3.1) If we take the section of the data consisting of rows 137001 to 149000, then
columns 3, 4, 5, 7, 8 are all active, and so we have a 12000 point (about 3
months) 5-variate time series. This data is plotted in Figure 3.

(3.2) The autocorrelations of these time series are plotted in Figure 4, and the
cross-correlations in Figure 5. It is clear that the cross-correlations do not
have their peaks at zero lag, i.e. the greatest correlation between the wind
speeds at different sites is not for simultaneous values, but for one site being
slightly delayed or advanced with respect to the other.

(3.3) We fitted higher order auto-regressive models to this multivariate time se-
ries, using the Yule-Walker equations. The sum of the variances in the data
started at 88, and fitting the first order AR model reduced that to 2.91.
Further increase of the order to 5 reduced it to 2.88, and even going to
order 256 only reduced it to about 2.5. So, much the main reduction is
obtained by the first step, suggesting that it still makes sense to look at
AR(1) models for the multivariate data.

(3.4) The comparison of R2 against distance can be plotted from these, and is
shown in Figure 6, but since few sites were involved, and also the location
of site 5 was not provided, fitting R2 by a function of d is inconclusive.
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Figure 3: Measured wind speed data in rows 137001 to 149000, in
columns 3, 4, 5, 7, 8

4 Complex Gaussian model

4.1 Scalar case

(4.1) We first show the fact mentioned above about the Weibull(2) distribution,
so suppose that (U, V ) are independent Gaussians with mean 0 and equal
variance σ2/2, and let

Y =
√

U2 + V 2 = |U + iV |. (5)

Then the joint density function of (U, V ) is

(

1√
π

exp(−u2/σ2)
du

σ

)(

1√
π

exp(−v2/σ2)
dv

σ

)

. (6)

When we go to polar coordinates such that u+ iv = y exp(iθ), this becomes

(

exp(−y2/σ2)
2y dy

σ2

)(

dθ

2π

)

. (7)
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Figure 4: Autocorrelation of wind speeds at sites 3,4,5,7,8.

The second factor is just the uniform density over θ, and the first is a
Weibull(2) distribution of Y with scale σ. In such a case we say that X =
U + iV is a complex Gaussian random variable with variance σ2 = E(|X|2).

(4.2) One way to produce a Weibull(2) time series Yt with autocorrelation would
therefore be to take a stationary complex Gaussian time series Xt generated
by

Xt = BXt−1 + Zt (8)

and let Yt = |Xt|. We shall want the noise Zt to be complex Gaussian, and
independent of the past history of X, i.e. independent of (Xt−1, Xt−2, . . .).
If the variance of Zt is σ2 as above, then taking the variance of (8) gives the
variance of the stationary distribution as

Var(Xt) = E(|Xt|2) =
σ2

1 − |B|2 . (9)
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Figure 5: Cross-correlations between sites 3,4,5,7,8.

The autocorrelation structure of X is that

E(XtX t−k) = BkVar(Xt) (10)

for k ≥ 0.

(4.3) The question then is how to choose σ and B to produce a given Weibull(2)
scale λ and a given autocorrelation in Y . Certainly we must take

σ2

1 − |B|2 =
(

E(Y 2
t )

)

data
, (11)

where the subscript “data” on the right means the estimate based on the
data.

(4.4) To choose B, if we fit to the observed autocorrelation of the process then
we would need to ensure that

E(|Xt||Xt−1|) = (E(YtYt−1))data , (12)
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2 plotted against separation for pairs of sites.

and the expectation on the left will be E(|Xt|2) times a nonlinear function
of |B| that could be determined numerically.

(4.5) A simpler, but in some ways less satisfactory, alternative is to fit the fourth
moments, since they can be calculated analytically. In fact for k ≥ 0

Cov(|Xt|2, |Xt−k|2) =
(∣

∣E(XtX t−k)
∣

∣

)2
= |B|2kVar(Xt)

2. (13)

So we can fit |B| by estimating the autocorrelation of Y 2
t at lag 1 from

the data and then using this equation. This raises the interesting question
whether y2

t and y2
t−k could be negatively correlated. We do not see this in

the data available, but it cannot be ruled out. If such negative correlations
were to occur, one could not fit a model of this type.

4.2 Multivariate case

(4.6) In the multivariate case we can proceed similarly, so we still want the equa-
tion (8) to hold, but with Xt and Zt as complex vectors of height d, the
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number of sites under consideration, and B a square matrix of order d.
Then we shall let Yt = |Xt|c where the subscript c means that we take the
absolute values component-wise to get the vector Yt of simulated speeds. We
shall let V denote the variance matrix of Z, V = E(ZZ†) where (.)† denotes
the conjugate transpose. So V is a positive definite Hermitian matrix, and
the definition of a multivariate complex Gaussian is that Z has density

1

πd det(V )
exp

(

−z†V −1z
)

(14)

with respect to Lebesgue measure. (Further details of this distribution are
collected for reference in the Appendix in section 9.) Then Xt is also a
stationary complex Gaussian process, and its variance W is given by

W = E(XtX
†
t ) = V + BWB†. (15)

(4.7) The autocorrelation for k ≥ 0 is given by

E(XtX
†
t−k) = BkW. (16)

(4.8) One could then fit B by a numerical fit to the observed correlation of the
time series. However, as in the scalar case, it is quicker to match the 4th
moments. These are given, for k ≥ 0, by

Cov(|Xi,t|2, |Xj,t−k|2) =
∣

∣E
(

Xi,tXj,t−k

)∣

∣

2
. (17)

Hence from the measured data for pairs of sites (i, j) we can estimate the
left hand side, and thereby deduce the magnitude of the entries of BkW .

(4.9) The fitting of B and V can now proceed as follows. If we assume that the
imaginary parts of B and V are 0, then (17) at k = 0 gives us an estimate
of the W matrix. Then applying the same equation at k = 1, we estimate
B. The freedom to use complex B and Hermitian V is not used in this
approach. It could perhaps be used to fit the autocorrelation at higher lags
than 1, but we have not done so.

5 Simulated data

(5.1) If we follow the procedure above with this data, then we can produce
simulated data that will have Weibull(2) marginals and the same cross-
correlation and the correct 1-step auto-correlation as the original. A real-
ization of this process is plotted in Figure 7.

6 Conclusions and other remarks

(6.1) We have produced a method that can take measured wind speed data and
produce multivariate time series with the correct cross-correlation and 1-
step autocorrelation, and with Weibull(2) marginals. If we wish to produce

9
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Figure 7: Simulated wind speed data with Weibull(2) marginals and
the cross-correlation and auto-correlation fitted to the data in Figure 3

Weibull(k) rather than Weibull(2) then one possibility is to work with y2/k

in place of y. (This would require knowing the value of k, which we might
do if, for instance, k is known to take different values over land and sea.)

(6.2) We have shown that the goodness of fit between the measured data and
Weibull is not good.

(6.3) If we want to use a longer AR process AR(m) for m > 1 in place of (8), then
we could fit such a process to the data using the multivariate Yule-Walker
equations.

7 Appendix: Data file structure

(7.1) The data had been collected into a Microsoft Access file called tblMaster,
and E.ON exported this to a file tblMaster.txt of comma-separated vari-
ables. Each row in tblMaster.txt is for a single time and contains 8 num-
bers: a timestamp, followed by the 7 wind speeds in m/s, with unrecorded
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entries as 0. The timestamp in the Access file is of the form yyyyddd.hhmm,
where yyyy is the year (2002–2005), ddd is the day number within the year
(001 for 01-Jan through to 365 or 366 for 31-Dec), hh is the hour number
(00–23) and mm is the minute number (00, 10, 20, 30, 40, 50). In exporting
to the tblMaster.txt file, the minutes were truncated. The file contains
210384 rows: 1461 days, with 144 rows per day.

7.1 Ordering time-stamps

(7.2) The time-stamps in the file were not ordered, so the rows were permuted to
put the whole file into time-order.

(7.3) In detail, the file was arranged in the order

(a) 59 rows from 2004282.03[00] to 2004282.12[40]

(b) 145602 rows from 2002001.00[00] to 2004282.02[50]

(c) 885 rows from 2004282.12[50] to 2004288.16[10]

(d) 354 rows from 2004289.02[10] to 2004291.13[00]

(e) 59 rows from 2004288.16[20] to 2004289.02[00]

(f) 413 rows from 2004298.02[30] to 2004300.23[10]

(g) 944 rows from 2004291.13[10] to 2004298.02[20]

(h) 62068 rows from 2004300.23[20] to 2005365.23[50]

The minutes numbers here in square brackets are not in the tblMaster.txt
file, because of the truncation mentioned earlier, but they are guessed from
the numbers of entries present, and confirmed by the fact that when we
reassemble the 8 blocks in the order (b), (a), (c), (e), (d), (g), (f), (h), then
they provide the full 10-minute sequence through the whole 4 years.

7.2 Outlier

(7.4) At time-stamp 200532.12[10] (row 162362 of the reordered data) the wind
speed in column 6 is 730 m/s (faster than Mach 2) so we set this entry
to 0. The maximum other speed is 35.45 m/s, and no speeds are reported
negative.

7.3 Midnight zeros

(7.5) Sometimes the speeds at midnight (hhmm=0000) are reported as zero, even
though the speeds next earlier and later (2350 and 0010) are positive. The
reason for this is unknown, but we replace each such midnight zero by the
mean of the values next earlier and later. This happens 618, 0, 406, 245, 0,
435 and 529 times in columns 2–8 respectively.
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7.4 Stuck readings

(7.6) There are also some sections of data in column 6 where the reported speed
sticks at a value of about 3.5 m/s, and also at about 0.2 m/s.

8 Appendix: Generating specified distributions

by an AR(1) process

(8.1) One question that we considered was the AR(1) process

yt = Ayt−1 + nt (18)

with a noise process nt that is stationary and uncorrelated with the past
history of y. How is the stationary distribution of y coupled to that of n,
and in particular how do we choose the distribution of n to get a specified
stationary distribution of y ?

(8.2) One way of looking at the relationship of the stationary distributions of n
and y is by means of the Laplace or Fourier transform. In fact, if we use
the Laplace transform, let Ly(s) denote the Laplace transform of the p.d.f.
of y so

Ly(s) = E(e−sY ). (19)

Then since nt is independent of yt−1 we have

Ly(s) = E
(

e−sY
)

= E
(

e−s(AY +n)
)

= Ly(As)Ln(s). (20)

So the forward expression, giving the resulting distribution of y in terms of
that of n is

Ly(s) = Ln(s)Ln(As)Ln(A2s) · · · , (21)

while the inverse expression, giving n in terms of y is

Ln(s) =
Ly(s)

Ly(As)
. (22)

(8.3) An alternative approach is to relate the moments of n and y, and this is
easiest done by the cumulants, κj. These are given, for a general random
variable X, by

κ1(X) = E(X) = µ, (23)

κ2(X) = Var(X) = µ2 = E
(

(X − µ)2
)

, (24)

κ3(X) = µ3 = E
(

(X − µ)3
)

, (25)

κ4(X) = µ4 − 3µ2
2, . . . , (26)

and can be defined in general by (28) below. These have the property that
the cumulants of a sum of independent random variables are the sums of
the cumulants. Hence for each j = 1, 2, 3, . . .,

(1 − Aj)κj(y) = κj(n). (27)
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These equations are closely related to (20) since

κj(X) = (−1)j

(

d

ds

)j

(log Lx(s))

∣

∣

∣

∣

∣

s=0

, (28)

so the j-th logarithmic derivative of (20) gives (27)

(8.4) If we attempt to produce a Weibull(k) distribution for y by a process of
this form, we run into a difficulty that can be demonstrated either from
the Laplace transform approach or the cumulant approach. In the Laplace
transform approach, we have the result (22), where Ly is the Laplace trans-
form of a Weibull(k). For any p.d.f. p(y) with a behaviour

p(y) ∼ cyk−1 as y → 0 (29)

the Laplace transform obeys

Ly(s) ∼
cΓ(k)

sk
as s → ∞. (30)

Hence (22) shows that

Ln(s) → Ak as s → ∞ (31)

and therefore the density of n has a point mass Ak at the origin.

(8.5) If we subtract that out, then the p.d.f. γ(n), say, can be written

γ(n) = Akδ(n) +
1

2πi

∫ c+i∞

c−i∞

(

Ly(s)

Ly(As)
− Ak

)

esn ds, (32)

by a Bromwich inversion integral. Now for k in the range 1.5 to 2.5 (which
covers the values of interest) Ly(s) is an entire function so the singularities
of the integrand in (32) are when Ly(As) = 0. For k in this range, the
rightmost zero of Ly(s), say s∗, can be computed numerically and has non-
zero imaginary part. For instance if k = 2 and we scale the Weibull to have
λ = 1 then s∗ ≈ −2.5+5i. Hence the most slowly decaying term in γ(n) as
n → ∞ will be proportional to Re(K exp(s∗n/A)), and since s∗ has non-zero
imaginary part, this is a decaying oscillatory term, and therefore the p.d.f.
γ(n) would be negative at suitable large values of n, which is impossible.

(8.6) This can also be found in a more elementary way from the approach via the
cumulants. For if we are given the y distribution and A then we can find
the cumulants of the n distribution as above. However, the cumulants are
not arbitrary, since they are connected by certain inequalities. In fact, if we
let the central moments of a general random variable X be denoted by

µj(X) = E
(

(X − µ)j
)

(33)
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then the matrix












1 0 µ2 µ3 µ4 . . .
0 µ2 µ3 µ4 . . . . . .
µ2 µ3 µ4 . . . . . . . . .
µ3 µ4 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .













(34)

must have all its leading principal minors positive. This fails to be the case
if A is close to 1 and y is Weibull(k) with k in the range of interest.

(8.7) Thus we see that the Weibull distribution (with k in the range of interest)
cannot be produced by any AR(1) process of the type considered, assuming
as always that the process (nt) in (2) is stationary and independent of the
past history of y. This may be related to the problems that the VARTA
software was found to encounter, although those problems did seem to be
more specifically related to multivariate data, whereas this difficulty already
arises in the scalar case.

(8.8) The Weibull distribution with k = 1 is simply the exponential distribution
with mean λ, and this can be produced by the AR(1) process (2) by letting n
be 0 with probability A, or (with probability 1−A) an exponential variable
with mean λ.

(8.9) It is worth noting another observation from this argument. If we wish y
to have any density function p(y) that tends to 0 as y → 0 proportional
to some power yk−1, then we have seen that the noise n must have a point
mass Ak at the origin. So the time series for y will consist of steps where
yt = Ayt−1, with probability Ak, and other steps where yt = Ayt−1 + nt

with nt 6= 0, with probability 1 − Ak. This is somewhat implausible for
a physical process: for instance, it would mean that if one were to plot
the points (yt−1, yt) on a scatter diagram, then a positive proportion Ak

of them will lie exactly on the line yt = Ayt−1. The process can produce
the stationary distribution correctly, and the autocorrelation, but without
producing realistic-looking time series.

9 Appendix: Complex Gaussian Random Vec-

tors

(9.1) If X and Y are n-dimensional random column vectors such that (XT , Y T )
is multivariate Gaussian (2n-dimensional) with mean 0, then we say that
Z = X + iY is a complex Gaussian random vector if any of the following
equivalent conditions holds:

(a) for any real θ, eiθZ has the same distribution as Z;

(b) iZ has the same distribution as Z;

(c) E(ZZT ) = 0;

14
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(d) E(XXT ) = E(Y Y T ) and E(XY T ) = −E(Y XT );

(e) the density of Z is

1

πn det(V )
exp

(

−Z†V −1Z
)

, (35)

where V = E(ZZ†) is the positive definite Hermitian variance matrix
of Z, the density is with respect to the standard Lebesgue measures
dx1 dy1 dx2 dy2 . . . dxn dyn, and we are using (.)† to denote the complex
conjugate transpose of a vector or matrix.

(9.2) First note that V = E(ZZ†) is certainly Hermitian and positive definite
for any random complex vector Z (since given a constant complex vector
b, b†V b = E(b†ZZ†b) = E(|b†Z|2) ≥ 0), so if we write it as V = A + iB in
terms of its real and imaginary parts then A is symmetric and B is skew.

(9.3) To prove equivalence of the five conditions, the first implies the second by
taking θ = π/2. If the second, then E(ZZT ) = E

(

(iZ)(iZ)T
)

= −E(ZZT ),
hence the third. If the third, then 0 = E((XT + iY T )(X + iY )) = E(XXT −
Y Y T )+ iE(XT Y +Y T X), hence the fourth. If the fourth, then the variance
matrix A + iB = V = E(ZZ†) = E(XXT + Y Y T ) + iE(Y XT − XY T ) and
so

Var

((

X
Y

))

= E

((

X
Y

)

(XT Y T )

)

=

(

A/2 −B/2
B/2 A/2

)

. (36)

Hence the joint density of (X,Y ) is

1
√

det

(

2π

(

A/2 −B/2
B/2 A/2

))

exp

(

−(XT Y T )

(

A −B
B A

)−1 (

X
Y

)

)

.

(37)
The determinant here we can simplify, since for any square matrices A, B
of the same size,

det

(

A −B
B A

)

= det

(

A + iB −B + iA
B A

)

(38)

= det

(

A + iB 0
B A − iB

)

(39)

= det(A + iB) det(A − iB), (40)

(the first step by adding i times the bottom half of the matrix to the top, the
next by subtracting i times the left half from the right). If A is symmetric
and B skew, then det(A − iB) = det((A − iB)T ) = det(AT − iBT ) =
det(A + iB) so the constant factors in (35) and (37) agree. For the other
factor, let

(

A −B
B A

)−1 (

X
Y

)

=

(

P
Q

)

, (41)

15
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so X = AP−BQ, Y = BP +AQ, in other words X+iY = (A+iB)(P +iQ).
Hence

(XT Y T )

(

A −B
B A

)−1 (

X
Y

)

= XT P + Y T Q (42)

= Re
(

(X + iY )†(P + iQ)
)

(43)

= Re(Z†V −1Z) = Z†V −1Z, (44)

and so the exponential factors in (35) and (37) also agree. Finally, the
fifth condition implies the first, since the density function is unchanged on
replacing Z by eiθZ.

(9.4) In the case n = 1, Z is just a complex number whose real and imaginary
parts X and Y are Gaussian, independent, each of mean 0, and of equal
variance. The general case can be transformed into products of such cases
by writing V = U †ΛU with U unitary and Λ = diag(λ1, . . . , λn) with λi > 0.
For then if Z = U †ζ, and we write ζ = ξ + iη then the density function (35)
becomes

1

π2λ1λ2 · · ·λn

exp

(∑

i |ζi|2
λi

)

(45)

with respect to the measure dξ1 dη1 dξ2 dη2 · · · dξn dηn. So ξ1, η1, ξ2, η2, · · · , ξn, ηn

are independent Gaussians with mean 0 and with variances λ1/2, λ1/2, λ2/2,
λ2/2, · · ·, λn/2, λn/2.

(9.5) The fourth moments of the distribution are given by

E(ZiZjZkZ l) = E(ZiZj)E(ZkZ l)+E(ZiZ l)E(ZkZj) = VijVkl +VilVkj. (46)

In fact in general the moments of order 2k are given by

E(Zi1Zi2 · · ·ZikZj1Zj2 · · ·Zjk
) =

∑

σ∈Sk

Vi1,jσ(1)
Vi2,jσ(2)

· · ·Vik,jσ(k)
, (47)

where the sum is over all k! permutations σ of {1, 2, . . . , k}. These can all
be calculated from the moment generating function, which takes the form

E(exp(s†1Z + Z†s2)) = exp(s†1V s2). (48)
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