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Abstract

In this paper we consider the problem of shunting train units on a railway
station. Train units arrive at and depart from the station according to a given
train schedule and in between the units may have to be stored at the station.
The assignment of arriving to departing train units (called matching) and the
scheduling of the movements to realize this matching is called shunting. The
goal is to realize the shunting using a minimal number of shunt movements.

For a restricted version of this problem an ILP approach has been presented
in the literature. In this paper, we consider the general shunting problem and
derive a greedy heuristic approach and an exact solution method based on
dynamic programming. Both methods are flexible in the sense that they allow
the incorporation of practical planning rules and may be extended to cover
additional requirements from practice.
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1.1 Introduction

In this paper we study a practical train shunting problem proposed by Dutch Rail-
ways. This problem has already been studied by Kroon et al. [7], but their work
does not exploit the full potential of shunting trains.

Shunting of trains is a process that supports the execution of the train schedule
at the station. Trains arrive at and depart from the station according to the train
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schedule. Each arriving and departing train may consist of multiple and possibly
different types of train units. This composition of the trains is specified in the train
schedule. For an arriving train it now has to be decided what the next duties of
the arriving train units are and for a departing train it has to be guaranteed that the
corresponding train units are available on time on the platform. During rush hours
almost all train units available are required to transport passengers and, thus, are
on duty, but in between, and especially during the night, many train units are not
needed for transporting passengers. Thus, train units may have to be parked at a
shunt yard of a station for a certain period. An example of such a shunt yard is
given in Figure 1.1, which represents the infrastructure of the station and shunt yard
of Alkmaar.

Figure 1.1: Shunt yard and station of Alkmaar.

The train units are classified according to their types and subtypes. Train units of
the same type can be combined into longer trains, even if their subtypes differ. An
example of a train unit is an ICM (Inter City Material) with 3 carriages, as shown
in Figure 1.2. ICM denotes the type, and the subtype is specified by the number
of carriages. There also exist ICMs with 4 carriages, which can be combined with
the ICM with 3 carriages since they are of the same type, although not of the same
subtype.

Figure 1.2: Train unit of type ICM with 3 carriages.

To park a train unit, a crew has to take several actions. If the train has to go only
forward, the driver can stay on one side of the train and drive the train directly to
the shunt yard. This is not always possible and it may e.g. be the case that the train
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has to go forth, back, and forth again to be parked. In that case the engine driver
has to switch places two times, since he always has to be in the front of the train.
Each time going back or forth is called a shunt movement. So, if we only need to
go forth, this is counted as one shunt movement and if we have to go forth, back,
and forth then this is counted as three shunt movements.

When a train unit parked at the shunt yard is needed again in the schedule to
transport passengers, it has to be taken out of the shunt yard and put at the platform
from which the corresponding train will depart. Again it may happen that several
shunt movements are needed to transport the unit to the platform. But it may even
be worse in the sense that no train unit of the desired type is directly reachable on
a shunt track. In this case, before getting the desired train unit, first some other
blocking train units of another (sub)type have to be removed from a shunt track.
This can also take several shunt movements.

As a consequence, to execute the train schedule, a feasible shunt schedule is
required at each station. A shunt schedule consists of a list of actions that indicate
which train units are shunted and between which places. Next to this, also the exact
shunt movements of the train units can be specified. A shunt schedule is feasible if
all arrivals and departures of the train schedule can be executed in the desired way.
This implies for example that a platform has to be empty when a train is passing
through or that train units of the desired (sub)types and in the desired order are at
the right time at the right platform for a departing train.

However, not every feasible schedule is desirable: if the shunt schedule consists
of many shunt movement, the schedule causes a high workload for the crew and is
very sensitive for disruptions. This can cause delays in the train schedule, which
should be avoided. Therefore, the goal is to have a shunt schedule with a minimal
number of shunt movements.

Next to the main goal to create shunt schedules with a low number of shunt
movements, some other practical aspects have influence on the quality of a schedule
and lead to additional rules to be taken into account in creating shunt schedules. For
example, for the crew it is convenient to have similar train units close together. This
implies for instance that shunt tracks of the shunt yard should be used only for train
units of the same type. Another practical aspect focuses on shunt movements just
before a departure. Small disruptions in a shunt schedule with such movements
directly may lead to delays of departing trains and, therefore, may disturb the train
schedule. As a consequence, it is desirable that the number of shunt movements for
a train that needs to depart is minimized. It would even be best if the train units are
already waiting in the needed composition for the departure at the shunt yard.

1.1.1 Problem Description

The input for the shunting problem at a given railway station consists of the train
schedule at that station and the layout of the station (platforms and shunt yard).
The given train schedule prescribes the train arrivals and departures at the railway
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station. Each of these events is characterized by a time, the composition of the train,
its direction, required platform and whether the train arrives or departs. Since not
all arriving train units are scheduled to leave the station immediately, the train units
that stay behind may have to be stored at the shunt yard to clear the platform for the
next train.

The shunt yard consists of a number of shunt tracks to store train units. Most
of the shunt tracks are dead-end tracks. This implies that train units are blocked
by train units parked at a later time. Thus, train units arrive and depart in last in
first out (LIFO) order. The shunt tracks and platforms have a limited capacity for
storing train units. There is a network of tracks connecting the shunt tracks with the
platform tracks.

Between successive events of the train schedule, it may be necessary to move
train units to make the next event possible. Such movements are called shunt move-
ments. A one-directional movement is counted as one movement and every change
of direction is counted as an extra movement. A solution is a list of shunt move-
ments that take place between the events such that all events can take place. The
objective is to find a solution with minimum number of shunt movements.

In this paper we assume a timeless model; i.e. we assume that a shunt movement
takes zero time. This implies that an unlimited number of shunt movements can
be performed between two events. However, it is possible to add extra constraints
within the developed methods, which restrict the number of shunt movements be-
tween two events.

1.1.2 An Example

To illustrate the shunting problem we give a small example. Consider a railway
station with the layout given in Figure 1.3. In this example we consider four types

platform 1

platform 2
Shunt track 1

Shunt track 3

Shunt track 2

Figure 1.3: Layout of the example station.

of train units, denoted by A, B, C and D. Each train consist of some train units of
these types. When we talk about a train AB wemean a train consisting of a train unit
of type A and a train unit of type B, where the type A unit is positioned to the left
of the type B unit. This is regardless of the direction the train is traveling in. Thus,
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trains AB and B A are different in composition. We assume that the capacity of all
shunt tracks and platform tracks is limited to accommodate 3 train units. According
to the train schedule the following trains are arriving and departing in the given
order.

e1 Train AB arrives from the left-side at platform 1.
e2 Train AA arrives from the right-side at platform 2.
e3 Train CCC arrives from the right-side at platform 1.
e4 Train CC departs from the platform 1 to the left-side.
e5 Train AA departs from the platform 2 to the right-side.
e6 Train DC arrives from the left-side at platform 1.
e7 Train CDC departs from platform 1 to the right-side.
e8 Train B A arrives from the right-side at platform 2.
e9 Train BB departs from platform 2 to the right-side.
e10 Train AA departs from platform 1 to the left-side.

In this small example there are already a number of non-trivial shunting decisions
to make. It is not difficult to verify that the following solution is a valid shunt
schedule.

Between e2 and e3 Shunt train AB from platform 1 to shunt track 2.
Between e5 and e6 Shunt train C from platform 1 to shunt track 1.
Between e6 and e7 Shunt train C from shunt track 1 to platform 1.
Between e8 and e9 Shunt train A from platform 2 to shunt track 2,

and shunt train AA from shunt track 2 to platform 1,
and shunt train B from shunt track 2 to platform 2.

The solution contains six shunt movements. In this example the choice whether
to shunt to the tracks on the left-hand side or to the tracks on the right-hand side is
the most important decision. Observe that shunting train unit C to any of the shunt
tracks on the right-hand side is not a good decision. When moving the unit back, it
has to go around the DC train, to connect to it from the left to form the CDC train.
Going around the DC train implies a change of direction in the shunt movement and
is counted as two shunt movements. Furthermore, if the AB train is shunted to the
shunt track on the left-hand side, the efficient moves between e8 and e9 would not
be possible. It turns out that the above solution is indeed optimal for the example.

1.1.3 Complexity of the Shunting Problem

The general problem of integrated matching (to which departing trains are the units
of an arriving train matched?) and parking of train units is introduced in [7] and
in [8] its computational complexity is determined. The general problem as well as
the subproblem of matching the train units and the subproblem of parking the train
units are shown to be NP-hard.
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In the train matching problem we are given a set of arriving trains and a set of
departing trains. We are supposed to partition the incoming trains into parts which
can later be assembled into departing trains. Since each produced part is shunted
separately, our main goal is to minimize the number of parts into which we partition
the arriving trains. This problem is a generalization of the minimum common string
partition problem known from computational biology. In [5] the minimum common
string partition problem is shown to be NP-hard even if we restrict ourselves to
instances with only two strings as input. This means that the train matching problem
is NP-hard even if we are given just one arriving and one departing train.

Blasum et al. [1] introduce a problem of scheduling the departures of trams from
a shunt yard in the morning. This problem turns out to be NP-hard and the authors
provide a dynamic program for a special case of the problem with restricted number
of shunt tracks. This problem can be seen as a subproblem of our shunting problem
where all the trains are already placed in the shunting yard.

Cornelsen et al. [2] study the problem of generating shunt-free schedules in sta-
tions consisting of parallel two-sided tracks. They reduce the problem to a graph
coloring problem of a conflict graph resulting from the train schedule. For most of
the versions of the problem the conflict graph is perfect and can be colored in poly-
nomial time. For other cases efficient approximations algorithms are presented.

In similar setting Dahlhaus et al. [3] consider a problem of grouping of train units.
In this problem a sequence of incoming train units is given. Each train has to be sent
to one of a given set of parallel tracks and later pulled out to the other side. The
outgoing sequence has to be ordered in such a way that units of the same type are
grouped together. Designing a schedule that minimizes the number of used tracks
is shown to be NP-hard.

In freight train classification hump yards are commonly used for shunting. Jacob
et al. [6] model the shunting task as a problem of finding a set of binary codes. It
allows them to find optimal solutions for most versions of the problem. Some other
versions are shown to be NP-hard.

1.1.4 Current Solution Approach

Currently there is no decision support system to aid the personnel in solving the
shunting problem. However, Dutch Railways is testing the ILP-model proposed
in [7] on small stations. However, this ILP-model has a number of drawbacks. First
of all it does not cover all possible shunting moves. For example it does not allow
trains to stay at a platform, waiting to be combined with a next train. It is clear
that such a waiting possibility can be beneficial. Moreover, it does not model the
possibility of moving train units between different shunt tracks. Whenever a train
arrives, it either has to be shunted away or depart immediately.

Furthermore, in the current ILP-model the number of variables and constraints is
already very large, and extending this model to cover the above shunting possibili-
ties would increase the number of constraints and variables even further. Although
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for a typical instance the current model can be solved within a reasonable time,
one may expect that the extensions make the number of variables so large that the
computation time required to solve the problem becomes unacceptably large.

1.1.5 Goal of the Research

The task of this paper is to present alternative approaches to the shunting problem
which do allow waiting on platforms and rearrangements of train units between
shunt tracks. In the following we describe two solution approaches, one which aims
at finding fast a reasonable cost solution (a greedy algorithm) and one which aims
at the optimal solution (a dynamic-programming algorithm). We conclude with an
outlook on future research.

1.2 First Approach: A Greedy Algorithm

In this section, we present a heuristic approach for the shunting problem. This
heuristic has to be fast and has to result in a reasonably good solution. The basic idea
is to scan the event list and iteratively decide which actions to take. The decisions
in each iteration are based on the situation resulting from the previous decisions and
the current event. In this way, the approach tries to locally extend the given situation
as good as possible and, therefore, falls in the category of greedy approaches.

From practice it is indicated that planners prefer situations where the train units of
departing trains are already waiting somewhere (either on a platform track or a shunt
track) in the composition they have to depart in. We take this philosophy, be ready
for departure, as a guideline for building the greedy approach. As a consequence,
we scan the event list backwards in time and make the decisions in such a way that
they lead to the desired composition for the departing trains.

For the presentation, we assume that during the planning horizon the arriving
train units correspond one to one to the departing trains. We assume that the train
station is empty at the beginning and the end of the planning horizon. This can be
justified by taking the planning horizon to be form one rush hour to the next, since
during rush hour all material is needed in the train schedule. The presented heuristic
can easily be adopted when this assumption is dropped.

Our algorithm consists of two main steps, step 2(a) and 2(b), which we explain
in more detail later.

The Greedy Algorithm:

1. Start with empty platforms and shunt tracks

2. Scan the event list backwards in time, and for each event DO

a) IF the event is a departure event, THEN assign the entire train to a shunt
track
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Events e1 e2 e3 e4 e5 e6 e7 e8
Arrivals C A BB AA
Departures B B A AA C
Platform 2 1 2 2 1 2 1 2

Table 1.1: Event list Example 1.

b) ELSE the event is an arrival event THEN match the train units to train
units already placed on the shunt track

The most important steps in our algorithm are steps 2(a) and 2(b). In these steps
the main decisions are made. In step 2(a) we decide on which shunt track we set
the train ready for departure. At this point, we do not care how these train units
come to this shunt track, but just decide that the units wait on the assigned shunt
track for departure. How these units arrive on their positions on the shunt track will
be decided in subsequent iterations. Possible rules for assigning the trains to shunt
tracks are given later. In step 2(b) we match the train units of arriving trains to train
units that are already placed for departure from a certain track in one of the previous
iterations. Again, concrete rules for this matching are given later.

Example 1 To get a better understanding of the basic idea of this greedy approach
we present an example consisting of two platforms and two shunt tracks. The event
list of this example is presented in Table 1.1 (in this table platform numbers are
given as well, since we use them later on).

If we scan the event list from the back, we first have to treat event e8. Since this is
a departure, we may decide to assign this train to shunt track 1. The situation on the
two shunt tracks after this decision is given in Figure 1.4(a). The next event e7 is also
a departure, and we may assign the train AA to shunt track 2 (see Figure 1.4(b)). For
shunting the arriving train units of event e6 we now have the nice option to match
the whole train to the two train units of type A being assigned to shunt track 2. By
this matching, i.e. shunting the two train units to shunt track 2, this shunt track gets
empty and the resulting situation is as in Figure 1.4(c). Next, wemay assign the train
of departure event e5 to shunt track 2 and the train of departure event e4 to shunt
track 1 resulting in the situation as in Figure 1.4(d). If we now treat the arriving
event e3, the train consisting of two type B units cannot be matched as a whole to a
shunt track, but we have to split the train and match the two type B units to the two
type B units in front of the two shunt tracks leading to the situation in Figure 1.4(e).
Note that this matching leads to two separate shunt movements. Finally, the two
arriving events e2 and e1 are processed by matching the corresponding train units to
the units of the same type still being on the shunt tracks.

As can be seen from the above example, the presented algorithm decides for
each arriving train unit to which departing unit it is coupled and via which shunt
track this assignment takes place. In this way shunt movements are specified. For
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track 1 C
track 2

(a)

track 1 C
track 2 AA

(b)

track 1 C
track 2

(c)

track 1 BC
track 2 B A

(d)

track 1 C
track 2 A

(e)

Figure 1.4: Situations on the shunt track for Example 1.

departing trains the shunt movement can be done with the train as a whole since we
always assign to be ‘ready for departure’. We implicitly assume that there are shunt
tracks long enough to accommodate for departing train. For arriving trains more
complex shunt movements may be necessary. In the above example, all the shunt
movements were directly possible, but in general it may be necessary to rearrange
the train units on the shunt tracks at certain moments to achieve a feasible solution.
If, for instance, the arriving event e3 would have been that of an AC train, first the
two B units already being at the shunt tracks would have to be removed to place the
A and C unit at the dead-end of the shunt tracks.

The advantage of the presented approach is that it always gives a feasible solution
as long as the list of arrival and departing events is consistent, in the sense that there
is never a negative stock of train units of some type, there are shunt tracks long
enough to accommodate for the departing trains, and there is always some empty
(part of) track to move a train unit around. Furthermore, the departing trains can
always be handled efficiently. The price to achieve this is that we may create costly
shunt movements for arriving events.

In the followingwe sketch some possible improvements of the greedy method and
give somemore detailed information on possible implementations of the assignment
and matching in steps 2(a) and 2(b).

Leaving train units on platform tracks One of the goals of this research is to
develop methods which allow the option of leaving train units on platform tracks or
to move it from one platform to another platform without parking it in between at
the shunt yard. A simple approach is to scan the solution achieved by the greedy
heuristic and to search for ’shortcuts’. In the above example such a short cut is for
example possible between the events e6 and e7. The AA train arriving on platform
2 (event e6) may be passed directly to platform 1 from which it departs as event e7.
In this way, the AA train does not have to be moved to the shunt track 2, probably
saving shunt movements. Another short cut is possible by leaving one of the arriving
type B units of event e3 on platform 2. In this way the departing train of event e4 is
already on the platform without any movement.

9



1 Shunting passenger trains: getting ready for departure

A more effective method than a scan after finishing the greedy approach may
be to take such possibilities already into account during the greedy algorithm. If
we have to assign a departing event in step 2(a) of the algorithm, we may scan the
event list some positions further back in time to detect if there is an assignment
of this train to a shunt track which allows using shortcuts. Such an assignment is
preferable over other assignments.

Delaying the shunt movement If for an arriving event the shunt movements of
possible matchings take a large effort (e.g. the corresponding units do not occur at
a reachable end of a shunt track), we may scan the event list back in time to see
if we can improve the situation by letting some other arriving trains wait on their
platform. To clarify this possibility, let us assume that in the given example the train
of event e2 is a B train and that of e3 an AB train. If we now deal with event e3, no
easy matching is possible since on shunt track 2 the train units are not in the correct
order (see Figure 1.4(d)). But we may delay the movements belonging to event e2,
since this event is on a different platform. For the greedy approach this means that
we consider event e2 before e3. By matching the B unit of that train to the B unit
in front of shunt track 2, we achieve a situation where on shunt track 1 we have BC
and on shunt track 2 we have A. Now we can match the two units in front of the
two shunt tracks to form the AB train of event e3.

Formally, in step 2(b) of the greedy approach we may search the event list back-
wards and consider for each platform the first occurring event. If this event is an
arrival, we may treat this event before the current event. Note that it is not possible
to delay departure events or two arriving events on the same platform.

Assignment rules in step 2(a) Up to now, we have not specified the way how we
assign in step 2(a) the trains to shunt tracks. The most simple way is to assign them
in some round robin way (meaning that the tracks are used in a given cyclic order)
or to assign them based on some priorities of the tracks. Possible priorities may be:
smallest number of shunt movements to reach the platform, largest free capacity,
et cetera. However, it may be worthwhile to incorporate also planning rules of
the planners of Dutch Railway into this step. One such rule is, for example: do
not park more than two different unit types on the same shunt track. Furthermore, a
backward scan in the event list by a few positions may help to overcome problems in
the next iterations. Consider, for example, the event list in Table 1.2. Two possible
shunt track assignments after treating the events e6, e5, e4 are given in Figure 1.5.
The first assignment is made using round robin, but has not taken into account the
arriving B train. The second assignment does not have this problem.

Matching rules in step 2(b) As in step 2(a), also in step 2(b) there may be some
freedom in matching the arriving trains to units already assigned to the shunt tracks.
Again, this decision may be based on priority rules like the number of necessary
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Events e1 e2 e3 e4 e5 e6
Arrivals A A B
Departures A A B

Table 1.2: Event list Example 2.

track 1 AB
track 2 A

track 1 AA
track 2 B

Figure 1.5: Situations on the shunt track for Example 2.

shunt movements but, as in the previous case, it may also be worthwhile to incor-
porate some backward scan to see which resulting remaining situation on the shunt
tracks forms the better situation for the next events. To illustrate this consider Ex-
ample 2.

Example 2 This example is the same as Example 1, with the difference that events
e2 and e3 are interchanged and that after considering event e4 we have the first shunt
track assignment in Figure 1.5. If we now have to deal with event e3, matching the
type A unit of this event to the A unit in front of shunt track 1 allows a direct access
to the B unit on that track in the next iteration. Having chosen for the A unit on
shunt track 2 would not have given this possibility leading to a situation where units
on the shunt tracks have to be rearranged.

Improvements Several of the suggested improvements contain some sort of par-
tial backward scan of the event list to improve the decision for the current event.
In principle this means that some sort of simultaneous treatment of several events
is considered. Based on the outcome of this, a decision for the current event is
fixed. This treatment of several events simultaneously, can be seen as a new opti-
mization problem on its own. This problem gets harder the more events are taken
into account. An interesting topic of further research is to try to find a good balance
between the effort spent on this backward scan and the improvement in quality. Fur-
thermore, concrete decision rules for the treatment of several events simultaneously
have to be developed.

To sum things up: the greedy algorithm we have developed is able to create
feasible schedules for the shunting problem quite fast. However, without additional
improvements, the achieved solution may not be of much practical use. Above we
have shown, that the basic structure of the method forms a good framework which
easily can be extended by more sophisticated elements and even with rules used by
planners.

11



1 Shunting passenger trains: getting ready for departure

1.3 Second Approach: A Dynamic Programming

Algorithm

To solve the shunting problem, a response to each event, arrival or departure, has
to be given. This response has some influence on the position of train units on the
different tracks and platforms and has to guarantee, that the next event can take
place. Getting ready for a departure means that the right train composition is on the
departure platform, and getting ready for an arrival means that the arrival platform
can accommodate for the arriving train.

To describe the given situation of train units on the different shunt tracks and
platform tracks (called a configuration), we define a vector S. S is called the state
of the system and is an ordered list of train type units on each of the tracks. For
the example given in Section 1.1.2, the first element in S describes the train units
on platform 1, the second on platform 2, the third on shunt track 1, et cetera. With
(S, ei ) we indicate that the train units are in state S just before event ei happens.
The pair (S, ei ) is valid if and only if event ei can take place with the given state S;
i.e. in state S we are ready for event ei .

With this notation we can describe the solution for the example of Section 1.1.2
as in Table 1.3.
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Table 1.3: Solution of the example.

1.3.1 Network of (S, ei)-pairs

The basic idea behind the dynamic programming algorithm is the following. From
the initial state and the first event we can determine all possible responses which are
compatible with the second event. In this way a set of new pairs (S, e2) are created
which are then treated recursively in the same way. For a formal description, let
each pair (S, ei ) be a node and let each transition (set of shunt movements) leading
to a following node be an arc. This way we get a network in which we can move
from one pair (S, ei ) to an other pair (S�, ei+1). In this network we only allow
valid pairs, and each transition has an associated cost equivalent to the number of
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shunt moves required for carrying out the transition. It is not difficult to see that the
shunting problem is equivalent to finding a shortest path in this network.
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Figure 1.6: Dynamic programming network.

Although the network becomes very large, the network is highly structured. The
network consists of a number of levels, where each level corresponds to one event,
see Figure 1.6. Hence, there are only arcs going from level i to level i + 1. This
means that the cost of getting to a particular state is given by the cost of the states
in the previous level plus the cost associated with the arcs.

To obtain the optimal solution, we just have to construct the network level by
level and calculate the cost of getting in each of its nodes. However, though this
would work in theory, in practice the running time of this algorithm may explode as
the instances get larger (remember that the problem is NP-hard).

1.3.2 Eliminating Nodes

To make the dynamic programming approach work in practice we need to bring
down the size of the dynamic programming network. In this section we present sev-
eral suggestions to speed up the dynamic program algorithm. However, by applying
some of these suggestions we can no longer guarantee that the optimal solution is
found.
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Eliminate symmetry Whenever there are two tracks with the same characteristics
(same capacity and reachable with the same number of shunt movements from the
platforms), there are many nodes in the network that are basically the same. In the
example given earlier we have not used shunt track 3. If all the units assigned to
track 2 are assigned to shunt track 3, we have a different solutionwhich is essentially
the same. So, in the network we can delete many states which are symmetric without
affecting the solution.

Disallow costly transitions Given a transition with a high number of shunt move-
ments, one might not want to allow this transition from a practical point of view. We
can incorporate this, by simply deleting the arcs corresponding to these costly tran-
sitions from the network. This may reduce the number of outgoing arcs from nodes
and may even lead to nodes which are not reachable anymore, reducing the number
of nodes in the network. Note, that disallowing costly transitions may exclude the
optimal solution.

Upper bounding the solution For each node in the dynamic programming net-
work we know the cost of getting to this node. If by some (heuristic) procedure we
know that there exists a solution with cost c, we do not have to proceed with nodes
in the network that have cost exceeding c, i.e. these nodes can be deleted from the
network. Reducing the dynamic programming network in this way does not affect
the optimal solution.

Detecting bad paths Suppose we have created the dynamic programming net-
work up to level i . If we now compare the cost of all nodes in level i , we may
expect that the costly ones have only a small chance to result in the overall opti-
mal solution. Deciding not to continue from the nodes with high costs reduces the
dynamic programming network. However, this may exclude the optimal solution.

Rolling horizon To make a decision for level 1, we may restrict ourselves to creat-
ing the dynamic programming network only up to level i . Based on the information
up to level i we may decide which arc to take leaving level 1. Starting with the
resulting node on level 2, we now may create the network up to level i + 1 and
use this network to decide upon the level 2, et cetera. This type of decision making
is called rolling horizon. Each time we make a decision, only a small part of the
network is considered. Again, we may exclude the optimal solution.

1.3.3 Computational Results

We have made a proof-of-concept implementation of the dynamic programming ap-
proach in C++, comprising about 1000 lines of code. The example of Section 1.1.2
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is used to test both the implementation and some of the elimination rules. The
results are summarized in Table 1.4.

In this table,

• clm indicates the maximum allowed cost between each level,

• sym indicates whether or not symmetry elimination is used,

• ntp indicates whether or not states, in which more than 2 types of train units
are on the same shunt track, are forbidden,

• tp indicates whether or not states, in which unit of types A/B and C /D are
mixed, are forbidden,

• #states gives the number of states on each level in the network. In most cases,
only state counts up to level 4 are given, as the runtime increases dramatically
after that,

• runtime gives the runtime for those computations that we ran to completion
(the running times are after various optimizations of the code, on a 2.16GHz
laptop),

• cost gives the resulting costs for those computations that we ran to comple-
tion.

The number of valid states does not tell the entire story, though. The number of
intermediate states, i.e. those states that have to be computed and may or may not
be valid, has a large impact on the runtime as well. In case I, each of the 128 states
in level 2 generates about 25000 new states, of which in total only about 1500 are
valid. This is quite a large number compared to e.g. case 4A, where the number
25000 is already reduced to about 3700.

The impact of limiting the costs between levels in the network is clear: If we do
not enforce any limits, the network is simply too large to compute. If we limit to
4, we can complete the computation, but if we limit to 3 the speedup is almost a
factor of 5 without losing the optimal solution. Limiting the costs of the arcs to 2
removes the optimal solution, but could provide a good heuristic for upper bounding
the solution (see Section 1.3.2).

The other elimination rules also cut down the number of states significantly, al-
though not as dramatically as limiting the costs of arcs.

One of the major advantages of this approach is that adding new rules (e.g. heuris-
tics used by Dutch Railways planners) is extremely easy: in our implementation it is
literally a matter of minutes. Furthermore, the chosen DP-approach is very suitable
for parallelization.
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Elimination rules run-

id clm sym ntp tp #states time cost

I. ∞ - - - 28 → 128
∼25000

→ ∼ 1500 → . . .

4A. 4 - - - 28 → 128
∼3710
→ 1500 → 180 → . . . →

14 → 1
737s 6

4B. 4 y - - 19 → 72
∼2410
→ 780 → 108 → . . . →

10 → 1
280s 6

4C. 4 y y - 19 → 72
∼2410
→ 630 → 90 → . . . →

10 → 1
242s 6

4D. 4 y y y 19 → 72
∼2410
→ 178 → 40 → . . . →

10 → 1
153s 6

3A. 3 - - - 28 → 128
∼870
→ 1500 → 180 → . . . →

14 → 1
146s 6

3B. 3 y - - 19 → 71
∼630
→ 776 → 108 → . . . →

10 → 1
63s 6

3C. 3 y y - 19 → 71
∼630
→ 628 → 90 → . . . →

10 → 1
54s 6

3D. 3 y y y 19 → 71
∼630
→ 178 → 40 → . . . →

10 → 1
24s 6

2A. 2 - - - 19 → 121
∼140
→ 1196 → 180 → . . . →

12 → 1
18s 7

2D. 2 y y y 13 → 64
∼120
→ 166 → 40 → . . . → 8 →

1
3s 7

Table 1.4: Dynamic Programming Results.
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1.4 Alternative Approaches

Besides the presented Greedy Algorithm and Dynamic Programming Algorithm,
other solution approaches may be possible. In this section we give some comments
on such approaches.

1.4.1 Local Search

One might expect that a local search approach is useful to obtain good solutions,
since each solution is a list of shunt movements compatible with the event list.
However, we feel that defining small local operations on this list which result in new
compatible lists of shunt movements, is extremely difficult. When a small change
is made in the movement list, many repair operations may be required to keep the
list compatible with the event list. Consider the example given in Section 1.1.2,
where between events e2 and e3 train AB is shunted to track 2. Suppose we modify
this first shunt movement by moving AB to shunt track 1 instead of moving it to
shunt track 2. This small change makes the remainder of the list incompatible with
the events, i.e. the shunt movement between events e8 and e9 cannot be performed.
This example shows that changing a single movement is not just a local change,
it requires repair operations that can be much further down the list. Furthermore,
it seems to be difficult to calculate the resulting change in the objective value in
a simple way since we know nothing about the amount of repair operations. This
convinces us that a local search approach may be not an easy way to go.

1.4.2 Integer linear programming

A possible approach is to extend the model from [7] by other shunt moves. For
example, to include the possibility to wait at the platform and delay shunting, we
need to include the ‘shunting time’ explicitly. The current model includes a variable
z js which equals 1 if train unit j is parked at or retrieved from tracks s. We could
replace these variables by z jst signaling if train unit j is parked at or retrieved from
tracks s at time t . Another possibility is to add variables t j representing the shunting
time of train unit j . Although the number of reasonable shunting times for a train
unit is limited, both options significantly complicate the model: the first by strongly
increasing the number of variables and the second by the need for additional ‘nasty’
constraints. The computation time will probably increase accordingly.

A different LP-based approach is to apply column generation. In [4] a column
generation algorithm for the planning of aircraft at gates or platform stands at Ams-
terdam Airport Schiphol is presented. Because of the similarity with the problem of
planning train units on a shunt yard, i.e., shunt tracks correspond to gates at an air-
port, the idea seems useful to explore. The idea is that the problem is decomposed
into two levels. At the highest ‘master’ level we have variables representing a com-
plete shunting plan for one shunt track and the most important constraint is that the
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retrieval of each departing train unit and the parking of each arriving train unit is
included in exactly one shunting plan. At the detailed or subproblem level we deter-
mine feasible shunt plans for one track which are expected to be beneficial for the
optimization at the master level. Column generation approaches have been success-
ful to solve large optimization problems in many different applications. However,
certain shunt moves such as rearrangements of trains between different shunt tracks
seem to be quite complicated to include in the model and therefore we are not con-
vinced that it is worth to investigate this approach further.

1.5 Further research

In this paper we have presented two approaches for shunting train units. The first
one is a greedy algorithm that can find a feasible shunt plan quickly. This algorithm
typically chooses one single possibility that looks best at the current moment in
time. The second one is a dynamic programming algorithm that can find the optimal
shunt plan and typically explores many possible states. We presented an outline
and a basic version of the algorithms and developed a preliminary prototype of the
dynamic programming algorithm.

Each of the algorithms can be improved by moving more towards the other ap-
proach. The greedy algorithm can be improved by including smart look-ahead rules
and rules used by operational planners. The dynamic programming can be improved
by rules to prune non-promising states and in this way make the set of states that
have to be explored smaller. To have the best of both worlds, the two algorithms
can also be combined. For example, a state within the dynamic program can be
extended to a complete feasible solution by the greedy algorithm. This solution can
then be used as an upper bound to prune non-promising states. Investigating these
possible improvements is a topic of future research.
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