
Analysis of coil slumping

Bob Anderssen
CSIRO

Neville Fowkes
University of Western Australia

Roslyn Hickson
University of New South Wales@ADFA

Mark McGuinness
Victoria University of Wellington

Abstract

Steel strip is usually stored as a coil, which will slump to some degree after the removal
of the mandrel. More often than not, the amount of slumping is so minor that it is
assumed not to have occurred. Occasionally, the amount, though minor, is sufficient to
compromise the integrity of the cylindrical bore which compromises subsequent handling
of the coil. In extreme situations, the slumping progresses to a complete collapse of the
coil. Such a collapse is rare. It occurs when a coil cannot hold up its own mass and loses
its circular cross-section, as illustrated in Figure 2 below. It is thought to be principally
associated with the size and weight of the coil, inappropriate coiling tensions and/or poor
re-coiler equipment design. Strip properties, especially inter-strip contact characteristics,
have been demonstrated experimentally to be crucial determinants of whether or not
coil collapse is likely to occur. The particular kind of slumping/collapse of interest to
BlueScope Steel, who proposed this Study Group problem, is the minor slumping that
compromises cylindrical bore integrity. It is referred to as coil slump.

The Study Group was asked to investigate and model the phenomenon of coil slumping,
and, if possible, to quantify the effect of critical parameters, especially coil mass, strip
thickness and inter-strip friction. In particular, it was suggested that deliberations should
aim to characterize the geometry of slumping and to predict the deformation profile at
the innermost and outermost wraps.
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For BlueScope Steel, the long term objectives are: (1) the formulation of the governing
equations for the stresses in a coil under self-weight, (2) the identification of analytical
solutions and/or numerical schemes for the final coil shape after slumping, and (3) the
formulation of exclusion rules-of-thumb which predict when a particular form of slump
(oval or triangular, as illustrated in Figure 2 below) is likely to occur.

The Study Group made some progress with (1), limited progress with (2) and most
progress with (3). Though various computer programs were written to explore different
force and energy balance scenarios, they only scratched the surface with regards to (2).
Success with it is heavily dependent in substantial progress being made with (1). As
explained in detail in the sequel, the Study Group’s deliberations resulted in an improved
understanding of the coil slumping/collapse problem by identifying a number of specific
issues that should be of direct assistance to BlueScope Steel’s future management of coil
slumping/collapse.

In particular, such issues included the need, from a modelling perspective, to draw
a clear distinction between minor slumping and major slumping which can subsequently
lead to collapse; the formulation of a heuristic hypothesis about the dynamics of coil
slumping/collapse which can be compared with historical data and act act as a conceptu-
alization guide for further investigations; the identification of a “tension-weight ratio” R
as the relevant dimensionless group which represents an indicative rule-of-thumb which
can be applied in practice; and proposed, on the basis of the hypothesis, an efficient proce-
dure for recording collapse events and statistically identifying possible collapse situations.

1 Introduction

It is well known that removing the cardboard ‘mandrel’ from a toilet roll causes slumping and
often subsequent collapse. That is one reason why it is there. The same can happen for steel
coils after the mandrel is removed and they are laid on their sides. However, steel coils are
much stiffer by comparison so that slumping is usually only minor, and subsequent complete
collapse rare. More common is the situation where the minor slumping, which always occurs
after the removal of the mandrel, results in a distorted cylindrical bore that compromises
subsequent handling.

BlueScope Steel manufactures, stores and transports coils of steel strip. They have asked
the Study Group to consider the slumping/collapse of these coils, where the coil cannot hold
up its own mass and maintain the integrity of its cylindrical shape when it is stacked on its
cylindrical side (as can be seen from the examples in Figure 2). In particular, the inner bore
of a slumped coil is distorted from a circular cross-section, and subsequent handling of the
coil is impeded.

Coils are wound with carefully chosen tension in the form of a tightly-wound cylindrical
spiral. Too much tension causes a different kind of slumping/collapse than too little. Inter-
wrap slippage is believed to be associated with slumping, and it is known that changing
the surface characteristics of the steel can reduce the likelihood of slumping. For BlueScope
Steel, soft slumping/collapse, associated with too little winding tension, is of more interest
than tight-bore collapse, associated with excessive winding tension. The observed shape and
location of the critical curve, in tension-friction space, is as seen schematically in Figure 3.
A coil will be able to resist slump/collapse, if the tension is large and the frictional force is
large with a trade-off operating between them.

If coils fail to maintain their axial circular cross-section, they become unusable and must
be scrapped at considerable cost. This happens rarely, but even minor slumping is a ma-
jor concern. Because of the fine circular tolerances involved, the insertion of the mandrels,
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onto which the coils are loaded at various stages of their processing, becomes difficult, time
consuming and problematic, if the inner bore is even mildly distorted (slumped). The ob-
vious solution of retaining the mandrel in place or cradling the coil was considered to be
inappropriate.

The major challenge posed to the Study Group was the development of a comprehensive
understanding of the initiation and subsequent evolution of the slumping/collapse. In par-
ticular, BlueScope Steel was interested in quantifying the effect of coil mass, strip thickness,
winding tension and inter-strip friction. They were also interested in the ability to predict
the final shape of the coil cross-section, which, from their experience, tends to have either an
elliptical-type or a triangular-type of shape.

Though there is a comprehensive literature about coil winding, rewinding, optimal tension
and more, it was of only marginal use for the current investigation. The specific types of
questions that BlueScope Steel wanted investigated had not been previously studied, at least
in the open literature.

The situation confronting the MISG participants was an excellent example of one where
the problem description was simple, clear and unambiguous, but actually getting a hook
into the problem was quite challenging. A number of approaches were investigated - balance
the forces in a localized representative increment; determine and then minimize the total
energy contained in a wound coil (gravitational, bending, stretching and frictional energies)
to find the related Euler-Lagrange equations; for a simpler system determine the total energy
and corresponding Euler-Lagrange equations in order to obtain a better understanding of
the underlying mathematics and insight about the nature of the problem; concentrate on
an appropriate linearization and solve that first; treat it as a classical continuum mechanics
problem and attack it directly; understand the role of the frictional forces on inter-layer slip
in maintaining the shape of a wound coil; analyse the interplay between gravitational and
bending energies of a simple system to understand how a coil supports its own mass; and the
geometric structure of the collapse of a coil.

At various stages of the deliberations, all of these options were examined and discussed
in various levels of detail. It was a necessary part of the brainstorming process required to
generate useful insight. However, because of the inherent complexity, it took time to see
a pattern that identified, at least heuristically and phenomenologically, the nature of the
dynamics of coil slumping/collapse and how it could be modelled.

Gradually, in conjunction with the understanding that unfolded as the various deliber-
ations and discussions progressed, it became clear that pictures of the various types of coil
collapse could be utilized to hypothesize about the nature of the dynamics of the slump-
ing/collapse process. This in turn was utilized to formulate a practical rule-of-thumb for
assessing coil configurations. It was found that the various deliberations represented to a
lesser or greater extent validation of this hypothesis, adding support to the potential utility
of the rule-of-thumb.

This report has been organized in the following manner. After presenting the dimensional
and physical details about the coils in Section 2, a brief literature review is given in Section 3.
The hypothesis is formulated in Section 4 along with the corresponding rule-of-thumb. Many
of the ideas proposed and discussed during the deliberations about coil slumping/collapse
can be viewed as topics for further research. Some suggestions of this nature are discussed in
Section 5. Conclusions are discussed in Section 6.
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2 Background knowledge and physical properties

The basic coil geometry is illustrated in Figure 1.

Figure 1: Basic Coil Geometry

The steel strip has typical (geometric) dimensions of thickness 0.2 − 0.5 mm, width ∼
1000 mm and length ∼ 5 kilometres, and is stored in a coil with typical dimensions of inner
radius ∼ 250 mm, and outer radius ∼ 750 mm. They are laid on their curved (cylindrical)
sides, as shown in Figure 2. The density of the steel is 7.8 × 103 kg/m3, elastic modulus
200 GPa, Poisson’s ratio 0.3 and inter-wrap coefficient of friction 0.1− 0.2.

A coil of outer diameter 1.5 metres and width 1000 mm has a mass of approximately
1.2 × 104 kg (12 tons). Coil masses vary from 5 − 20 tons. Thus, in its uncollapsed form,
the gravitational potential energy (GPE) of the mentioned representative coil is DMg/2 =
7.5 × 104 Joules. Since, when they collapse, coils have a height of about two thirds of their
initial circular diameter, they lose about (1/2 − 1/3)DMg = DMg/6 of their GPE. This is
indicative of the amount of total elastic energy and frictional energy (TEE) that a wound coil
must have to avoid collapse.

Typical coiling stress for thin gauge coils is 50 MPa, though, during the initial early phase
of the winding, the stress can be as high as 100 − 150 MPa. It varies depending on the
particular processing line, and can be a bit lower for paint lines and metal coating lines. The
initial tension does not affect coil slumping. A summary of this information is given in Table
1.

The purpose of this section is to give a listing of the various facts, experimental results
and beliefs about coil winding and slumping that will be utilized in the sequel.

1. When the mandrel is removed from a wound coil, slumping commences immediately.
However, in most situations, it is only slight as the trade-off between GPE and TEE
adjusts to the equilibrium determined by the minimum of the total energy GPE+TEE.
It is for this reason that a clear distinction is and must be drawn between slumping and
collapse.

2. Even slight slumping becomes a problem if it results in the integrity of the cylindrical
bore of the coil being compromised to the point where the reinsertion of the mandrel
becomes either problematic or impossible.

3. Acceptable industry jargon appears to be that “no slumping” occurs if the integrity of
the cylindrical bore is not compromised, “slumping” occurs if the integrity of the bore
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(a) Colorbond steel coil with race-
track bottom

(b) Metal coil with racetrack bottom

(c) Compromised racetrack with triangu-
lar top

(d) Complete collapse

Figure 2: Some examples of coil slumping.

Symbol Name Value Units

Er effective radial modulus 2× 106 Pa
Et elastic modulus 2× 1011 Pa
h thickness 0.3 mm
Rb inner coil radius 250 mm
Rc outer coil radius 750 mm
Sc coiling stress 50 MPa
µ coeff friction 0.1
ν Poisson’s ratio 0.28
ρ density 7.8× 103 kg/m3

Table 1: Table of properties of steel and steel coils
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Figure 3: Critical tension-friction curve

is slightly compromised to the point where mandrel insertion becomes problematic, and
“collapse” occurs if the bore is visibly distorted. For a coil slumped to the point where
subsequent mandrel insertion is compromised, the coil will be visibly distorted.

4. As explained in the literature review below, there is a considerable source of information
and data about coil winding, but much less about the geometry of coil slumping and
virtually nothing about the dynamics of coil collapse.

5. How tightly a coil is wound is critical. Too tightly, and a different kind of collapse
occurs, a kinking due to excessive stresses at the inner wraps of the coil. Too loose, and
each wrap of a coil acts independently and slumps gently since it cannot hold up its
own weight. In between, and friction links adjacent wraps to strengthen the structure,
effectively thickening wraps so that they can hold up their own weight.

6. Though a wide range of collapses have been observed, they can be notionally categorized
into the following equivalence classes

(i) a racetrack bottom with a slightly distorted circular top which has become elliptical
in structure in order to accommodate the formation of the racetrack at the bottom
(as illustrated in Figure 2(a)),

(ii) a racetrack bottom with a strongly distorted circular top which has collapsed in-
wardly to have a curly M -shaped structure in order to accommodate the formation
of the racetrack at the bottom (as illustrated in Figure 2(d)),
and

(iii) a slightly/strongly distorted racetrack bottom with a slightly distorted upside-
down V top (corresponding to the circular top jumping upwards) to produce the
triangular feature seen in some examples of slumped coils (as illustrated in Figure
2(c)).

3 Literature review

Even though there are numerous publications on coil winding models, particularly for materi-
als such as paper, not much literature is available on coil slump. One of the first models of coil
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winding (and perhaps one of the most influential models) was the model for linear orthotropic
material developed by [1]. Since then various enhancements and extensions have been made
to the linear model. These include non-linear material properties [2-5], large deformations
of soft materials [6], relaxation of the winding material [7-10] and three-dimensional effects
[11-13]. A comprehensive recent review of coil winding models can be found in [14].

Mathematically, the modelling of coil slump is much more difficult, since the coil can
no longer be treated as axisymmetrical, as assumed by the coil winding models, due to the
gravitational force of the coil’s self weight acting on the coil. Hence, one common method
to deal with this loss of symmetry is to use FEA (Finite Element Analysis) to determine
the stresses in the coil and the final deformation of the coil. One such model was developed
by [15]. The authors first calculated the stresses in the coil after winding from standard
coil winding models (assuming both linear and non-linear material properties). The effect of
gravitational loading of the coil was then determined from a multi-layered FEA model, with
the material properties used in the model dependent on the calculated stress distribution.
Each layer was modelled as a plane strain solid element with the radial stiffness dependent
on the average radial pressure for the layer. Layer to layer interaction was modelled using
contact surfaces, with the shear modulus dependent on both the average pressure and the
coefficient of friction. [15] used this model to study the effect of factors such as coiling tension,
radial stiffness, lubrication, and creep behaviour on coil deformation. Their calculations,
interestingly, showed an increase in coil deformation with increasing number of layers used in
the FEA model for the same initial stress distribution and material properties.

[16] used a FEA model with continuum linearly elastic material properties to study the
effect of the self weight of steel coils with residual stresses. Interlayer slippage and opening
was allowed for by using a jointed material model. (A jointed material model has joints or
cracks that can open or close depending on stresses and strains). The initial stresses in the
coil were calculated from a coil winding model for a linear elastic, isotropic material, hence
the model neglected the compressibility of the inter-wrap gaps. The FEA calculations showed
that the coiling stress has a significant effect on coil deformation. Interestingly, the results
presented showed an increase in coil deformation with increasing coiling stress, whereas the
calculations by [15] predicted a decrease in coil deformation with increasing coiling stress.

Such contradictory conclusions resulting from FEA calculations are not surprising. The
approximate solutions thereby generated correspond, from a backwards error analysis per-
spective, to the exact minimization of an approximation of the exact Lagrangian. Depending
on the form that the approximate Lagrangian takes, different scenarios are identified. In the
above situation, it appears that [15] have modelled the situation where the GPE is larger
than the TEE, whereas [16] have modelled the situation where TEE is larger than the GPE.
Clarification of this point is given in Section 4.

Based on observations for thin gauge coils produced at BlueScope Steel, increasing the
coiling stress decreases the likelihood of coil slump and can reduce coil deformation.

[17] developed a FEA model to calculate stresses in coils due to external forces. They
used an orthotropic, elastoplastic jointed material model, accounting for interlayer slippage
and separation of joints. Rather than determining the effect of gravitational forces due to the
coil’s weight, the FEA model was used to calculate the stresses induced in a paper coil by
the clamping forces of devices used for lifting the roll (in the vertical position), as well as the
interlayer slippage in a paper roll in rolling contact against a winding drum.

There appears to be no references on modelling coil deformation due to self-weight, which
do not include FEA calculations. This report, in Section 4, examines phenomenonologically
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the modelling of coil deformation as a function of self-weight as an interplay between GPE
and TEE, without specifically addressing interlayer friction.

4 Modelling coil slumping and collapse

A number of different modelling scenarios are considered. Hamilton’s principle identifies
the framework for a rigorous theoretical analysis, and allows, as a function of the degree
of slumping, the interplay between the gravitational potential energy (GPE) and the total
elastic/frictional energy (TEE) to be characterized for various coil configurations. However,
the formulation and minimization of the corresponding Lagrangian requires a level of detail
about the interlayer frictional and tension energy balance which was outside the scope of
the study groups deliberations. Nevertheless, this framework is useful in conceptualizing the
essence of the problem from an energy perspective.

We will present these ideas and this framework in the form of a set of two hypotheses
enumerated below. In an attempt to further understand and quantify slumping/collapse, we
will introduce further hypotheses in Section 4.2. The ideas presented here were arrived at
after investigating a number of exactly solvable simple models related to the coil problem,
the details of which are provided in Appendix 1.

From a pragmatic perspective, what is required is a phenomenological analysis which yields
a practical rule-of-thumb which can be utilized by BlueScope Steel. This is the purpose of
the discussion of Section 4.2. It is based on a hypothesis about the dynamics of coil slumping,
inferred on the basis of energy considerations and the observed shapes of slumped coils as
illustrated in Figure 2 and categorized as equivalence classes in 6(i)-(iii) of Section 2.2.

The starting point for a more detailed analysis of a complex situation is the choice of an
appropriate modelling framework. Here, the obvious choice is the “slumping/buckling” of a
cylindrical spiral spring, lying on its side under gravity. How it slumps/buckles depends on
the equilibrium balance between gravitational and tension forces. Hamilton’s principle asserts
that, for a static conservative mechanical system, the state chosen by nature is the one that
renders stationary the Lagrangian (in this case the total potential energy) V = E+G, where E
and G denote, respectively, the stored elastic and gravitational potential energy of the system.

For example, consider the simple mass-spring system, where the spring, sitting upright on
a table, has a mass placed on top. The mass will settle, compressing the spring (decreasing G
and increasing E), until static equilibrium is realized with E + G a minimum. This trade-off
between E and G is central to our understanding of slumping. Of course, as with the coil,
vibrations of the spring can occur if appropriate care is not exercised when performing the
experiment.

A more revealing model is a heavy spring slumping under its own weight described in
Appendix 1. In this case, the effect of the spring’s self-weight results in a variable slump.
In both these simple examples, the system is conservative. In the coil situation, energy is
dissipated in the form of frictional losses, the effect of these losses on the equilibrium state
is examined in a sliding mass spring system (Figure 7) in Appendix 2. With these simple
examples in mind, we are now in the position to frame an hypotheses for examining the coil
situation.

The formulation of the hypothesis is based on the following observational assessment of
the geometry of slumped/collapsed coils and assumptions about the dynamics of the slump-
ing/collapse:
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1. The geometry of the slumped coils, as seen from the Figure 2 of Section 2, can be
classified into the three distinct equivalence classes discussed in 6(i)-(iii) of Section 2.2.

2. The initiation of the slumping and the resulting shape that it takes corresponds to a
failure to have a balance between the gravitational potential energy (GPE(z)) (associated
with the increasing weight of the coil as a function of the distance z from the top of the coil)
and the total elastic energy (TEE) stored in various forms in the final configuration of the
coil (associated with the elastic potential energy of its spiral structure, the tension with which
the coil has been wound and the friction between the inter-strip layers). As shown in Figure
5, GPE(z) is a strictly increasing function of z, whereas, for a given coil configuration, the
TEE is essentially constant.

4.1 The Hypothesis – initiation of slumping/collapse

H1. Essentially no, or very little, slumping occurs if, after winding, GPE(2Rc) ∼ TEE,
where Rc denotes the radius of the coil. Because coil slumping is not a common occurrence,
it is natural to assume that the bulk of coils have been wound so that the difference between
TEE and GPE(2Rc) is marginal. Consequently, after winding, the configuration of the coil
changes slightly to bring the system into equilibrium with TEE = GPE(2Rc). This will
involve slight simultaneous changes in both GPE(z) and TEE in terms of slight changes in
the shape of the coil.

H2. Immediately after winding, coil slumping will occur either quite quickly, when there
is a significant mis-match between TEE and GPE(2Rc), or slowly, when the mis-match is
minor. It is the former situation that often results in a significant distortion of the inner bore,
usually without a major collapse of the type illustrated in Figure 2. The latter situation will
always occur as, initially, there will always be a minor mismatch. At worst, it may lead to a
noticeable, but not necessarily significant, distortion of the inner bore.

4.2 A global model

TEE2

TEE1

GPE1

GPE2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

1

2

3

4

Energy Potential

Figure 4: Gravitational and Elastic Potential Curves

We now quantify the situation. If T is the tension used to wind up the steel then the work
done to wind it up into a coil is TEE0 ∼ TL where L is the length of the sheet. Some of the
work performed will be lost in various forms (friction, work hardening, etc), but one would
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expect most of the work to be stored up in elastic energy, primarily in the form of bending
energy associated with the cylindrical shape, but also in the form of the ‘frictional energy’
bound up in the contact regions. Tighter coils (smaller mandrel radius) of course require a
larger winding tension and, in addition, there will be greater contact energy associated with
larger T because the contact area increases monotonically as a function of T . This provides us
with a measure for the initial elastic energy stored in the coil, which needs to be ‘in balance’
with the initial gravitational energy GPE0 = MgD/2 where D/2 is the initial height of the
centre of mass above the floor, taken as the datum. The ratio of these two terms, to be
referred to as the “tension-weight ratio”,

R =
2TL

DMg

is the relevant dimensionless group, and this quantifies the balance referred to earlier.
The possible shape changes that can occur, after the mandrel is removed, can be param-

eterized in terms of the distance x which measures the height loss due to the slumping. The
GPE and the TEE now become functions GPE(x) and TEE(x) of x. Then, at least theoreti-
cally, the gravitational energy and elastic energy associated with such changed circumstances
can be quantified and the state with minimum Lagrangian (Min-L) identified. In general
terms, the shapes of GPE(x) and TEE(x), as a function of x, are displayed in Figure 41. In
particular, as x increases, the decreasing GPE curve will asymptote to a value that reflects
the shape flattening (with an approximate race-track structure), while the TEE curve will
asymptote towards (but not reaching) infinity because of the rapidly increasing stretching
and bending needed to realize the more squashed shape. The Min-L state will be close to the
intersection of these two curves, as it determines a lower bound for the value of the minimum
of the Lagrangian. Evidently, given the shape of these curves there will be a Min-L state. If
the coil is ‘correctly’ wound, then R ≈ 1, so that the curves will cross close to x = 0, with
the Min-L state corresponding to a marginal change in state with virtually no slumping. In
Figure 4, the TEE1 and GPW1 curves represent such a scenario. If, however, the tension used
is too small as in TEE2, then the intersection of GPE1 and TEE2 corresponds to a larger x
value corresponding to equilibrium, R << 1, and slumping is inevitable. If, alternatively, the
applied tension is too large (so that R >> 1), then the coil will ‘unwind’ thus reducing its
elastic energy in favor of gravitational energy. This is unlikely to be the case for BlueScope
Steel coils.

Now once movement occurs (as in the sliding supported spring situation) frictional forces
come into play and the overall energy status of the coil will be altered so that the GPE curve
will drop and the associated equilibrium x will be altered. In Figure 4, the GPE1 curve slips
to the dotted GPE2 curve. The drop will be dependent on coefficient of friction µ (as in
the spring case) and there is no obvious way of estimating the location of this second curve
without solving the complete problem. It represents a major undertaking.

Whilst solving the complete problem represented an unrealistic objective for the study
group, the above work does suggest a useful experimental procedure for identifying critical
(slumping) situations. As indicated above, R is the appropriate dimensionless group for
assessing the E vs G balance and the only other (obvious) dimensionless group in the problem
is the frictional constant µ. Dimensionality arguments thus indicate that critical situations
must be defined by a relationship of the form R = R(µ) in the (R, µ)-plane. Such a plot

1There will be different curves for the two situations identified earlier as H1 and H2.
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would provide a MUCH improved characterization of collapse than that given in Figure 3, in
that the essential dynamical features of the problem are condensed into the simplest form,
enabling sensible extrapolation.

The proposed procedure, which requires further investigation, reduces to: Plot out points
in the (R, µ)-plane corresponding to various recorded collapses. This will identify a critical
patch in the (R, µ)-plane. A statistical analysis can then be performed to determine the mean
and standard deviation associated with this critical patch, so that a probability of collapse
can be determined.

Aside 1. Of course, a strap placed around the coil could prevent slumping. The La-
grangian now needs to include the stretching energy associated with the strap as it accom-
modates any coil shape change. If the mandrel is retained in position, then elastic energy is
stored in the mandrel preventing slumping. Similarly, if cradled the system described must
include cradling elastic energy.

Aside 2. A strap placed around the coil only constrains the outer circumference, so
slumping, that involves slipping towards the inner hole of the coil, can still occur. Note also
that such slipping, for a coil, means more wraps in total, but this may be achieved with
no change in total volume, since the shape is distorting away from the optimal (for volume
enclosed) circle shape. The assumption that volume does not change then provides a way to
calculate total slippage.

4.3 A more detailed model

Whilst the above work provides a general framework for understanding collapse it lacks specific
detail. As pointed out the processes involved are indeed complex so that any complete model
could not be attempted at the MISG. However based on the observations presented earlier
about the shape of the collapsed coil we extend the hypotheses in a way that we hope will
fill the gap. To do this we apply Hamiltonian ideas to sections of the coil. The following
additional hypotheses are made:

The formulation of the hypothesis is based on the following observational assessment of
the geometry of slumped/collapsed coils and assumptions about the dynamics of the slump-
ing/collapse:

1. The geometry of the slumped coils, as seen from the Figure 2 of Section 2, can be
classified into the three distinct equivalence classes discussed in 6(i)-(iii) of Section 2.2.

2. The initiation of the slumping and the resulting shape that it takes corresponds to a
failure to have a balance between the gravitational potential energy (GPE(z)) (associated
with the increasing weight of the coil as a function of the distance z from the top of the coil)
and the total elastic energy (TEE) stored in various forms in the final configuration of the
coil (associated with the elastic potential energy of its spiral structure, the tension with which
the coil has been wound and the friction between the inter-strip layers). As shown in Figure
5, GPE(z) is a strictly increasing function of z , whereas, for a given coil configuration, the
TEE is essentially constant. A graphical representation of the failure situation is given in
Figure 5.

The Hypothesis – The Dynamics of Coil Slumping/Collapse after Initiation.
The dynamics for the three equivalence classes of coil slump/collapse list above are:

H3. A 6(i) slump occurs when GPE(z) > TEE with Rc < z < Rc + Rb.
H4. A 6(ii) slump occurs when GPE(z) > TEE with z < Rc.
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Figure 5: Gravitational potential energy of the self-weight of a coil

H5. For the transition zone where GPE(z) ∼ TEE, with z ∼ Rc, the configuration
assumed by the slump will be 6(i), or 6(ii) (of Section 2.2) or a combination of these two
possibilities. What happens will depend on the circumstances.

H6. When GPE(z) > TEE only in the bottom region of the coil, where 2Rc > z >
Rc + Rb, it is assumed that no collapse occurs. Clearly, in a more definitive model, the
occurrence of a 6(i) slump when GPE(z) > TEE for z slightly less than Rc + Rb would need
to be considered.

H7. A 6(iii) slump occurs when the value of TEE is significantly larger than GPE(2Rc).
In a way, this corresponds to a type of bifurcation buckling phenomenon with the jump
upwards increasing the GPE(2Rc) to balance off the higher value of the TEE.

4.4 Validation of hypothesis

There are different ways in which the above hypothesis can be validated and utilized. They
include:

• As outlined above, the circumstantial evidence suggests that there is an interplay be-
tween the tightness with which the coil is wound and the mass that a coil has before it
collapses.

• From a visual inspection of the examples in Figure 2, the lower (compressed) part of a
collapsed coil has a racetrack shape.

• A cylindrical racetrack shell (lying on its flat side) has a lower GPE than any circu-
lar/elliptical cylindrical shell from which it has been formed.

• The upper half of a collapsed coil has either a cylindrical arch shape or a buckled M or
inverted V shape.
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• The cylindrical arch shape corresponds to situations where the “tension-weight ratio”
R << 1, which is indicative of a situation where the weight of the top half or so of the
coil exceeds the TEE.

• The buckled shapes correspond to situations where the “tension-weight ratio” R >> 1,
which is indicative of a situation where the TEE of the wound coil is greater than its
total GPE. In such situations, a buckling upwards of the wound coil is a possibility so
that the GPE comes into balance with the TEE.

5 Other deliberations and future research

For a challenging MISG problem, for which the Coil Slumping problem is a good example,
much of the deliberations involved looking at the problem from different points of view, in a
wide-ranging brainstorming manner. The role of this section is to give a list of the various
ideas discussed which are not covered in the body of the Report. The following represent
possibilities for future research.

• Comparisons of the GPE(z) calculations for different coil and shell shapes.

• The energy balance for the equilibrium of a spiral spring, sitting vertically, under its
own and added weight.

• Energy balance between GPE and bending energy.

• Rigorous calculation of bending energy.

• Some consideration was given to the detailed force balance along the lines of [18], when
slippage between wraps is allowed to occur. The following comments summarise this:

The frictional force F is zero if the coil is in (radial) tension and F = µσrr otherwise,
F is non-zero. It remains to do this properly for large deformations in the sense that
the radial direction may not remain the normal direction. On taking moments, it fol-
lows that F = σrθ − σθr, so that when there is no friction the stresses return to being
symmetric. In particular, for a material in compression, equilibrium plus taking mo-
ments gives three relationships between the σ’s. Since four are required, some additional
constitutive constraint must be invoked to close the problem.

• Frictional contact. Firstly note that the wound coil problem (determining the tension
in the wound coil before placing it on the floor) is statically indeterminate in the sense
that the different tension distributions T (s) along the wound coil can correspond to a
wound coil anchored at the mandrel and with prescribed tension at the end T (L) = T0.
Thus, certain patches of a winding may be unstretched (ie.T (s) = 0), with neighbouring
patches on the point of slipping with T (s) = µcN(s) locally. Other patches will be
barely ‘stuck’ (with T (s±) < µcN(s) so that no surface slip will occur with the actual
value of T (s) determined by local equilibrium). Furthermore the longitudinal stress
acting on a winding may vary across the observed winding so that the sheets above
and below can slide in opposite directions or in the same direction. A suitable coil
winding/contact surface model together with an appropriate prescribed applied tension
model eg T (L) = T0 + εT ′ can be used to determine the initial tension state in the coil.
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(Some details about the issues involved can be found in [5]). The important point here
is that it is likely that the initial tension distribution probably determines which coils
in a batch slump and which don’t, so tension control during windup is important. Now
both during and after windup localized slipping will occur, perhaps commencing at one
location and setting in place a cascading series of slippages which will eventually cease
when all surfaces are ‘stuck’, but with some portions of the windings ‘about to slip’ and
other portions ‘under stressed’ or even ‘stress free’.

6 Conclusions

Because of the inherent complexity of this problem in terms of the different factors (e.g.
geometry (of collapse), weight, tension, friction, etc) involved, it was not possible to formulate
a defnitive model for the dynamics of the slumping/collapse of a steel coil. However, the
deliberations have lead to an effective way of thinking about collapse based on Hamiltonian
principles which has been summarized in the form of a set of hypotheses. Based on these
hypotheses, the tension-weight ratio has been identified as the key parameter for quantifying
collapse, so that the determination of the critical value of this parameter as a function of the
coefficient of frictional between sheets is seen as being the essence of the problem. In the
absence of an adequate dynamical model, one may make use of historic data to identify this
function as described in Section 5. We believe this to be an effective way for BlueScope Steel
to immediately proceed. In more detail, our improved understanding has resulted in:

(i) the need to draw a clear distinction between minor slumping and major slumping which
can subsequently lead to collapse,

(ii) the formulation of a heuristic hypothesis about the dynamics of coil slumping/collapse
which can be compared with historical data and act act as a conceptualization guide
for further investigations,

(iii) the most appropriate framework for a more detailed modelling endeavour is variational
using Hamiltonian/Lagrangian energy principles,

(iv) the identificaiton of the “tension-weight ratio” R as the relevant dimensionless group
which represents an indicative rule-of-thumb which can be applied in practice,

(v) the identification of the model problems of spring collapse under its own weight and
interlayer slip modelling, and

(vi) some possibilities for future research projects.

For BlueScope Steel, it is hoped that this enhanced understanding will become the basis
for their continuing investigation of coil slumping/collapse. From the Coil Slumping team,
who enjoyed the challenges posed by such a daunting problem, thanks go to BlueScope Steel
for bring it to MISG 2009.
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The appendices

Within the context of the questions that are being investigated, the starting point for the
formulation of a simple representation of a problem is the identification of features which
appear to play a primary role. Though, in the coil slumping/collapse problem, interlayer slip
is clearly involved the moment a coil starts to slump after the removal of the mandrel, it is
only a first order effect if the slumping is not minor. Even though interlayer slip continues to
occur as the coil collapses, it is abundantly clear from the collapses illustrated in Figure 2,
and the discussion of Section 2.2, that the interlayer slip is second order because a collapse is
either a self-weight buckling (because the tension is too small) or a tension buckling (because
the tension is too high).

The minor slumping situation was not examined. It is not necessary for the situations
where it is so slight that the integrity of the cylindrical bore is not compromised. It is
necessary for situations where the slumping compromises the integrity of the cylindrical bore.
This did not become a major focus for the study group. An exemplification of the frictional
issues involved is discussed below under the heading “Interlayer Slip Modelling” in Appendix
2.

Appendix 1: Simple spring modelling

Thus, for a simple spring mass system, there is a trade-off between E and G with E increasing
and G decreasing. As is clear from Figure 4, this guarantees that the total energy V has a
well-defined minimum.

As a simpler model problem, such a framework could be used to analyse the slumping of a
vertical spring under its own weight. This is a more complex situation than the compression
(extension) of a weightless spring when a point mass M is attached or placed on the top, as
illustrated in Figure 6. In that situation, the Lagrangian takes the form

V(h) = E(h) + G(h) =
1
2
k(h0 − h)2 + Mgh

where k denotes the elastic modulus of the spring, h and h0 the height of the point mass
on the stretched and unstretched spring above some reference point, and g the gravitational
acceleration. The minimization of this Lagrangian yields the classical result k(h−h0) = Mg.

However, in the latter, it is assumed, in terms of how the situation is modelled, that the
coils of the spring remain evenly distributed as the spring extends, whereas in the former,
this is not and cannot be assumed as the increasing weight of the spring, as one moves down
from the top, generates an increasing compression of the spring. It is this difference which
exemplifies why the modelling of the slumping of a steel coil is much more involved than it
might appear at first sight.

For a simple model for self-weight buckling, an appropriate choice is the extension (com-
pression) of a vertical spring under its own weight or under its own weight with an additional
mass placed on top, as illustrated in Figure 6. It highlights how including the weight of an
object can change the nature of modelling. There is a limited literature on this problem (cf.
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Figure 6: A mass spring system: the figure shows the system just before the the spring makes
contact with the floor and after the system has relaxed.

Champion and Champion [19, 20] and the references cited there). It is often discussed in
papers that model the oscillation of a spring with an attached mass, where the motivation
is to model the vibration of a spring so that theoretical estimates of the period of oscillation
match the experimentally measured ones. In such situations, the assumption that the spring
is weightless is too simplifying an assumption. The analysis for a Hookian spring can be found
in [19], while that for a non-Hookian spring is discussed in [20].

Appendix 2: Interlayer slip modelling

A weight is placed on a rough table angled at θ to the horizontal and height h0 above a
datum and an initially uncompressed spring is in a position to support the weight but also
the frictional contact can help support the weight as it slides downwards (Slider in Figure 7).
We have in this case N = Mg cos θ, and if µc = tanαc is the critical coefficient of friction
associated with the contact, then:

1. If Mg sin θ < F = µcMg cos θ (so θ < αc), then the frictional support up the plane
supplied by the contact is adequate by itself to support the weight, and it will remain
in position. There will be elastic energy bound up in the contact region, which can be
thought of as being a ‘sheared’ elastic zone. Importantly (in the coil case) the amount
of stored energy will depend on the orientation θ. In the sliding mass case this stored
energy is usually ignored.

2. On the other hand if Mg sin θ > F , then friction cannot by itself support the mass, and
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Figure 7: A Sliding Weight

it will slide down the table, losing energy as it goes until the combined ‘elastic’ supports
bring it to rest. If s is the distance it moves down the plane (so that s sin θ = x is
the total vertical drop of the weight) then the gravitational energy Mgx loss is either
frictionally dissipated (F = Fs = µcNx/ sin θ) or elastically stored in the spring. We
have

µcMg cos θ − ks = Mg sin θ, so
k

Mg
s = tan θ − tanαc

determines the displacement s down the plane.

In the coil case, one can think of M as referring to a section of a wrap, however the
normal force N acting on the wrap element (and thus the frictional force) varies greatly
with location and orientation, with elements close to the floor supporting the total coil
weight and those at the top of the coil supporting little of the coil weight; of course
the tension in the wrap will also vary greatly and influence N . Sections close to the
floor will thus have a tendency to stick whereas those higher up will have a tendency
to move thereby losing energy (frictional dissipation) and reapportioning the available
gravitational energy in the structure as a whole (the spring) either in the form of elastic
energy (bending, stretching) or in the form of surface contact energy. Of course the
geometry of the coil will change as a result so that there will be a changed balance be-
tween the bending and stretching elastic components. Of course the sections in a single
wrap are connected, so that compatibility requirements constrain the displacements in
that wrap and indeed the coil as a whole. This may mean that sections will lift away
from the lower layer N → 0. One might expect wraps to be pinned immediately under
the centre of the coil, so that in plane movement may ordinarily be not transmitted
from one wrap to the next. It seems likely however that ‘slump’ refers to situations
in which ‘the pin’ fails; models examining this are being developed. It would appear
from the above description that any useful predictive model must include localized fric-
tional losses and contact energies, local winding orientation, globalized compatibility
constraints and force balance. One might hope however that the above details can be
avoided so that a simple (global) description can be developed.
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Appendix 3: The buckling of rings and arches

A simple model for tension buckling is the equations derived by [21] for the elastic stability
(buckling) of weightless rings and arches. By ignoring gravitational effects, the mathematics
simplifies to the point where explicit solutions are derived.

The critical buckling load Qcrit is determined as a function of the arch properties (Young’s
modulus (E), second moment of inertia (I), the arch thickness to ratio (S)), and support
conditions (in our case pin jointing being most appropriate);

Qcrit =
4EI

R2
Q̄(S, λ)

where λ is the first eigenvalue of the associated homogeneous problem. Here Q̄ is the eigen
solution of a boundary valued problem that needs to be determined numerically for values of
S of interest and for boundary conditions appropriate for each of the two modes identified
earlier. Details can be found in [21].
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