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Abstract

This report suggests a variational update method for improving wildfire simula-
tions using observations as feedback to update information. We first assume a one-
dimensional fire model for simplicity and present numerical simulations obtained in this
case. As possible alternative approaches, we also discuss two other update methods: a
particle filter method and an optimal control method.

1 Introduction

Two problems were suggested by John Benoit for the one-week workshop at Harvey Mudd
College. Both of these were based on fire modeling research by Francis M. Fujioka et al.
[3, 2] at the USDA Forest Service, Riverside Fire Laboratory:

Problem 1. Develop spatial and temporal probability models to simulate human-caused
ignitions.

Problem 2. Suggest improvements in the prediction accuracy of an existing fire spread
modeling system.
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We decided to pursue Problem 2 for various reasons. Modeling human-caused fire would
require understanding and information on variables and parameters that are not readily
available. There is information in the literature providing us with a starting point for the
second problem, allowing us to make a contribution which is of more practical significance.

1.1 Background

In an effort to develop improved fire management strategies, the USDA Forest Service em-
ploys probabilistic methods to determine likely fire spread behavior. FARSITE, a simulator
(developed by Mark A. Finney [1, 6]) is currently used by the Forest Service to predict the
spread of fire. The exact model or the assumptions used in FARSITE are not readily avail-
able to us. However we do know that it assumes that fire spreads elliptically and that the
propagation of fire in FARSITE uses Huygens Principle which describes the formation of the
leading edge of the fire boundary as a wavefront, (as opposed to other models which use level
set modeling) [1]. The FARSITE software receives inputs which include weather conditions,
terrain, vegetation specifications and ignition points, at a given time step tk. The output of
FARSITE is an image of the predicted fire area at time tk+1.

The USDA Forest Service is interested to develop methods that would improve the pre-
diction of fire spread behavior without changing the FARSITE program directly. In the
absence of details about FARSITE we treat it like a “black box” that we cannot modify.
We assume that error in the prediction of the burned forest area is due to imperfect input
information and not due to significant model errors by FARSITE itself. Thus we focus our
attention on achieving better results by working with the inputs.

There are at least two systemic ways in which input parameters are imperfect or incom-
plete. First, the measurements of the inputs include a degree of error. For example, wind is
measured at a specific point. The point measurements cannot fully take into account terrain
or other conditions that vary between the point of measurement and the location of the
fire. While adjustments are made to accommodate these inconsistencies, the wind value (as
entered into FARSITE) is an approximation of the actual wind at the fire site. The second
possible way in which information about the input is incomplete is when different inputs
are collected at different frequencies. For example, it could be that wind speed is updated
every hour by the weather station, but information about humidity comes from a different
location and is updated every 10 minutes. In this case one would run the simulation every
10 minutes to use all available information; however, one would have to repeatedly produce
a new wind input for 6 simulations until a new wind measurement is received.

We employ a recursive updating technique to change the input measurements and thus
improve the prediction of fire spread behavior. We do this on the second input problem
described above. Further we work with only one parameter, namely wind to begin with.
But our method is easily extended to address the first problem of input information and
multiple parameter inputs.

We simplify the problem to a one dimensional Naive Fire 1 model and propose a two
dimensional Naive Fire 2 to predict a moving fire boundary. The Naive Fire 1 model was
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used to run the recursive updating method.
Myriad recursive updating techniques exist and could be applied to this problem. We

consider two different approaches to update missing input information. The first approach
uses a variational method to update inputs based on minimizing the difference between the
predicted fire spread and the actual fire spread. The second approach employs an algorithm
developed by Feng Gu and Xiaolin Hu [4] for a particle filter designed specifically for the
purpose of updating parameters in a fire prediction system.

We present detailed discussion of the variational update approach along with preliminary
results in section 2 and an outline of a particle filter approach, in section 3. We also describe
an outline of an alternative formulation of the variational update approach as an optimal
control approach in section 4.

2 A variational update approach with preliminary re-

sults using a one-dimensional fire spread model

We attempt to answer the following question in the affirmative: Using an observation of an
actual fire, can one improve a prediction of the resulting boundaries without modifying the
FARSITE program?

2.1 Variational update of the wind in a one-dimensional Naive Fire

1 model of a moving fire boundary

The goal in this update method is to use given initial wind observation to find a corrected
wind input that minimizes the sum of the squares of the differences between the predicted
and observed boundaries.

In a one-dimensional model of a fire, that is, a fire that can only spread along a line
in either direction, there are two boundary points xL and xR, representing left and right
boundaries, respectively. Let the rates of change dxL/dt and dxR/dt of the boundaries
satisfy:

dxL

dt
= −r + w(t) (1)

dxR

dt
= r + w(t) , (2)

where r is the constant rate of the fire spread to the right in the absence of wind, −r
is the constant rate of the fire spread to the left in the absence of wind, and w(t) is the
time-dependent wind velocity.

Let x0 = (xL(t0),xR(t0)) be the boundary at initial time t0. Let the initial wind at time
t0 be w0. Let x1 = (xL(t1),xR(t1)) be the boundary at time t1 generated by a simulator S
(e.g., from a one-dimensional model, from FARSITE, or from any other simulator), i.e.,
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x1 = S(x0, w0). (3)

Using the observed boundary X1 of an actual fire at time t1, the error in the simulated
boundary x1 at time t1, denoted by e1, is given by

e1 = ‖x1 − X1‖ (4)

where ‖x1 − X1‖ is the magnitude of the vector x1 − X1. We apply a linear correction to
the wind w0 at time t0. Let the corrected wind be y0 given by

y0 = a0w0 + b0. (5)

Here a0 and b0 are parameters to be determined by solving the following minimization prob-
lem

min
a0,b0

‖S(x0, y0) − X1‖. (6)

This is the error between the boundary determined by simulator and the actual observed
boundary X1. Note the simulator boundary uses the parameterized wind y0 as the input.
We iterate this process till we reach a specified error tolerance. Thus, using the observed
boundary Xi of an actual fire at time ti, the error ei at the ith iteration will be given by

ei = ‖xi − Xi‖. (7)

At each time ti use a linear correction yi for the wind wi:

yi = aiwi + bi, ai, bi ∈ R. (8)

At each time step ai and bi are parameters to be determined by minimizing the error between
the simulated boundary determined by the parameterized wind yi and the actual observed
boundary Xi+1 at the next time step

min
ai,bi

‖S(xi, yi) −Xi+1‖. (9)

There are several minimization routines readily available. We resort to Matlab to solve this,
using its fminsearch routine.

2.2 Examples of results for the variational method for one-dimensional

Naive Fire 1

The variational method applied to the one-dimensional Naive Fire 1 uses a one-step linear
correction

yt = awt + b.
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To test the effectiveness of the method, we generate a series of artificial winds, each one
being a function of time, and compare the result of variational method with the actual fire
boundaries. As a control, we also show the result from uncorrected model, i.e., take yt as the
wind wt at time t directly to predict the burning region in the future. In each test, at time
tk, all the historical data up to time tk is accessible to the algorithm, while the prediction of
time tk+1 is compared to the actual burning region.

In Figures 1-5, the red diamonds are the predicted burning boundaries using the linear
“correction” awt+b for the wind. The black stars are the predicted burning boundaries using
the “uncorrected” model wt for the wind on a coarse time grid. The blue solid lines are the
“actual” burning boundaries for the model on a fine time grid, assuming no observation
error.

1. Constant wind (Figure 1)

We test the algorithm in the trivial case: constant wind wt = w0. Under constant wind,
the wind information in the future is predicted accurately; no correction is needed. Here
the predictions of both the corrected and uncorrected models are exact. See Figure 1.
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Figure 1: Variational method for a constant wind.

2. Linear wind (Figure 2)

We next suppose the wind is changing linearly, i.e., wt = w0 + rwt, where rw is the
time rate of change of the wind. The linear wind is important because if the interval
between two time points is small, or if the wind is not changing drastically, linear wind
is generally a good approximation.

Figure 2 shows that the prediction awt+b using a variational method is better than the
uncorrected model prediction wt. However, even for a linear wind, the linear correction
cannot make an exact prediction, because a linear wind results in a quadratic motion
of the burning boundary due to the effect of time integration.

3. Constant wind with a periodic oscillation (Figure 3)
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Figure 2: Variational method for a linear wind.

To mimic a real wind, we add a periodic oscillation to a constant wind, i.e., wt =
w0+αw sin(ωwt), where αw and ωw are the amplitude and the frequency, respectively, of
the wind’s oscillation. The period of oscillation is assumed to be much shorter than the
time interval between time points. This wind profile represents a long lasting constant
blowing wind with small fluctuation, which is very likely to be the case in reality.
Figure 3 shows that a variational method using awt + b can capture the dominant
trend of the wind better than uncorrected method using wt, where the prediction of
the latter is greatly affected by instantaneous fluctuation.
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Figure 3: Variational method for a constant wind with periodic oscillation.

4. Linear wind with a periodic oscillation (Figure 4)

Then we test the variational method on a linear wind with a periodic oscillation, i.e.,
wt = w0 + rwt + αw sin(ωwt). The performance is pretty good.

5. Random wind (Figure 5)

Out of curiosity, we tested the variational method on a random wind, which undergoes
a Brownian motion Bt in one dimensional space, i.e., wt = awBt with amplitude aw. Not
surprisingly, the predicted boundary is nowhere close to the actual burning boundary
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Figure 4: Variational method for a linear wind with periodic oscillation.

in Figure 5. This is the only case where the uncorrected model wt performs better
than corrected model awt + b. The reason is that the uncorrected model uses the wind
speed wt at time t, which is the expectation of the wind speed in the future, i.e., the
best guess for a Brownian motion. However, the “corrected” model awt + b tries to
make an assumption regarding the linearity of the moving burning boundaries; this
assumption is totally wrong for a random wind.
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Figure 5: Variational method for a random wind.

3 A particle filter approach

3.1 Particle filter update of the wind for a FAUX-SITE model of
a moving burned area

In this section we summarize the particle filtering method developed by Gu and Hu [4].
Unfortunately because of insufficient data we had during the workshop, an implementation
of this method was not feasible.

Using an initial wind observation windk and the observed burned area Ak at time tk, the
goal is to find a corrected input windk+1 at time tk+1 that will minimize the sum of the squares
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of the differences between the predicted burned area F̃ S(windk, Ak) and the observed burned
area Bk at time tk+1. Notice that the minimization is now on the differences between the
predicted and the observed burned areas rather than the differences between the predicted
and observed boundaries of these areas. The notation Bk is the observed burned area at
time tk, not to be confused with a Brownian motion.

Consider the wind to be modeled by a 2-dimensional vector that varies with time but
not with space. The simulated boundary Pk+1 at time tk+1 is

Pk+1 = FS(windk, Pk) , (10)

where the output from FS is the boundary of the burned area from a proposed FAUX-SITE
simulator of the burned area or some other simulator.

Using the particle filter method of Gu and Hu [4], the wind velocity steps with time
according to

windk+1 = f(windk) + νk , (11)

where f(windk) produces the wind windk+1 at a time tk+1 and the noise νk is the model
error at time tk.

Let Ak and Ak+1 be the observed burned areas at times tk and tk+1, respectively. Then
the newly burned area Bk between time tk and tk+1 is

Bk = Ak+1 −Ak . (12)

The measurement error ωk at time tk between the observed newly burned area Bk and the
simulated newly burned area F̃ S from FAUX-SITE is

ωk = Bk − F̃ S(windk, Ak) . (13)

The model error νk in the wind over time tk is normally distributed N(0, σ2
ν) with mean

0 and variance σ2
ν. The measurement error ωk in the newly burned area over time tk is

normally distributed N(0, σ2
ω) with mean 0 and variance σ2

ω.
Let B0 be the burned area at time t0. Beginning with the burned area B0 at time t0 and

the wind w0 at time t0, let F̃ S(wind0, A0) be the burned area at time t1 generated by the
simulator FS (i.e., from FAUX-SITE). Using the observed burned area B1 of an actual fire

at time t1, the error e1 in the simulated burned area F̃ S(wind0, A0) at time t1 will be given
by

e1 = ‖F̃ S(wind0, A0) − B0‖ . (14)

At each time tk+1, let a corrected input f(windk) for the wind windk at time tk take the
form

windk+1 = f(windk) . (15)
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Here windk+1 is the output of the particle filter method (instead of a result determined by
minimizing the error between the simulated boundary determined by the parameterized wind
yi and the actual observed boundary Xi+1). At each time step, using the observed burned
area Bk of an actual fire from time tk to tk+1, the error ek+1 in the simulated burned area

F̃ S(windk, Ak) at time tk+1 will be given by

ek+1 = ‖F̃ S(windk, Ak) − Bk‖ . (16)

Continue to repeat to determine the simulated burned area at successive times.

3.2 Algorithm: Particle filtering method

We now present the particle filtering algorithm developed by Gu and Hu [4].
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Figure 6: From Gu and Hu [4]
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We first let windk = [wspk, wdirk], where wspk is the wind speed at time tk and wdirk is
the wind direction at time tk. Recall that we have

windk+1 = f(windk) + νk,

Bk = Ak+1 − Ak,

ωk = Bk − F̃ S(windk, Ak),

where νk ∼ N(0, σ2
ν) and ωk ∼ N(0, σ2

ω).
The particle filtering algorithm is then as follows.

1. Particles initialization:

For i = 0 to N − 1,

Randomly generate vwsp(i, 0) ∼ N(0, σ2
ν) and vwdir(i, 0) ∼ N(0, σ2

ω);

wsp(i, 0) = wsp0 + vwsp(i, 0);

wdir(i, 0) = wdir0 + vwdir(i, 0);

2. Weights computation:

For i = 0 to N − 1,

Randomly generate vwsp(i, k) ∼ N(0, σ2
ν) and vwdir(i, k) ∼ N(0, σ2

ω);

wsp(i, k) = fwsp(wsp(i, k − 1)) + vwsp(i, k);

wdir(i, k) = fwdir(wdir(i, k − 1)) + vwdir(i, k);

wind(i, k) = [wsp(i, k), wdir(i, k)];

Randomly generate w(i, k) ∼ N(0, σ2
ω);

B(i, k) = F̃ S(wind(i, k)) + ω(i, k);

weights(i, k) = obA(k + 1) − obA(k)− B(i, k);

weights(i, k) = 1
σω

√
2π

exp(−weights(i,k)2

2σ2
ω

);

3. Weights normalization:

Set swts = swts + weights(i, k).

For i = 0 to N − 1,

swts = swts + weights(i, k);

For i = 0 to N − 1,

nwts = weights(i,k)
swts

;

4. Resampling:

Set q(0) = nwts(0,k);

For i = 0 to N − 1,
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q(i) = q(i− 1) + nwts(i, k);

Uniformly generate N numbers between 0 and 1 and sort them as an array u;

Set Count = 1;

For j = 0 to N − 1,

While (q(count) < u(j));

count = count + 1;

temp(j) = wind(count, k);

For l = 0 to N − 1,

wind(l, k) = temp(l);

5. Output:

os(k) = 0;

For i = 0 to N − 1,

os(k) = os(k) + wind(i, k) ∗ nwts(i, k);

4 An optimal control approach

In this section, we present an application of the optimal control method suggested by Kang
[5].

4.1 One-dimensional Naive Fire 1 model of a moving fire boundary

Using an initial wind observation w0 (= w(t0)), find a corrected input w(t) that will minimize
the sum of the squares of the differences between the predicted boundaries x(t) and observed
boundaries X(t) over time t.

In a one-dimensional model of a fire with boundaries xL and xR, let the rates of change
dxL/dt and dxR/dt of the boundaries satisfy

dxL

dt
= −r + w(t) (17)

dxR

dt
= r + w(t) , (18)

where r is the constant rate of the fire spread to the right in the absence of wind, −r is the
constant rate of the fire spread to the left in the absence of wind, and w is the wind velocity.

Let x0 = (xL(t0),xR(t0)) be the boundary at time t0. Beginning with the boundary x0

at time t0 and the wind w0 at time t0, let x1 = (xL(t1),xR(t1)) be the boundary at time
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t1 generated by a simulator S (e.g., from a one-dimensional model, from FARSITE, from
FAUX-SITE, or from some other simulator), i.e.,

x1 = S(x0, w0) . (19)

Using the observed boundary X1 of an actual fire at time t1, the error e1 in the simulated
boundary x1 at time t1 will be given by

e1 = ‖x1 − X1‖ . (20)

Here the wind function w(t) over the time interval [t0,t1] is to be determined by minimizing
the integral over time of the error between the simulated boundary determined by the wind
w(t) and the actual observed boundary

min
w(t)

∫ t1

t0

‖S(x0, w0) − X1‖dt (21)

subject to the dynamics of the boundaries governed by equations (17) and (18).
Repeat at successive times ti. Using the observed boundary Xi of an actual fire at time

ti, the error ei in the simulated boundary xi at time ti will be given by

ei = ‖xi − Xi‖ . (22)

Here, the wind function w(t) over the time interval [t0,tN ] is determined by minimizing the
sum of the integrals over time of the errors between the simulated boundary determined by
the wind w(t) and the actual observed boundary Xi+1 at the next time step ti+1

min
w(t)

N−1∑
i=0

(∫ ti+1

ti

‖S(xi, wi) − Xi+1‖dt
)

(23)

subject to the dynamics of the boundaries governed by equations (17) and (18).
Optimal control software, such as DIDO [5, 7, 8], may be used to determine the optimal

wind function w(t), playing the role of the control parameter.

4.2 The wind w(t) as an optimal control

In the variational update method, the following previously assumed forms for the time-
dependence of the wind will be replaced by a function w(t) to be determined:

Case 1 (Constant wind): w(t) = w0.
Case 2 (Linear wind): w(t) = rwt + w0.
Case 3 (Constant wind with a periodic oscillation): w(t) = w0 + αw sin(ωwt).
Case 4 (Linear wind with a periodic oscillation): w(t) = rwt + w0 + αw sin(ωwt).
Case 5 (Random wind): w(t) = awBt.
In the optimal control approach, the wind function w(t) is determined as the solution of

an optimal control problem. The objective function may be taken to be the time integral of
the magnitude of the difference between the predicted and the observed fire boundaries. The
velocity w(t) of the wind is the control to be optimized subject by minimizing an objective
function subject to the equations governing the dynamics of the fire boundaries.
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5 Concluding remarks

The first suggestion is to (1) develop a variational update method that would start with
an initial observed wind parameter and use an updated wind model to determine the fire
boundary at future time steps. Preliminary calculations apply this approach to a one-
dimensional Naive Fire 1. This could be extended to a two-dimensional Naive Fire 2.

Further, there are two alternative suggestions for potential developments:
(2) Apply a particle filter method to determine an estimated wind to be used to determine

the fire boundary at the next time step.
(3) Apply an optimal control approach to determine the wind as a function of time up

to time t based on minimizing the difference between the observed fire boundary and the
model fire boundary up to time t. Then use the past wind information to determine the fire
boundary at the next time step.
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