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Abstract
Two different types of wrinkles in beer bottle labels are studied namely
wrinkling due to the labeling process and wrinkles due to expansion
of the paper as consequence of the moisture in the labels.

Four problems are considered, namely, the geometry of the la-
belling process, the formation of wrinkles related to physical qualities
of the paper, the spreading of the glue and removal of the labels.

An optimal speed was found for the labelling process. The group
evaluated the importance of the distance between the glue strips both
for wrinkle constraint and removal of the labels. The group also inves-
tigated the influence of the angle between the preferential expansion
direction of the paper and the glue strips and showed that the glue
strips should be perpendicular to the fibres in the paper.

∗Department of Mathematics and Statistics,University of Limerick, Limerick, Ireland.
e-mail: jean.charpin@ul.ie

†School of Mathematics and Statistics, University of Western Australia, Crawley, WA
6009, Australia. e-mail: fowkes@maths.uwa.edu.au

‡Department of Mathematical Sciences, North-West University Mafikeng Campus, Pri-
vate Bag X2046, Mmabatho 2735, South Africa. e-mail: Masood.Khalique@nwu.ac.za

§School of Computational and Applied Mathematics, University of the Witwatersrand,
Johannesburg, Private Bag 3, Wits 2050, South Africa. e-mail: David.Mason@wits.ac.za

¶Department of Mathematics and Applied Mathematics, University of Cape Town,
Rondebosch 7701, South Africa. e-mail: myers@maths.uct.ac.za

‖Department of Mathematics and Applied Mathematics, University of Pretoria, Private
Bag X650, Pretoria 0001, South Africa. e-mail: eunice.mureithi@up.ac.za

∗∗Department of Applied Mathematics, University of Johannesburg, Auckland Park
Campus, P.O. Box 524, Auckland Park, 2006, South Africa e-mail: asjoberg@uj.ac.za

††Department of Applied Mathematics, University of Boroda, Vadodara, India. e-mail:
dcvmsu@yahoo.co.in

63



64 J. Charpin et.al

1 Introduction

South African Breweries (SAB) Ltd produces thousands of beer bottles in
their factories per hour. The process may be summarised as follows: clean
beer bottles are filled with beer, sealed, pasteurised, labelled and then crated
before distribution to retailers. After consumption, the empty bottles are
returned to SAB Ltd for recycling: the bottles are uncrated, washed and rid
of old labels, inspected and rewashed or discarded if necessary. SAB Ltd
encounters difficulties with the labelling process. Two types of defects have
been reported:

1. Parts of the label may not adhere to the bottle near the centre of the
bottle.

2. Long horizontal wrinkles may appear in a humid environment.

Although these defects do not jeopardise the quality of the beer, they may
be hugely detrimental to the marketing of the product. SAB Ltd asked the
Study Group to investigate these difficulties.

The group focused mainly on three aspects of the problem, presented here
in the order they are encountered during production:

1. Optimal speed for the labelling process

The labelling of the beer bottles may be divided into several stages.
Practically, the back of the beer labels is covered with strips of glue.
The labels are then grabbed by two metal pegs and placed in front of
the bottles. Sponges then force the label onto the bottle surface and a
series of brushes flatten it. Several thousands of bottles are processed
every hour. The group investigated the limits imposed by the geometry
on the processing speed. If bottles are labelled too fast, the glue will not
spread as expected and the area of the label that can not be reached by
the brushes will increase. Calculating an optimal production speed will
therefore limit the formation of both types of wrinkles. These aspects
will be detailed in Section 3.

2. Paper physics and wrinkling formation

The physical properties of paper labels are other potential key elements
in the formation of wrinkles. Combined with the geometry of the glue
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strips, the properties of the paper may favour or prevent the wrinkling
of the label. This aspect of the problem is developed in Section 4 and
provides the distance necessary between two glue strips and the best
possible orientation.

3. Spreading of the glue

The spreading of the glue is studied in Section 5. This will provide a
relation between the force applied by the brushes, the geometry of the
glue strips and labels and the time necessary for a complete spreading
of the glue strip. Coupled with the results of Section 3, this would
provide an approximation of the number of brushes necessary for the
labelling process.

Finally, the removal of the labels will be briefly considered in the last sec-
tion. When possible results will be compared with the conclusions of the
Australia/New Zealand Study Group (MISGAU) report [1, 2] that dealt with
the labelling of wine bottles.

2 Results of the MISGAU Study Group

The long horizontal wrinkles between glue strips, due to absorption of water
by the paper which causes hygroscopic expansion of the label, was studied
in a Study Group held in Australia in 1996 (MISGAU 1996) in the context
of wine bottle labelling. Most of the findings in the Australian report are
of relevance to this problem. The significant differences between the two
industries are the following:

• Wine bottles are stored in a dry place after labelling. This facilitates
the glue and label to dry before shipping. In contrast, beer bottles
are at outlets sometimes within hours of being labelled. Thus the
glue and paper do not have time to dry completely. The Australian
report suggests that changes in wrinkling are significant in the time
that drying occurs (about five days in a dry environment).

• Beer bottles are recycled and thus the labels need to be removed in a
cost efficient manner. In the wine industry bottles are not recycled and
thus the industry could move away from water based glue. Here this is
not a viable option.
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The Australian MISG found that the water in the glue is more than
sufficient to completely saturate the label. Since paper is made up of fibres
which have a preferred alignment, the water causes the paper to expand up to
ten times more in the direction transverse to the fibres than in the direction
along the fibre lengths. The following suggestions were made concerning the
application of the glue:

• Glue should continue to be applied in glue strips. The spaces between
the strips promote drying of the glue and they allow compressed air to
escape, thereby avoiding “wallpapering bubbles”.

• Glue strips should be perpendicular (or transverse) to the fibres to
reinforce the paper against expansion. The fibres in the labels are
horizontal and therefore the glue strips should run vertically.

• The continuity of glue strips in the longitudinal direction should be
broken by cuts in order to reduce the effects of longitudinal glue tension.

They also suggested experimenting with labels that have impermeable
coatings on both faces. At present only the printed side is varnished. If the
underside is impermeable the paper will be less likely to wrinkle but it will
not assist the glue drying, so that glues with lower water content may be
needed.

3 Geometry of brush-bottle set-up

In this section we analyse the geometry of the brushes used to flatten the
labels on the bottle: the objective is to derive an expression for the maximum
rate at which bottles can be processed and determine the maximum label size
possible.

3.1 Production speed

Figure 1 shows the geometry of a bottle in contact with the brushes. At
time t = 0, the bottle of radius R gets in touch with the brush of length
L. From this moment, the brush starts bending and it applies pressure on
the bottle and the label. The contact is lost at time t = tf . The angular
positions of the brush at times t = 0, t and t = tf are denoted θ0, θ and
θf respectively. The brush touches the next bottle at time t = t1. Note
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Figure 1: Geometry of brush on beer bottle.

the brushes keep a constant length during the process. This was modified in
Figure 1 to facilitate the definition of geometrical parameters.

Straightforward calculations provide the following formulae:

θ0 = arcsin

(
R− d0

R

)
, θf =

π

2
+ arccos

(
R− df

R

)
.
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The brushes are bending during the process as seen experimentally, so
there is no simple way to express the distance between the tip of the brush
and the horizontal relaxed position ȳ as a function of the angle θ. If the
brushes are approximated straight during the complete process, ȳ may be
calculated as

ȳ(θ) =
√

L2 − (R− d0 + L−R sin θ)2 (1)

=
√

(R sin θ + d0 −R) (2L + R− d0 −R sin θ) (2)

and

yf =
L

R + L

√
2(R + L)d0 − d2

0 . (3)

The velocity at which bottles are processed may be expressed as

v =
n

3600
(a + 2R) , (4)

where n is the number of bottles processed every hour. If the brushes are to
perform as they are intended to, they must be back in the horizontal position
when they get in contact with the following bottle, as shown in Figure 1. It
takes them the time T to get back in position, during which the bottles are
covering the distance m that may be calculated as

m = a + 2R− yf −
√

2Rd0 − d2
0 −

√
2Rdf − d2

f .

Equation (4) can then also be written

v =
n

3600
(a + 2R) =

m

T
=

a + 2R− yf −
√

2Rd0 − d2
0 −

√
2Rdf − d2

f

T
. (5)

The optimal production speed (in bottles per hour) of the bottles is then

noptimal = 3600
a + 2R− yf −

√
2Rd0 − d2

0 −
√

2Rdf − d2
f

T (a + 2R)
. (6)

There are three unknowns in (6), namely T, yf and df . If the brushes remain
approximately straight, equation (6) can be adapted using formula (3) and
determining df geometrically:

noptimal = 3600
a + 2R−

√
2Rd0 − d2

0 −
√

2(R + L)d0 − d2
0

T (a + 2R)
. (7)
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This approximation may not be too bad in the case of the stiff brushes, taking
into consideration that d0 is small compared to the length of the brushes L
and the diameter of the bottles. The time T necessary for the brush to get
back to the horizontal position is the only unknown remaining. This aspect
will now be discussed.

3.2 Relaxation time

The relaxation time T could be measured using a high speed camera when
the labelling machine is only producing a low number of bottles per hour.
The time T could also be estimated from standard equations. The Euler-
Bernoulli beam equation governs the evolution of a beam with time:

ρA
∂2y

∂t2
+ EI

∂4y

∂x4
= 0 , (8)

where y(x, t) is the distance from the horizontal position and A, ρ, E and I
denote the cross-section area, density, Young modulus and the second mo-
ment of inertia (or area moment of inertia) respectively. If the beams in a
brush have the same behaviour as a single beam, this means neglecting the
interaction between the beams and the damping caused by the interaction,
the oscillation time of the beam may be calculated from this governing equa-
tion. The relaxation time may first be estimated by non-dimensionalising
(8). The scales are defined by

x = Lx′ , y = yfy
′ , t = τt′ ,

where the quantities with primes define the non-dimensional parameters.
Dropping the primes immediately, equation (8) becomes

ρAL4

τ 2EI

∂2y

∂t2
+

∂4y

∂x4
= 0 . (9)

The oscillation time τ can then be approximated as

ρAL4

τ 2EI
= 1 =⇒ τ =

√
ρAL4

EI
. (10)

The beam must only travel a quarter of the oscillation to come back to a
horizontal position. A good order of magnitude for the time T used in the
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previous section is therefore

T ≈ τ

4
=

1

4

√
ρAL4

EI
. (11)

A more detailed study of the governing equation (8) shows that the fre-
quencies of oscillations for the beam are given by [3, 4]

ωn = Θ2
n

√
EI

ρAL4
(12)

where Θn are solutions of the equation

cosh Θn cos Θn = −1 .

This equation leads to

Θ1 = 1.9 , Θ2 = 4.7 , Θ3 = 7.9 , Θ4 = 11.0 .

Only considering the first mode, the oscillation period is now:

T1 =
2π

ω1

=
2π

Θ2
1

√
ρAL4

EI

and therefore

T =
1

4

2π

Θ2
1

√
ρAL4

EI
≈ 1

2

√
ρAL4

EI
. (13)

This value is consistent with the order of magnitude calculated above and
provides a good estimation for time T when considering a single beam. The
brush is in contact with the bottle during the time

tf =
3600

n
− T . (14)

This value will be required in Section 5.
The beams will interact and this value will be modified. In the longer

term, the bristles of the brush will wear and will not come back to a horizontal
position. These aspects will now be considered.
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3.3 Brush modelling

From observations, we consider the brush as a simple harmonic oscillator
that is critically damped. The equation that describes such oscillations are
given by the ordinary differential equation

ẍ + νẋ +
ν2

4
x = 0 ,

where the overhead dot denotes differentiation with respect to t and x is the
distance from the neutral position. The general solution of this equation is

x(t) = c1e
−νt/2 + c2te

−νt/2 .

The two constants c1 and c2 are found from the initial conditions x(0) = yf

and ẋ(0) = V0. The value of V0 may be calculated as follows when the brushes
are assumed to remain straight. From Figure 1,

R cos θ0 + R cos θ + y − vt = 0 .

From the time derivative of this formula and equation (2), and assuming that
the bristles on the brush remain straight, we find that

yẏ = (R− d + L−R sin θ)R cos θ
ẏ − v

R sin θ
.

When y = yf and θ = θf we have ẏ = v0 and thus

v0 =

v

−RL + Ld0 − L2 + R

√
L

(
R+L−

√
2 Rd0+2 Ld0−d0

2

)
R+L


(L + R)

√
L

(
R+L−

√
2 Rd0+2 Ld0−d0

2

)
R+L

−RL + Ld0 − L2


.

This leads to v0 ≈ 1.2v when L = R = 5cm and d = 1cm.
The speed v0 is the initial speed of the tip of the brush with respect to

the centre of the bottle. Thus the initial speed of the tip of the brush with
respect to the root of the brush is V0 = v0 − v. Therefore c1 = yf and
c2 = V0 + νyf/2 and the solution to the initial value problem is thus

x(t) = yfe
−νt/2 +

(
v0 − v +

νyf

2

)
te−νt/2 .
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We need to express ν in terms of T . We consider t = k/ν, then

x(k/ν)/yf = (1 + k/2)e−k/2 + vk/(yfν)e−k/2 .

The second term is probably small and definitely negative, so

x/yf < (1 + k/2)e−k/2 .

Figure 2 is a graph of the right hand side of this equation. We see that for
k = 8, x < 0.1yf and therefore close to the relaxed position. We thus take
T = 8/ν or ν = 8/T which gives

x(t) = yfe
−4t/T +

(
v0 +

4yf

T

)
te−4t/T .

This equation will now be used to study where the brush first touches the
bottle.

k
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(1+k/2) exp(-k/2)
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Figure 2: Graph of (1 + k/2)e−k/2 against k.
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3.4 Label geometry

When the beams are in perfect condition, the brush hits the bottle in its
neutral position, θ = θ0. Using the results of the previous section, we can
calculate the change in gap size if the production is too fast and the bottle
reaches the brush at t < T . At any time t, when the brush comes into contact
with the bottle, assuming the beams remain straight, we have

y = x(t) =
√

L2 − (L + R−R sin θ − d0)2

so that

θ = arcsin

L + R− d0 −
√

L2 − x(t)2

R

 .

The gap in the adhesion of the label is therefore larger by the amount R(θ−
θ0). Figure 3 shows the change in gap size in meters as a function of t/Tr

from 0 to 1. To generate this graph we chose R = 5cm, L = 5cm, d0 = 1cm,
a = 4cm, n = 15000 bottles per hour and T = 0.05 s. We can see that the
change in gap size is relatively small when t/T = 0.8. This is true for any
choice of T . The largest change in gap size is in the order of 1cm for our
choice of R,L and d0.

At the end of the process, the largest label that can be processed without
rotation of the bottle has the length:

L = 2Rθf = 2R

(
π

2
+ arccos

(
R− df

R

))
. (15)

The study of the process geometry leads to two major results:

1. An optimal production speed was derived that depends on the charac-
teristics of the brushes and their geometry.

2. Studying the movement of the brushes indicated where they would
apply pressure on the label.

These results insure that the brushes act as they are intended. Other aspects
will now be considered.
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Figure 3: Change in gap size as a function of t/Tr.

4 Paper expansion

The use of the optimal production speed as studied in the previous section
is one of several elements that may prevent the formation of wrinkles. The
properties of paper will also play a key role. This will now be investigated
and in this section, the distance between glue strips and the orientation of
the paper label are determined.

4.1 Paper properties

Paper is an anisotropic material [5]. Its two directions are defined during the
manufacturing process:

• The machine direction, denoted with the subscript 1 in the following.
The majority of the fibres composing the paper are in this direction.

• The cross machine direction, orthogonal to the machine direction is
denoted with the subscript 2 in the following.
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The paper properties vary depending on the direction:

• The ratio of the elastic moduli is

E1

E2

> 1 .

The Young modulus is larger in the machine direction than in the
cross direction. This ratio varies with the speed at which the paper is
produced and may reach values up to 3.

• The Poisson ratio in the two directions are related to the Young moduli
by the relation:

E1

E2

=
ν12

ν21

.

• The shear modulus may be estimated as

G12 ≈
1

3

√
E1E2 .

The various coefficients may be calculated as follows:

E1 =
ρΦE∗

16
(6 + 4a1 + a2) (1− ν12ν21) , (16)

E2 =
ρΦE∗

16
(6− 4a1 + a2) (1− ν12ν21) , (17)

ν12 =
2− a2

6− 4a1 + a2

, (18)

ν21 =
2− a2

6 + 4a1 + a2

, (19)

G12 =
ρΦE∗

16
(2− a2) . (20)

The constant Φ describes the effect of fibres, ρ and E∗ are the paper density
and specific elastic modulus respectively and

a1 = 2q , a2 = 2q2 .

The parameter q is a constant varying with the speed, us, at which the paper
is produced. A possible formula is

q = tanh2 (βus) ,
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where β is a constant.
When in humid conditions, the Young modulus values may be reduced by

up to 30% and paper expands differently in the two directions. Typical values
are around 0.4% in the cross machine direction and 0.12% in the machine
direction [6]. The ratio between these two expansion coefficients is generally
around 3. These values will now be used to model the formation of wrinkles.

4.2 Euler strut

A simple model for the wrinkling is provided by the Euler strut [7, 8]. A typ-
ical configuration may be found in Figure 4. The non-dimensional equation

u

x=0 x=1

Paper

Glue Glue

Figure 4: Typical configuration for the Euler strut.

governing u, the distance from the horizontal position, may be written:

d2u

dx2
+ α2u = 0 , (21)

where α is defined by

α2 =
PL2

EI
,

and P is the pressure due to paper expansion, E and I denote the Young
modulus and the second moment of area of the paper respectively and L
represents the length between two strips. Equation (21) may be solved ana-
lytically, subject to the boundary conditions:

u(0) = u(L) = 0 . (22)
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This means that the paper is in contact with the glue strips. This leads to:

u(x) = C sin (αx) ,

and the parameter α must satisfy the condition

αL = nπ , n ∈ Z .

Physically, n corresponds to the number of oscillations between the two
boundaries. In the present situation, the wrinkling corresponds to n = 1.
This approach is consistent with the results presented in the Australia/New
Zealand Study Group [1, 2]. According to this model, no wrinkling should
occur for

L <
4

√
π2EI

P
. (23)

In practice, wrinkling should be limited below this limit.

The value of the constant C may be calculated using the expansion of the
paper. To evaluate this rate correctly, the scale for the height u must be the
same as the length scale L. Figure 5 shows the expansion in the machine and
cross machine directions for a similar pressure P , a ratio of Young moduli
E1 = 2E2 and α1 = 0.12% and α2 = 0.4%. The second moment varies with
the cross-section and therefore is independent of the direction used. With
these conditions, the ratio of length scales is

L1

L2

=
(

E1

E2

)1/4

= 21/4 = 1.19 .

The two curves have approximately the same extent, which means that
the direction of the paper does not significantly influence the formation of
the wrinkles. The size of the wrinkles does however vary more significantly
with the direction: the wrinkles are approximately twice as high in the cross
machine direction, i.e. when the main fibre direction and the glue strips
are parallel. The fibres and the glue strips should therefore preferably be
orthogonal. The Euler strut method is a one-dimensional approach. A two-
dimensional method will now be presented.



78 J. Charpin et.al

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0  0.2  0.4  0.6  0.8  1  1.2

v 
(N

on
-d

im
en

si
on

al
)

x (Non-dimensional)

Cross machine direction

Machine direction

Figure 5: Paper expansion in machine and cross machine directions.

4.3 Two-dimensional paper deformation

Figure 6 shows the forces and momentum applied on a cross-section of pa-
per [9]. If x1 and x2 denote the machine and cross directions of the paper
respectively, at equilibrium, this leads to:

∂T2

∂x1

+
∂T1

∂x2

+ f = 0 , (24)

∂M11

∂x2

+
∂M12

∂x1

− T1 = 0 , (25)

∂M22

∂x1

+
∂M12

∂x2

− T2 = 0 , (26)

where f denotes the force applied on the paper. Combining Equations (24–
26) leads to:

∂2M11

∂x2
2

+ 2
∂2M12

∂x1∂x2

+
∂2M22

∂x1
2

+ f = 0 .
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The momentum values M11, M12 and M22 may be expressed as:

M11 =
∫ h/2

−h/2
x3σ22dx3 , M12 =

∫ h/2

−h/2
x3σ12dx3 , M22 =

∫ h/2

−h/2
x3σ11dx3 , (27)

where σ11, σ12 and σ22 are the components of the Cauchy stress tensor. These
expressions may be calculated using the relation σ11

σ22

σ12

 =

 1/E1 −ν12/E2 0
−ν21/E1 1/E2 0

0 0 1/(2G12)


−1 e11

e22

e12



=

 E1E2/(E2 − ν2
21E1) ν21E

2
1/(E2 − ν2

21E1) 0
ν21E

2
2/(E2 − ν2

21E1) E2
2/(E2 − ν2

21E1) 0
0 0 2G12


 e11

e22

e12

 (28)

where

e11 = −x3
∂2u

∂x1
2

, e22 = −x3
∂2u

∂x2
2

, e12 = −x3
∂2u

∂x1∂x2

, (29)
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and u is the vertical displacement. Combining Equations (27–29) leads to
the following expressions:

M11 = −h3

12

E2
2

(E2 − ν2
21E1)

(
ν21

∂2u

∂x1
2

+
∂2u

∂x2
2

)
, (30)

M12 = −h3

6
G12

∂2u

∂x1∂x2

, (31)

M22 = −h3

12

E1

(E2 − ν2
21E1)

(
E2

∂2u

∂x1
2

+ ν21E1
∂2u

∂x2
2

)
, (32)

and the equation governing the vertical displacement may be written:

∂4u

∂x1
4

+
E2

E1

∂4u

∂x2
4

+
4G12 (E2 − ν2

21E1) + ν21 (E2
1 + E2

2)

E2
1

∂4u

∂x1
2∂x2

2

=
12f (E2 − ν2

21E1)

h3E2
1

. (33)

Equation (33) may be non-dimensionalised using the following scales:

u = Uu′ , x1 = X1x
′
1 , x2 = X2x

′
2 .

Choosing

X1

X2

=
(

E2

E1

)1/4

,
U

X4
1

=
12f (E2 − ν2

21E1)

h3E2
1

,

β =

√
E1

E2

4G12 (E2 − ν2
21E1) + ν21 (E2

1 + E2
2)

E2
1

,

and dropping the primes leads to the governing equation:

∂4u

∂x1
4

+
∂4u

∂x2
4

+ 2β
∂4u

∂x1
2∂x2

2
= 1 . (34)

The value of β may be calculated using Equations (16–20) and the cor-
responding results may be seen in Figure 7. For an isotropic paper, the
ratio E1/E2 = 1 and in this situation, β = 1 and the governing equation
(34) reduces to the standard bi-harmonic equation. The general solution for
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Figure 7: Values of β.

Equation (34) may be written:

u(x1, x2) =
x4

1

24
+ F1

(
x2 + x1

√
−β +

√
β2 − 1

)

+ F2

(
x2 − x1

√
−β +

√
β2 − 1

)

+ F3

(
x2 + x1

√
−β −

√
β2 − 1

)

+ F4

(
x2 − x1

√
−β −

√
β2 − 1

)
. (35)

The unknown functions must be solved subject to the boundary conditions:

u (x, x tan(θ)) = u (x, x tan(θ) + 1/ cos(θ)) = 0 ,

∂u

∂n
(x, x tan(θ)) =

∂u

∂n
(x, x tan(θ) + 1/ cos(θ)) = 0 .

Further analytical progress is difficult in the general case. Instead, numerical
solutions could be computed using E1 = 2E2 and the corresponding value



82 J. Charpin et.al

β ≈ 0.52. However, analytical solutions may be found when the fibres are
in the x1 and x2 directions. In both cases, Equation (34) reduces to the
ordinary differential equation:

d4u

dx4
= 1 , (36)

subject to the boundary conditions

u(0) = u(1) = u′(0) = u′(1) = 0 .

This leads to:

u =
x2 (1− x)2

24
. (37)

This curve must be rescaled to calculate paper expansion. The results may be
seen on Figure 8. Here again, the cross machine direction leads to higher lev-
els of wrinkling. The results are consistent with the outcome of the previous
section. The higher rate of paper expansion in the cross machine direction
drastically limits the benefits of the lower Young modulus. Putting the glue
strips in the cross machine direction limits the height of the wrinkles but
will not suppress them and they will appear for similar distances between
the glue strips. Sufficiently reducing this distance should however limit the
wrinkling effect significantly.

5 Spreading of a glue strip

The characteristic time for spreading of a glue strip is of primary importance
in determining if wrinkles will form on the label. Sufficient time must be
allowed when the label is attached for the width of the strip to spread on the
surface of the bottle to the neighbouring glue strip.

The characteristic time for the spreading of a long glue strip of constant
length was determined at the Australia/New Zealand MISG in 1996 [2] and
later published [1]. We will first investigate the spreading of a glue strip of
finite length which is not constant. We will then consider an expansion in
terms of the ratio of the width to the length of the glue strip and re-derive
the result established for a long glue strip of constant length as the zero order
term in the expansion.
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Figure 8: Paper expansion in machine and cross machine directions.

5.1 Governing equations

Consider a rectangular strip of glue that occupies the region

−L(t) ≤ x ≤ L(t) , −W (t) ≤ y ≤ W (t) , 0 ≤ z ≤ H(t) . (38)

At time t the length of the glue strip is 2L(t), the width is 2W (t) and the
height is H(t). The origin of the coordinate system is at the centre of the
base, z = 0. The top surface z = H(t) is the label and the surface z = 0 is
the surface of the bottle. Three equations governing H(t), L(t) and W (t) are
required to study the evolution of the glue strip. They may be derived from
a mass balance, force balance and a third equation discussed in Section 5.3
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5.1.1 Mass conservation

Since the glue is an incompressible fluid the total volume, V, of the glue strip
remains constant. Thus L(t), W (t) and H(t) satisfy the condition

L(t)W (t)H(t) =
V

4
. (39)

5.1.2 Force balance

The force applied by the brushes on the label is balanced by the pressure
applied by the glue. This pressure will now be calculated form the Navier-
Stokes equations. The fluid velocity v and the fluid pressure p depend on
x, y, z and time t:

vx = vx(x, y, z, t) , vy = vy(x, y, z, t) , vz = vz(x, y, z, t) , p = px, y, z, t) .(40)

The glue strip is compressed by a force applied to the label. The label is
assumed to be non-porous and therefore the velocity of the fluid normal to
the label equals the velocity of the label:

z = H(t) : vz(x, y, H(t), t) =
dH

dt
. (41)

The normal component of the fluid velocity at the interface with the bottle
vanishes:

z = 0 : vz(x, y, 0, t) = 0 . (42)

Since the glue is attached to the bottle and to the label the horizontal fluid
velocity is zero on both interfaces:

z = 0 : vx(x, y, 0, t) = 0 , vy(x, y, 0, t) = 0 , (43)

z = H(t) : vx(x, y, H(t), t) = 0 , vy(x, y, H(t), t) = 0 . (44)

The sides of the glue strip are open to the atmosphere. Atmospheric pressure
is neglected so that

x = ±L(t) : p (L(t), y, z, t) = 0 , p (−L(t), y, z, t) = 0 , (45)

y = ±W (t) : p (x, W (t), z, t) = 0 , p (x,−W (t), z, t) = 0 .(46)
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The lubrication approximation of the Navier-Stokes equations and the con-
servation of mass equation for an incompressible fluid are

∂p

∂x
= η

∂2vx

∂z2
, (47)

∂p

∂y
= η

∂2vy

∂z2
, (48)

∂p

∂z
= 0 , (49)

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0 , (50)

where the body force due to gravity is neglected and η is the coefficient of
dynamic viscosity. From (49),

p = p(x, y, t) . (51)

In the lubrication approximation

τzz (x, y, H(t), t) = −p(x, y, t) , (52)

where τzz is the Cauchy stress tensor. Let F be the total force applied to the
glue strip at the label. It must balance the fluid pressure in the glue strip
acting on the label. Thus

F =
∫ W(t)

−W(t)
dy
∫ L(t)

−L(t)
p(x, y, t)dx . (53)

In order to obtain F we have first to calculate p(x, y, t).
Integrating (47) and (48) twice with respect to z and imposing the bound-

ary conditions (43) and (44) at z = 0 and z = H(t) gives

vx(x, y, z, t) =
1

2η
z (z −H(t))

∂p

∂x
(x, y, t) , (54)

vy(x, y, z, t) =
1

2η
z (z −H(t))

∂p

∂y
(x, y, t) . (55)

We next integrate the incompressibility condition (50) with respect to z from
z = 0 to z = H(t) and impose the boundary conditions (41) and (42). We
find that

dH

dt
= − ∂

∂x

∫ H(t)

0
vx(x, y, z, t)dz − ∂

∂y

∫ H(t)

0
vy(x, y, z, t)dx (56)
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and substituting (54) and (55) for vx and vy into (56) it can be verified that

∂2p

∂x2
+

∂2p

∂y2
= 12η

1

H3(t)

dH

dt
. (57)

Poisson’s equation (57) for p(x, y, t) has to be solved subject to the boundary
conditions (45) and (46).

We first make the change of variables from (x, y) to (r, s) where

r =
1

2
(x + L(t)) , s =

1

2
(y + W (t)) . (58)

The glue strip is

0 ≤ r ≤ L(t) , 0 ≤ s ≤ W (t) , 0 ≤ z ≤ H(t) . (59)

To determine the fluid pressure we employ an eigenfunction expansion of the
form

p(r, s) =
∞∑

n=1

bn(s) sin(ωnr) , (60)

where the eigenvalue ωn is

ωn =
nπ

L(t)
. (61)

The boundary condition (45) is identically satisfied. Substituting (60) into
(57) gives

∞∑
n=1

(
d2bn

ds2
− ω2

nbn

)
sin (ωnr) = 48η

1

H3(t)

dH

dt
. (62)

By multiplying both sides of (62) by sin (ωmr) , integrating with respect to r
from r = 0 to r = L(t) and using the identities

∫ L(t)

0
sin (ωnr) sin (ωmr) dr =

1

2
L(t)δnm , (63)

∫ L(t)

0
sin (ωmr) dr =

1

ωm

(1− (−1)m) , (64)

it can be shown that

d2bn

ds2
− ω2

nbn = qn(t) , 1 ≤ n ≤ ∞ , (65)
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where

qn(t) = 96η
1

H3(t)

dH

dt

(1− (−1)n)

nπ
. (66)

The general solution of (65) is

bn(s) = An(t) cosh(ωns) + Bn(t) sinh(ωns)−
qn(t)

ω2
n

. (67)

From (46) and the eigenfunction expansion (60), the boundary conditions on
bn(s) are

bn(0) = 0 , bn(W) = 0 . (68)

Thus

bn(s) =
qn(t)

ω2
n

[
cosh (ωns)−

(
cosh (ωnW)− 1

sinh (ωnW)

)
sinh (ωns)− 1

]
. (69)

From (53) and (58) the total force applied to the glue strip is

F = 4
∫ W (t)

0
ds
∫ L(t)

0
p(r, s)dr . (70)

Using (69) it is readily verified that

F = 4
∞∑

n=1

qn(t)

ω4
n

[
sinh (ωnW )− (cosh (ωnW )− 1)2

sinh (ωnW )
− ωnW

]
[1− (−1)n]

= 4
∞∑

n=1

qn(t)

ω4
n

[
2 (cosh (ωnW )− 1)

sinh (ωnW )
− ωnW

]
[1− (−1)n] . (71)

Substitution of (66) for qn(t) in (71) gives

F =
384 η

L(t)H3(t)

dH

dt

∞∑
n=1

1

ω5
n

[
2 (cosh (ωnW )− 1)

sinh (ωnW )
− ωnW

]
[1− (−1)n]2 . (72)

5.2 Expansion of the force balance for small values of
W/L.

Now

ωnW = nπ
W

L
. (73)
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The length of a glue strip is about 10 cm and its width is about 1mm. Hence

W

L
= O

(
10−2

)
. (74)

We can therefore consider an expansion of (72) for small values of ωnW
although we can expect mathematical difficulties from the contribution by
eigenfunctions with large values of n.

Since

sinh x =
∞∑

k=0

x2k+1

(2k + 1)!
, cosh x =

∞∑
k=0

x2k

(2k)!
, (75)

it can be shown that

F = 384 η
L4(t)

H3(t)

dH

dt

[
− 1

12π2

(
W

L

)3 ∞∑
n=1

(1− (−1)n)2

n2

+
1

120

(
W

L

)5 ∞∑
n=1

(1− (−1)n)2

+ O

((
W

L

)7
) ∞∑

n=1

n2 (1− (−1)n)2

]
. (76)

Now
∞∑

n=1

(1− (−1)n)2

n2
= 4

∞∑
n=0

1

(2n + 1)2
. (77)

But [10]
∞∑

n=1

1

(2n + 1)2
=

3

4
ζ(2) =

π2

8
, (78)

where the Riemann Zeta function ζ(2) satisfies

ζ(2) =
π2

6
. (79)

Thus
∞∑

n=1

(1− (−1)n)2

n2
=

π2

2
. (80)

The other two summations in (76) are divergent. Equation (75) becomes

F = −16ηL(t)
W 3(t)

H3(t)

dH

dt

[
1 + O

((
W

L

)2
) ∞∑

n=1

(1− (−1)n)2

]
. (81)
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Although
(

W
L

)2
= O (10−4) the expansion breaks down after the zero order

term. The zero order term in the expansion (81) gives

F = −16ηL(t)
W 3(t)

H3(t)

dH

dt
, (82)

in agreement with the result derived assuming that L(t) is large and con-
stant [1, 2]. The applied force F is positive. The negative sign is because
H(t) is a decreasing function of t.

By considering an eigenfunction expansion in the x-direction we were able
to derive a series expansion in powers of W/L. If the eigenfunction expansion
had been made in the y-direction the terms would depend on L/W which
would not yield a series expansion when L � W.

Two equations, (39) and (82), have now been derived for L(t), W (t) and
H(t). One further condition is required.

5.3 Third equation and solutions

5.3.1 Constant length approximation

Consider first the approximation that L(t) remains constant. Let L(0) = L0.
Then from (39),

W (t) =
A

2H(t)
, (83)

where A = V/2L0 is the constant cross-sectional area of the glue strip. Equa-
tion (82) for H(t) becomes

dH

dt
= − F

2ηL0A3
H3 . (84)

Integration of (84) subject to the initial condition H(0) = H0 gives

H(t) =
H0(

1 +
t

ts

) 1
5

, (85)

where

ts =
2ηL0A

3

5FH5
0

, (86)
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in agreement with existing results [1, 2]. The time ts is the characteristic
time for the glue to spread.

In order to rewrite (86) in a more practical form we express it in terms
of the mean pressure P applied to the label [1, 2]. The length of the label is
2L0. If there are N glue strips and the breadth of the label is 2B0 then

P =
NF

4L0B0

. (87)

Expressed in terms of P, (77) becomes

ts =
ηNA3

10B0PH5
0

, (88)

where A = 2W0H0 is the constant cross-sectional area of the glue strip.

5.3.2 Infinite series solution.

We return to (72) which may be written in the form

dH

dt
= −G(t)H3(t), (89)

where

G(t) = − FL(t)

384 η
∞∑

n=1

1

w5
n

[
2 (cosh (ωnW )− 1)

sinh (ωnW )
− ωnW

]2

[1− (−1)n]
2

. (90)

We approximate G(t) by its value, G0, at t = 0 obtained by setting W (t) =
W (0) = W0 and L(t) = L(0) = L0. Then if H = H0 at t = 0,

H(t) =
H0(

1 +
t

ts

) 1
2

(91)

where

ts =
1

2G0H2
0

. (92)

To compare (92) with (86) consider the expansion of G0 to lowest order
in W/L. From (81), and to lowest order in W/L,

G0 =
F

16ηL0W 3
0

(93)
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and therefore to lowest order in W/L, (92) gives

ts =
8ηL0W

3
0

FH2
0

=
ηL0A

3

FH5
0

. (94)

Combining the three governing equations, the width of the strip W (t) can
be evaluated, leading directly to the distance between two consecutive strips.
To limit wrinkling, this distance should be lower than the value defined by
formula (23). This occurs at time t0. Since each brush only applies pressure
on the label for the time tf , defined by formula (14), the number of brushes
necessary to label the bottles and limit wrinkles may be estimated as t0/tf .

6 Removal of the label

The removal of the labels is now briefly considered. Reducing the space
between the glue strips may prevent the labels from being removed easily. In
this final stage of the labelling, two processes compete:

• Water dissolves the glue from the sides of the label, as shown on
Figure 9a. The water moves by capillarity in the space located be-
tween two consecutive glue strips, the label and the bottle.

• Water diffuses through the label and dissolves the glue from the label
side, see Figure 9b.

Simple experiments were conducted during the Study Group and they show
that the second process is dominant: the label is unglued everywhere at
approximately the same time and there is a significant amount of glue left on
the bottle. (According to the SAB representative, the penetration of the label
happens 90% through the label and 10% penetration from the edges.) This
shows that reducing the space between glue strips as suggested in previous
sections should not affect the removal of the labels significantly.

7 Conclusion

This Study Group focused on some key aspects of this wide ranging problem:
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(a)

(b)

Figure 9: Processes in competition when removing of the labels.

• Optimal processing speed and consequences on the label
geometry
An optimal processing speed was calculated: it depends on the geom-
etry of the bottle and the physical properties of the brushes. Using
this optimal speed maximises the proportion of the label that can be
reached by the brushes. The geometry also gives the largest label size
that can be accommodated by the current set-up. The gaps could
further be reduced and the label size extended by turning the bottles
slightly towards either side when passing through the brushes. This
study also provides the amount of time the brushes are in contact with
the label.

• Geometry of the glue strips
The geometry of the glue strips is a key element in the wrinkling ef-
fect. The group evaluated the importance of the distance between the
glue strips. A maximum distance was determined between strips after
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spreading: below this value, the wrinkling should be significantly re-
duced. The group also investigated the influence of the angle between
the preferential expansion direction of the paper and the glue strips.
Glue strips should be perpendicular to the fibres to reinforce the paper
against expansion.

• Spreading of the glue
The evolution of a glue strip was studied when pressure is applied. Two
models were developed. They provide the minimum amount of time
pressure should be applied on the label to reach the spacing between
strips that would prevent wrinkling. Coupled with the results of the
geometry study, this gives the number of brushes necessary to label the
bottles and limit the wrinkling.

• Label removal
The removal of labels was also briefly considered. The group studied
the different processes leading to this removal and assessed the con-
sequences of changing the glue patterns. Water diffusion through the
label is the leading process. A modification of the glue distribution
should therefore not affect the label removal drastically.

In future work, the models used in this study should be further developed
and validated using experimental results.
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