
ICI Paints: Modulated Differential Scanning Colorimetry

1. Introduction

A sample of material under investigation is subject to a controlled

temperature within a furnace. The temperature is arranged to be an increasing

ramp (as in conventional scanning colorimetry) plus a sinusoidal modulation:

T = T + bt + ~ sin wt.o

determine physical properties, or get a picture of what may be happening

The range of heating, Q, is measured. The aim is to

within the sample, by comparing the rate of change of temperature, T, with Q.

For a simple linear material heat content = Q C T where C is the
p p

(constant) specific heat. For a pure ramp (B = 0 for normal calorimetry) T = b

and Q = bC so C = Q/T.
p p

For the same material, assuming effect ively no

thermal lag in either the calorimeter or the sample, T = b + w ~ cos wt and

Q = C b + wBC cos wt with the modulation. For both T and Q there are
p p

underlying measurements: b and C b respectively (these may be thought of as
p

some "local" average); and cyclic measurements: Bw cos wt and C B coswt
p w

respectively. The ratio of the underlying measurements gives the "underlying

C" while the ratio of the amplitudes of the cyclic parts give the "cyclic
p

C ". In general the cyclic measurements of temperature rise and heat input
p

rates are given by the first terms in local Fourier series. The cyclic C is
p

the ratio of the amplitudes of these first terms. Any phase difference may

give extra information. In this special case both these "C' s" will be the
p

same value, namely the real specific heat.

This is a very idealized situation and in practice the specific heat

generally depends upon temperature, exothermic processes will occur, and these

might be phase changes. All these effects happen within the sample,

additionally the measurements are not quite as straightforward as suggested.

For a material of interest, polyethylene terephthalate (PET), both the

underlying and cyclic C 's change during the experiment and, at times differ
p

significantly from each other, see fig. 1 where they are sketched against

temperature.
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Figure 1 C 's as a function of temperature
p
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Exothermic process
l'

Phase change

The key features shown by these graphs are:

(i) The values are initially nearly constant and are very close to each
other.

(Lt ) Around the glass transition C increases and the cyclic value is
p

somewhat below the underlying one.

(ill) The values are again nearly constant and close.
(Lv ) The exothermic process is shown as a large dip in the underlying

(apparent) C. in this case it goes negative, but does not exhibit
p

itself in the cyclic measurement.

(v) The underlying measurement is roughly constant while the cyclic C is
p

signficantly larger and gradually rises. It was suggested that this

was due to some type of crystal rearrangement effected by the

oscillation of temperature in the vicinity of the phase changes.
(vi) The phase change is smeared out due to different melting points for

different sized crystals. Rather than have a delta function for C
p

(size =. latent heat) there is instead a large bump. The cyclic

measurement peaks a little earlier and lower than the underlying one.

(vii) Again the values are close to each other. They are similar to that of

(iii) and the underlying C of (v).
p
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We shall first discuss the calorimeter in a little more detail to find

the implications of the actual measurements made. We shall then examine some

simple models for the material, under the original assumption of specified

sample temperature to try to find out what sort of physical effects give rise

to observed experimental results. Finally we show the outcome of some

numerical calculations done for an ad hoc model for a changing distribution of

types of crystals.

To get an accurate quantitative representation of the experiment it will

eventually be necessary to combine different approaches so both the internal

structure and the calorimeter are considered fully.

2. Experimental procedure

Analysis of the experimental output is easies\ if we can make the

assumptions that the sample temperature 1s controlled to be a linear ramp plus

sinusoidal oscillation and that the measured lower input, Q, is the rate of

heating of the sample. In practice this is difficult to carry out especially

when either a phase transition or an exothermic reaction occurs. For· the

former it becomes difficult to change the temperature while the latter prompts

a sudden increase in temperature.

Here we discuss the implications of a different method of control. The

sample is contained in a crucible within the furnace and a second, identical

but empty, crucible acts as a reference. The power supplied to the

sample and its crucible is k (T - T ) + k (T - T) while that supplied tor r 5 C R 5

the reference crucible is k (T - T ) + k (T - T l , the first term in eachr r Res R
case is the heat supply from the furnace into the crucible while the second

terms are the rates of heat transfer directly between the crucibles. Here k
r

and k are heat transfer coefficients while T ,T and T are the temperatures
C r 5 R

of the furnace, sample (and its crucible), and the reference respectively.
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Absorbing mass into specific heat we then have

(C + C)T = k (T - T ) + k (T - T ) + fC 5 5 F F 5 C R 5

C T = k (T - T ) + k (T - T )C R F F Res R

where C is the specific heat of each crucible and C is that of the sample,
C s

also f represents the rate of heat production in the sample due to some

internal process (f > 0 for an exortherm, f < 0 for an endotherm).

Wri ting Q = k(T -T), where k = k + 2k . Q is a measure of power supplyR S F C. .
and satisfies AQ + Q = CSTR - f. Here the time constant A is given by

(C + C )/k.c S
The constant k is determined during calibration of the

calorimeter using a sample with known, simple properties. (If k is "large"
F

then to leading order TF, TR, and Ts are all the same and Q is the rate of

heat supply from the furnace to the sample. Also for k = 0, that is, no
C

direct interaction between the two crucibles, k = k and a linear ramp with
F

oscillation of the reference temperature is equivalent to a linear ramp with

oscillation of the furnace temperature. with different phase and amplitude.)

The furnace is now controlled so that T = bt + Bsin wt while Q is
R

measured and is taken to be of the form Q + Q cos(wt - 0). The underlying Co p

is C = Qo/wB (wB = amplitude of the cyclic part of TR).

Three points should be stressed:

(i) For nonlinear materials Q may be written as a Fourier series

Q = L (a cos(wt) + ~ sin(wt)n nn=l
- ~2and Q = a + ~ .o 1 1

(ii) For these definitions to make sense w must be large enough for the

period of oscillation must be small compared to any time scale over which

properties of the sample change b dt/l c:1 for any t/I describing some
Wt/I dT

property (e.g. Cs),
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(Hi) These definitions of C use variation of the reference temperaturep

not the sample temperature.

The simplest possible situation is again where specific heat is'constant

and no reactions or phase changes occur so [ 5 O. After any transient decays

the solution to AQ" + Q = C (b + Bwcoswt) iss

Q = bC + CB (cos wt + AW sin wt)/(l + A2W2)s 5 W

so Q = C band Q = C B COS(wt - 45)/ /1 + A2W2
s S W

Thus

-
Cl! 1 + A2W2C = C and C =s

C C for w < -1
'" 1 min .)s

-1the phase lag is tan (AW). (AW is small and

Now consider the possibility of [* 0 but, for simplicity, a step
function of temperature : [= [(Ts)' constant except at some va Iue Is l Te at
which it jumps. We still assume that Cs = constant.

Now AQ + Q = C T - [(T - Q/k) (recalling that Q = k(T - T ».s R R R S

suppose that B = 0 so that reference tempeature is a pure ramp: TR = bt. Take

First

[(T) = [1 for T1 < T < T1+1' see fig. 2.

Figure 2. Reaction rate = step function of temperature
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While T < T ,5 1 f = f 1-1' and assuming an absence of transients.

Q = Cb-f
5 1-1 and T = T - Q/k = T - C b/k .•. f /k.

5 R R 5 1-1

when T = T + C b/k - f /k (again note
R 1 5 1-1

reaches the
critical T

1
for k large

We have two cases to consider.
(1) f > f , which corresponds to an exothermic reaction switching on

1 1-1

(f = 0 < f ) or an endothermic process switching off (f < 0 = f )
1-1 1 1-1 1 '

There follows a transient regime, over a time scale of O(A), during which

Q approaches a new constant value.

Q = (C b - f ) + (f - f ) exp [-A(T - T + C b/k - f /k)/b] .
S 1 1 1-1 R 1 5 1- 1

Thus C = Q/b decreases from C - f
5 1-1 to C - f /b with exponential approach

S 1

at rate A/b, as a function of temperature (T). See fig. 3 for a plot of C
R

against T and a plot of sample temperature against time.
R

Figure 3

T
5

/
T = bt/R/.

T+(Cb-f )/k
1 5 +_1_-_1-l,\,.......... ~s= 'TCs.-!./..!>. _. _. _ . _._ R

/

t

bt-C b/k+f /kS 1-1
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Now introducing a small sinusoidal perturbation to T , the problem for Q
R

is linear, except at T = Ts l'
so, away from T = T + (C b - f )/k,

R 1 S 1-1 the

cyclic response is the same as before and C = Cs (assuming that AW « i). The
two C '5 are shown in fig 4 (taking f = 0 < f l.

P 1-1 1

Figure 4. Onset of an exothermic reaction, 0 = f 1-1
< f .

1

C

T
R

(2) f > f ,
1-1 1

which corresponds to exothermic reaction switching off
(f > 0 = f ) or an endothermic reaction switching on (f 0 > f l.

1-1 1 1-1 1
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This time Ts is held fixed at Tl as the system moves from the first ramp

T = bt - (C b - f )lk to the lower, second one T = bt - (C b - f )/k, ass S 1-1 S S 1

the rate of heat supply, Q = kCTR - Ts)' increases from C b - 'f to
S 1-1

Cb - f .
S 1

Consequently C increases with slope klb from C - f /bS 1-1
to

C - f /b, see fig. S.s 1

Figure 5

C -f /bs 1

T =bt
R

C -f /bS 1-1

T +(C b-f )/k T +(C b-f )/k
1 s I-liS 1

t

Where Q (and C) is constant the problem is linear and putting the
oscillation back in again gives C ~ Cs· For TR between Tl + (Csb - f

1
_

1
)/kand

-T + (C b - f )/k, however, T is fixed at T so Q = k.B sin wt and C = klw;
1 5 1 S 1

see fig, 6 (where we take f = 0 > f J.
1-1 1

Figure 6. Onset of an endothermic reaction, 0 = f
1-1

> f
1

c ~
p

C
5

-f /b
5 1

k/w

T +C b/k
1 S

T +(C b-f i/«
1 S 1

T
R
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Combining two of these effects we get, for a reaction effective between T and
1

T
2
, Cp's of the form shown in fig. 7.

Figure 7

C AExothermic (f >0)
P 1

C AEndothemic ir <0)
P 1

k/w
k
w

C Cs

Cs

T
R

We also note that while an endothermic reaction is taking effect T iss

held fixed. This is precisely the effect of a phase change taking place at a

precise temperature T : a phase change may be regarded as equivalent to ano

endothermic reaction taking place only at To. Thus a simple phase change

could be envisaged as a limiting endothermic process and the C 's then appear
p

as in fig. 8.

Figure 8. C 's for phase changes at T = T (taking A to be small)
p S 0

C A

P Arl.-::L t 2/2
\ +

post tive root
____§ \e

-.~. -~,---------

of b[C +C +kt/2Jt=latent heat)5 C

T +C blko 5
T +C blk+bto S +

T
R
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The results may be also presented by plotting C against T , which can be
p 5.

recovered from T = T - Qlk, see fig. 9.
S R

CA
P

Figure 9. Plots of C 's against sample temperature.p
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"-------

T
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T
2
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Note that where an exothermic reaction switches off or an exothermic

reaction switches on T changes rapidly, over a time scale of O(A), during
5

which time T changes li t tle (if bA is "small") and so C decreases with slope
R

k/b. If AW c: 1 this takes place over a small part of a cycle so the value of

C is uncLear .

The case of no reaction (f == 0) but with varying C can be approached
5

analytically for some limiting cases as in the next section.
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3. Results from specified Ts
From now on attention is mainly focussed on the case of having

T = T = bt + Bsinwt with Q the power input to the sample.
5

To start with consider a material with variable specific heat,

C = C (T), which undergoes no reaction, phase changes etc. Then Q = C (n!
5 5 5

and T = b + Bwcos wt.

Taking B to be small (in the sense that any important quantity changes by

a relatively small amount during a period of the cycles; regarding specific

heat: BC' «: C i. Cs (bt + Bsin wt) = C (bt) + BC' (bt ) sin wt + ... ,5 5 5 5

Q ~ B/~w2
.Q = bC + B(C'w cos wt + C'b sin wt) + ... giving Q "" bC + b2C'i

5 5 5 5' 5

Cs)

.
C05[wt - tan-1(C'b/C w)) and C "" C C "" + (bC'/Cw)2. For a large w5 5 5' 5 5

(lbC~/C~wl« 1 so that there are no significant changes between the start and

end of a period) C ~ C. (The frequency w should not be too great otherwise
5

there might be difficulty regarding non-uniform temperatures through the

sample or its crucible.) Note that full expressions for Q and Q (determining

Fourier coefficients) indicate that C and C depend upon even powers 01 Band w

only.

Now include a reaction term of the simple form [(T), Q = C T - [(T). Hereo

[ > 0 for an exothermic reaction. The procedure above gives

C = C - [/b C = C ) + [(bC' - r: )/wC ] 25 '5 5 5

with w "large" it is observed that here, as in the previous section, C gives a

good approximation to C during an exothermic process where C deviates
5 -significantly (see fig. 1). However the difference between C and C is the

wrong sign for a simple change in C as with the glass transition (again see
5

fig. 1).
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The requirement that reaction rate is purely a function of temperature is

of course generally unrealistic. It would be more accurate to include at least

one state variable, say a concentration y, in which case, taking first order

forward and reverse reactions we get instead:

Q = C T + aK[yf (T) - (1 - y)f
2

(T)], Y = K[(l - y)f (T) - yf (T)].
5 1 2 1

Such a reaction was discussed briefly during the meeting but we only note

here that in the limiting case of fast reactions, K » 1,

y '" F(T) !i f I(f + f ) and so Q Cl< (C + Cl F' )T, 1.e. an effective change of
2 1 2 5

specific heat. (If a second reaction depends upon product concentration 1 - Y

and T and proceeds only forwards then we do get an additional term dependent
only upon temperature: ~(1 - F(T»f (T).)

2

A major difficulty with these theories is that, so far, nothing accounts

for the behaviour (v) : C '"constant, C lies significantly above (see fig. 1).

Including a single variable of state y does not help as any heat released

through change of y would exhibit itself through a change in C as well as C.

Generalizing to any finite number of variables also seems unlikely to help in
this respect - assuming rates depend upon T and the variables of state. An

alternative approach was to consider some type of continuum. For example we
may envisage a range of crystals of size (or quality) y with mass fraction
c(y, t) together with a melt, mass fraction 1 - s, set) = J c(y, t)dy. Again

trying a simple (and unrealistic) law for conversion between crystal and melt
we can propose something of the form: c = - cf(y,T) + (1 - s)g(y,T),

t

where the first term on the right represents rate of melting of crystals, and

the second the rate of their formation. Both are taken to depend upon
temperature and type of crystal (and to be independent of amounts of other

sizes of crystal). This equation can be "reduced" to the integral equation for

the single variable s on the assumption that T(t) is specified:

set) = JA(Y) exp {-J~f(Y,T(T»dT}dY

+ J[J~e~-J~f(Y, T(O'))du}] t i - S(T))g(y, T(T))dTdy,
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Here A(y) is the initial crystal distribution function. The integral equation

can be rewritten as

set) = t + Jt K (t,T)(l - s(T»dT,
TOT

the subscript denoting the importance of the temperature history.

Rather than taking this involved approach further two simpler ideas were

considered. One was to suppose that the crystal distribution takes some

standard form depending on a few parameters which satisfy some differential

equations; this is done in the next section. The other is to introduce a

direct memory effect, which the integral equation for s certainly exhibits,

only for Q or T; this is done now.

For an autonomous problem with a linear material (constant physical

properties) we propose a model of the form

(Similar equations appear as models of visco-elastic materials. To

determine the kernel K(T) for such materials it is standard practice to

compare stress and strain with a sample being forced at different frequencies.

This gives the kernel's Fourier transform, from which K is found.)

Taking the simple form of a decaying exponential for the kernel Q and T

are related by Q(t) = cr(t) + AKSte-A(t-TIT(T)dT which can be written as

er + A(K + C)T = Q + AQ

where Q is a measure of the heat content of the sample.

For the ramp plus oscillation of temperature T = bt + Bsinwt,

Q '" Q + at + Asin(wt) with
0

(K + C)b, Af2 + A2' Bf2~ A2(K 2
a = = + + C) .

C = A/B = /[W2~ -+ A2(K + C)2]/(w2 + A2) .

Then C = a/b = K + C and

The cyclic C, C, is a monotonic function of frequency w, for small w
p

- -C ~ C, and C approaches C = C - K as w gets large. C is increasing for K < 0

and decreasing for K > O.
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To try to find a possible interpretation of the differential equation

relating T and Q we might imagine what happens if an amount of heat f:J.Q is

suddenly, and uniformly, added to the sample, previously in equilibrium. The

temperature immediately Jumps f:J.QIC: C is the "specific heat" for rapid

variations w is large. The temperature difference then relaxes to

f:J.Q/(K + C) : K + C is the "specific heat" for relatively slow process - w is

small; see fig. 10.

Figure 10. Temperature variation due to an impulsive increase of heat content.
f:J.T A

(1) K < 0

f:J.Q
C

(11) K > 0

o t

We may interpret this as having a mixture of crystals and melt. Initially melt

and crystals are both warmed by f:J.QIC : C would be thought of as a "true"

specific heat of the material. As the temperature has changed but the crystal

structure of the sample is una 1tered it is now out of equilibrium and it

gradually changes its structure over a time scale of O(l/A) to get back into

thermal equilibrium. This (i) further increases temperature if K < 0, but (ii)

decreases temperature if K > O. These two cases might conceivably correspond

to dominance of (L) heat released by Change in surface energy as large

crystals form at the expense of small crystals (i) heat used in forming melt

from crystals. A problem with this scenario is that it would seem likely that

the "fast" specific heat, C, should then stay approximately constant while the

"slow" specific heat, C + K (or C) should change with temperature. In the

experiment (see fig. 1) in the region (v) it is the underlying C ,C
p

(corresponding to small w), that stays near its earlier (and final) value

while the cyclic C , C (corresponding to larger w) changes.
p
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On a more postive note we can easily obtain the latent heat of melting,

L. from the graph of C against T (whatever the internal process is) as it is

simply the area of the associated "bump". see figure 11.

Figure 11 Bump in the graph of the underlying C due to a phase change.
p

~

"~-1----+-- ....•- .- .- .- ,~-i---------
L = area of shaded region

C

T

The total heat added between times t
1

and r.,
2,

when the sample has

temperature T , below first melting point, and T , above final melting point,
1 2

respectively is

L + C (T - T )
521

t

= J 2 Qdt =
t

1

t

J 2 Qdt (since Q is Q averaged)
t
1

T
= J 2 QdT/T

T
1

(with T being temperature averaged over a

T
period : T = average of T = b) = J 2 Cdr.

T
1

For other ways of cant roll ing the operation of the calorimeter we can

again try to obtain results with key asumptions such as B being "small". This

applies to the control of the reference temperature, as in the previous

section, but for simplici ty we here Just briefly look at k = 0 soc we can

assume that the furnace temperature is controlled. Then

Q = k(bt + Bsinwt - T) = C (T)T - f (T = sample temperature = T , k = k ).
5 5 F

A relatively simple case is again f = O. With B small we an expand T as a

power series in B : T - T + BT + .... , then C (T) - C (T ) + BC' (T)T +o 1 5 SO 501

giving

C (T)T + kT = kbt, C (T)T + (k + C' (T )T)T = ksinwt •...
500 0 501 5001
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It is seen that the leading order (underlying) problem is fully

nonlinear. However we still have ell: QIT 11:Q IT = Jdbt - Tb)/T =o 0 0 0

suitably large w the first order problem gives the cyclic part:
• ....2 2 • 2T1 - k[(k + C'T )slnwt - Cwcoswt]l[c;w + (k + C'T)],

50 5 5 50

With

Q - k{[clw2 + (k + C'T)]sinwt + kG wcoswt}/[clw2 + (k + C'T )2]
1 5 50 5 5 50'

Different values are of course given if we use instead the variation of

the controlled (furnace) temperature in the manner of the previous section;
e.g. C(bt) = C (T )T /b.

500

4. Distribution of crystals

Here we make the assumption that the sample contains crystals with a
spread of melting temperatures, and that the mass distribution depends upon a

small number of parameters. The parameters will include : A = total mass
fraction of crystals; T = lowest melting temperature (see fig. 12); as wello

as some parameters, say «, giving for example, the spread of the distribution.

Figure 12 Crystal distribution
ACrystal mass fraction

~Area = A-.
To Melting temperature

As the temperature of the sample increases there is melting but
sImultaneously more stable (higher melting poLnt) crystals form. This will

result in T increasing, A decreasing and « changing. These variations shouldo

depend upon the rate of temperature change, as well as temperature, to model
change in crystal distribution as melting and recrystalization occurs in the
presence of an oscillating temperature. There was insufficient time to do
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simulations including all the desired effects and terms so we only present

here the results from numerically computing pure melting. The equation allows

for melting below some critical temperature (last melting temperature) T :.,
A = -1 AI (T - T) T < T, A == 0 T ~ T .m ., m

It was again assumed that T = bt + Bsinwt so

A = A exp{-1fdtICT - bt - Bsinwt)}.o ID

With B small and w large and rescaling so that 11CT - bt) becomes r/(l - t),
m

A - A Cl - t)r exp {-rBcoswtlw(l - t)2},o

giving an underlying crystal mass fraction A = A (1 - t)r with factor due too
2the cyclic variation exp{-rBcoswtlw(l - t) }, see fig. 13

The Gp's are then given by G ~ LAlb d G L- an ~ wB x magnitude of the oscillation
of A, if we can neglect the contribution from the actual specific heat in
comparison with the latent heat. The terms giVl'ng the qualitative behaviour of
the G 's are

p

-A = AorCl - t)r-l and ~B x maximum over a cycle of A rB
wB

(for large w),

P.B., E.C., W.A.G., A.A.L., D.L., T.G.R., B.S., T.S., G.W., G.W., J.W.

ICIPAINT/AAL/dsl/28-04-93
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r = 1/20; (1) w = 200, B = 1/200; (11) w = 250, B = 1/10.

Figure 13 (a) Full, (b) underlying, and (c) cyclic, mass fraction for A = 1.
o
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r = 1/20; (i) w = 200, B = 1/200; (ii) w = 250, B = 1/10.

Figure 13 (a) Full, (b) underlying, and (c) cyclic, mass fraction for A = 1,
o
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Figure 14. Underlying, (a), and cyclic, (b), Cp's for Ao = 1, r = 1/20;

(1) w = 200, B = 1/200; (ii) w = 250, B = 1/10.
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Figure 14. Underlylng, (a), and cyclic, (b), C 's for A = 1 r = 1/20.
Po' •

(i)w = 200, B = 1/200; (li) w = 250, B = 1/10.
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