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Abstract. Dialysis is aimed at the removal of charged ionic species in the blood
that arise from complications in kidney disease. Although the process for the re-
moval of urea and other unwanted charged species is understood, the effect of this
removal on the net sodium concentration in the blood after treatment is not clear.
In this report, we focus on formulating a fundamentally-based model to address
this question. We consider the formulation near the membrane at the pore scale
in order to determine effective jump conditions in ionic concentrations, electric po-
tential and flow rate based on the membrane properties, and in order to determine
whether electroneutrality holds within the pore. Secondly, we consider the local
blood-cell concentration within one of the fibres and how this varies axially within
the dialysis cartridge. Lastly, we consider a simple one-dimensional model of the
charged species problem and find that advection transport through the membrane
is important for sodium transport, but less pertinent for transport of other cation
species.
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1 Introduction

Kidney disease is treated worldwide by the use of surgical transplantation and more
often, due to lack of donor organs, dialysis. The overall aim of dialysis is to remove waste
products, such as urea, from the patient’s blood. Dialysis is performed using a dilayzer
machine, whereby blood is taken from the patient, and passed through the dialyzer where
filtration occurs, before being returned to the patients bloodstream in a continual process.
A single dialysis session can last anywhere up to four hours.

The process, however, is by no means perfect. Patients post-dialysis show a wide varia-
tion in the concentration of certain solutes within their blood, for instance sodium. Sodium
imbalance, for instance excess, can lead to higher water retention which can have adverse
health effects. With end stage renal disease increasing by between 5% and 10% per year
worldwide, there is an ever increasing need to more fully understand and improve the dialy-
sis process. In this report we present a number of mathematical models which go some way
towards providing a deterministic model of dialysis by focusing on the mechanisms involved
in the filtration of waste products from the blood in a dialyzer.

A typical dialyzer is illustrated in Figure 1. The machine works by passing blood
through perforated tubes encased in a cassette within the dialyzer. As blood flows in
one direction down the tubes (radius∼200μm), dialysate, the filtration fluid, is passed in
the opposite direction, thus forming a counter-current flow regime between the two fluids.
The two flows are connected by a number of smaller channels (radius∼5μm), which allows
exchange of solutes between the blood and dialysate. The exchange of solutes is driven by
both diffusion and convection through the channels. Details on the geometry of the tubes,
the size of the interconnecting channels, channels per tube and other details relevant to the
problems discussed in this report are detailed in Table 1.

Dialysate is designed to filter the blood during the dialysis process (which can take
anywhere up to four hours) without altering the solute concentrations within it. As such
the dialysate contains the main solutes found within blood (e.g. potassium-K+, sodium-
Na+, and chlorine-Cl−). The unfiltered blood contains these same solutes as well as urea
(to be filtered), along with blood cells and various negatively-charged proteins that are not
filtered.

Whilst it is relatively simple to understand the basic elements of dialysis, the effect
of the physical processes (fluid flow, solute transport) within a dialyzer requires detailed
quantitative understanding of each process in order to accurately understand the overall
blood filtration effects. As such the problem is ripe for mathematical modelling, with
a number of models formulated to date. We briefly review here the different modelling
approaches. For further details the reader should consult the recent review of [3].

Mathematical modelling approaches fall in to two main areas: (i) compartmental ordi-
nary differential equation (ODE) which model the patient-dialyzer system; and (ii) models
which describe the spatial variation in solute concentration fluid flow within a dialyzer using
the theory of partial differential equations (PDEs). Both model types are generally param-
eterised by comparing and/or fitting model outcomes to experimental and/or patient data.
Their main use then is in predicting the effective removal of urea from the blood stream and
the solute concentration at the end of the process. Sodium is a common solute of interest
given the issue of overhydration and the resultant health issues.

Compartmental models include descriptions of the fluid (blood plasma, dialysate) and
solutes within the patient/dialyzer system, and focus on key issues, for instance urea or
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Figure 1 A schematic representation of a typical dialyzer (left) and the geomet-
rical layout of a cassette showing the porosity of the tubes (right).

specific solute clearance. The basic urea model [3] considers a single compartment into
which urea passes and is then separated into a fluid of volume V and urea of concentration
C. Urea is then removed from the compartment at a constant rate. This leads to a single
ODE which can be solved analytically to determine the change in urea concetration over
time. More complicated models consider different compartmentalisations. For instance [9]
built on the work of [10] and considered a three compartment model: intracellular (rep-
resenting fluid inside patient cells), interstitial (representing fluid outside cells) separating
the cell from the final compartment, the blood plasma. The dialysate only affects the blood
plasma. Each compartment is separated by a ‘membrane’. In the intracellular to extracel-
lular compartments this is equivalent to that of the cell membrane, whereas the interstitial
to blood plasma membrane represents resistance of solute flow between these regions. Sim-
ilar models have been used to fit to experimental data regarding the profile of solutes from
patients and experimentation on dialyzers [6].

A similar model [12] used three compartments for the body fluids (plasma, interstitial
and intracellular, as mentioned above) and tracked transport of the main solutes between
these compartments and between the blood and dialysate. The authors claim that the
required parameters for the model can be determined a priori based on the body weight
and measured pre-dialysis plasma concentration values for patients, and that their model’s
predictions agreed fairly well with the results from multiple dialysis sessions for six pa-
tients. They suggest using the model to tailor dialysis sessions (i.e. by varying the length
of the dialysis session and/or the concentrations of various ions in the dialysate solution)
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to the needs of individual patients. The desirability of implementing such a scheme, and
some of the difficulties of doing so in an actual clinical setting, are discussed in [14]. Pro-
filed hemodialysis is an even more ambitious scheme for minimizing the unpleasant side
effects of dialysis by varying operational parameters of the dialysis machine (e.g. sodium
concentration in dialysate) as a function of time [9].

In [13], some of the issues involved in building a compartmental model of the dialysis
process are discussed. Starting from a simple one compartment model, several more detailed
models with successively more compartments are built and investigated. All of the models
considered in this reference only track one concentration, that of the main ‘toxic substance’
(presumably urea) that the dialysis treatment is designed to remove from the blood.

There are considerably fewer models of dialysis which include descriptions of the varia-
tion in fluid flow and solute concentrations within a dialyzer (see the introduction to [5] for
a brief review). Such models are generally solved numerically. Ding et al. [4] modelled a
hollow fiber hemodialyzer as two interpenetrating porous regions, of differing porosity, con-
taining blood and dialysate respectively. The two regions are separated by a thin porous
membrane. The fluid flow of blood and dialysate were considered to be governed by the
Navier-Stokes equations, with the concentration of dialysate and blood modelled by quasi-
steady state diffusion-convection equations in each region. The membrane flow is described
by a difference in the pressure between the blood and dialysate regions and the concentra-
tion of the blood and dialysate. Ding et al. [4] obtained numerical solutions to their system
of equations to predict the spatial variation in urea along the length of the dialyzer. This
was compared with experimental data and shown to be in good agreement. Similar porous
media models have been formulated and solved by Nordon and Shindhelm [7] and Osuga et
al. [8].

Of interest here is to understand the dominant mechanisms of solute transport from
the blood to the dialysate under normal operating conditions. The pore-scale processes
within the membrane, which include advection from the flow of liquid from the blood to the
dialyzer, electrodiffusion effects due to the induced electric fields from the ions themselves,
and reverse osmosis effects due to the concentration jump across the membrane, are key to
understanding this transport. Inherent in this understanding is the characteristic lengths
and other scales related to this problem. In Table 1, we list the characteristic geometric
parameters of the cartridge, the tubing, and the typical pore scales of the semi-permeable
membrane, and we list the diffusion and concentration values in Table 1. In Table 1 we
list the effective flow values during normal operating conditions, along with some typical
nondimensional quantities based on the values in Table 1. Since the dialysate and the blood
contains concentrations of charged species, we list some characteristic electrical parameters
in Table 1,

In this report, we focus on three distinct problems. The first problem relates to the
dependence of the solvent and solute transport through the pores in the semi-permeable
membrane (see Section 2). The second problem, discussed in Section 3, considers the
plasma/fluid transport through the membrane due to pressure differences in the blood and
dialysate regions. Finally, in Section 4, we consider a simple one-dimensional model of
solute transport across the membrane. We conclude in Section 5.

2 The problem in a single pore

The dialysis process of removing fluid, urea and potassium ions from the patient’s
plasma is controlled by the transport properties of the membrane. To understand these
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Table 1 Geometrical quantities from literature, many from [17].

Quantity Symbol Value
Dialyser length ld 0.2 m
Dialyser radius rd 0.02 m
Number of tubes Nt 12,000
Tube radius rt 10−4 m
Number of pores per unit area nppua 1013 m−2

Length of pore (wall thickness) lp 15 × 10−6 m
Pore radius rp 5 × 10−9 m
Cross-sectional area of dialyser Ad = πr2d 1.3 × 10−3 m2

Inner area - single tube Ati = πr2t 3.1 × 10−8 m2

Outer area - single tube Ato = π(rt + lp)2 4.2 × 10−8 m2

Area of inner tube surface As = 2Ntπrtld 1.5 m2

Fraction of cross-sectional area
occupied by tubes φt = NtAto/Ad 0.40

Scaled distance between neighbouring tubes dt =
√

2π/(
√

3φt) − 2 1.0
(assumes triangular lattice)
Number of pores Np = 2Ntπrtldnppua 1.5 × 1013

Area of pore Ap = πr2p 7.9 × 10−17 m2

Pore fraction of tube surface area φp = πr2pnppua 7.9 × 10−4

Nondim distance between neighbouring pores dp =
√

2π/(
√

3φp) − 2 66
(assumes triangular lattice)

Table 2 Flux/flow quantities.

Quantity Symbol Value
Fluxes:
Flux of blood Qb 400 × 10−6/60 m3/s
Flux of dialysate Qd 800 × 10−6/60 m3/s
Blood filtration rate Qp 10−3/3600 m3/s
Flow:
Average blood velocity Ub = Qb/(NtAti) 0.0018 m/s
Average diastolate velocity Ud = Qd/(Ad(1 − φt)) 0.0018 m/s
Average velocity in pore Up = Qp/(NpAp) 2.3 × 10−4 m/s
Reynolds number of the blood Reb = 2Ubrt/νb 0.88
Reynolds number of the diastolate Red = Ud rt dt/νd 0.45
Péclet number of sodium

(or potassium) in blood PeNab = 2Ubrd/DNa 3.5 × 105

Péclet number of sodium
(or potassium) in pore PeNap = Uplp/DNa 1.8

properties fundamentally, we need to investigate the ion and fluid transport through a
single pore. During the workshop, we considered only transport of the ions by a prescribed
pressure field, which is described in Section 2.1 below. In general, however, the flow in
these membranes is driven by concentration gradients local to the membrane in the bulk.
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Table 3 Electrical quantities from literature, many from [17].

Quantity Symbol Value
Electric constants:
Proton charge e 1.602 × 10−19 C
Permittivity of free space ε0 8.85 × 10−12 A2s4kg−1m−3

Relative permittivity εR 80
Boltzmann’s constant kB 1.38 × 10−23 J/K
Faraday’s constant F = Na e 9.4 × 104 C/mol
Debye lengthscale

√

ε0εRkBT/(4π eF cNa) 1.2 × 10−9 m

Table 4 Diffusion and viscosity quantities from literature, many from [17].

Quantity Symbol Value
Diffusion and viscosity:
Kinematic viscosity of blood νb 4 × 10−6 m2/s
Kinematic viscosity of dialysate νd 4 × 10−6 m2/s
Diffusion coefficient of sodium DNa 2 × 10−9 m2/s
Diffusion coefficient of potassium DK 2 × 10−9 m2/s
Diffusion coefficient of urea Durea 1.8 × 10−9 m2/s
Operating Temperature T 300 K
Avogadro’s number Na 6.023 × 1023

Sodium concentration in blood cNa 140 mmol/l= 1.4 × 102 mol/m3

Table 5 Typical pressure drops measured in the cartridge during dialysis [15].

Pressure drop Value in literature (Pa)
Blood along tubes 2,666
Dialysate 6,666
Across pores (Δpp) 40,000–49,400

We perform an analysis by Anderson and Malone [2], extended to electrolytes, to include
osmotic effects. In this case, the flow field and concentration fields are necessarily coupled.
This work is found in Section 2.2. Simple examples of these field equations are presented
in each section.

The rationale for this extension is based on the following argument. Fournier [15] gives
the blood and dialysate gauge pressures as 117,300 Pa and 74,600 Pa respectively and the
pressure drops as 2,666 Pa and 6,666 Pa respectively, meaning the pressure drop across
the pores varies between 40,000 Pa and 49,400 Pa. These values are compared in Table 2.
This shows that the comparison is quite bad, particularly in the pores. However, both the
calculated and the actual values do suggest that the pressure drop across the pores is much
larger than that along the length of the dialyzer. We may also calculate the permeability
(volume flux per unit area per unit pressure drop) across the walls of the tubes, which for
Δpp = 45kPa gives

Qp

2πrtldNtΔpp
≈ 4.1 × 10−12 m2s/kg. (2.1)
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Figure 2 Geometry of pore problem investigated in Section 2.

Values of the permeability of biomaterials are given as 10−14–10−9 m2s/kg, and in dialyzers
are between 2 × 10−12 and 4 × 10−11 m2s/kg, so these values are consistent with purely
pressure-driven flow.

The geometry of the pore problem is shown in Figure 2. The membrane surface on the
blood side is at z = 0, and we focus on one pore of radius rp and length lp.

2.1 Pressure-driven flow. The governing equations for the axisymmetric ion trans-
port are given by [16]

∂ci
∂t

+ u · ∇ci = ∇ · (Di∇ci) + ∇ · (cizikie∇φ) , (2.2)

ε∇2φ = −4π
∑

i

F cizi, (2.3)

w =
1
2
w0

(

1 − r2

r2p

)

, (2.4)

where u = u r + w z, φ is the electric potential, F is Faraday’s constant (see Tables 1 and
1), and (2.2)–(2.3) apply on an axisymmtric domain 0 < r < rp and 0 < z < lp. Equation
(2.2) represents the transport of species i through the pore, where i = 1, 2, . . . N denote
distinct species, and where ci is the molar concentration of species i. The second term
on the left-hand side represents advection of charge through the pore. The two terms on
the right-hand side of (2.2) (from left to right) represent diffusion of charge through the
pore and electrodiffusion, respectively. Each species in general has its own rate of diffusion,
Di = kBTki, where kB is Boltzmann’s constant, T is the temperature of the solution, ki is
species mobility. In addition, each i-ion has a net charge zie, where e is the fundamental
charge of an electron (see Table 1 for specific values). We assume the flow of the solute
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within the pore is pressure-driven Stokes flow in cylindrical coordinates, which results in
the quadratic profile shown in (2.4).

Electrodiffusion is driven by gradients in the electric potential φ. This potenial is found
through (2.3), which represents Gauss’s law in electrostatics, where ε is the relative dielectric
permittivity of the solvent. Note that the net charge density ρ =

∑

i eF zi ci is the quantity
that drives potential gradients.

Boundary conditions for this problem are no flux conditions at r → 0 and r = rp,

r → 0 : r
∂ci
∂r

→ 0 , r
∂φ

∂r
→ 0, (2.5)

r = rp :
∂ci
∂r

=
∂φ

∂r
= 0 . (2.6)

We are interested in finding effective jump conditions from above and below the pore,
and so we assume Dirichlet boundary conditions at z = 0 and z = lp

z = 0 : ci = C
(+)
i , φ = Φ(+), (2.7)

z = lp : ci = C
(−)
i , φ = Φ(−) . (2.8)

We scale r on rp, z on lp, t on lp/wo, u on wo, ci on Co, and φ on kBT/e to arrive at
the following nondimensional problem

δ2Pei

(

∂Ci

∂t
+

1
2
(

1 − r2
) ∂Ci

∂z

)

=
1
r

∂

∂r

(

r
∂Ci

∂r

)

+ δ2
∂2Ci

∂z2
+

1
r

∂

∂r

(

ziCi
∂φ

∂r

)

+ δ2
∂

∂z

(

ziCi
∂φ

∂z

)

, (2.9)

1
r

∂

∂r

(

r
∂φ

∂r

)

+ δ2
∂2φ

∂z2
= − 1

λ2

∑

i

zi Ci, (2.10)

where δ = rp/lp � 3 × 10−4 is the aspect ratio of the pore, Pei = wolp/Di ≈ 1.8 is the
Péclet number for each species, and λ = λD/rp is the Debye length ratio, where the Debye
length is given by λD =

√

(εkB T )/(4πeFCo). The boundary conditions (2.5)–(2.8) have
the same form with this scaling

r → 0 : r
∂ci
∂r

→ 0 , r
∂φ

∂r
→ 0, (2.11)

r = 1 :
∂ci
∂r

=
∂φ

∂r
= 0, (2.12)

z = 0 : ci = C
(+)
i , φ = Φ(+), (2.13)

z = 1 : ci = C
(−)
i , φ = Φ(−) . (2.14)

Although the Debye length scale is on the same order of magnitude as the pore radius,
we can consider the problem in the limit of small aspect ratio δ → 0. We use a regular
asymptotic expansion for each of the quantities

Ci = ni0 + δ2ni2 + . . . , φ = φ0 + δ2φ2 + . . . . (2.15)
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At leading order, we find that

1
r

∂

∂r

(

r
∂ni0

∂r

)

+
1
r

∂

∂r

(

rzini0
∂φ0

∂r

)

= 0, (2.16)

1
r

∂

∂r

(

r
∂φ0

∂r

)

= − 1
λ2

∑

zi ni0 , (2.17)

subject to the no-flux boundary conditions in r. We can integrate (2.16) directly in terms
of r, and note that

∂ni0

∂r
+ zini0

∂φo

∂r
= 0 , (2.18)

since the fluxes are zero at r = 0, 1 for all 0 < z < 1. A second integration of (2.18) gives
the Nerst relation between concentration and potential

ni0(r, z, t) = Ai(z, t)e−zi φo(r,z,t) . (2.19)

Hence, the leading order problem to consider for the potential problem gives

1
r

∂

∂r

(

r
∂φo

∂r

)

= − 1
λ2

∑

i

ziAi(z, t)e−ziφo , (2.20)

subject to no-flux boundary conditions (2.11)–(2.12). Note that the trivial solution ∂φo/∂r =
0, or for φ independent of r gives the electro-neutrality constraint.

At this stage, we must make a choice in order to solve for (2.20). The simplest choice
is to prescribe electro-neutrality ab initio,

∑

i

zi ni0 =
∑

i

ziAi(z, t)e−ziφo = 0 , 0 < r < 1 , (2.21)

which gives that φo = φo(z, t) to leading order, and

ni0(z, t) = Ai(z, t)e−ziφo(z,t) .

To find the values of ni0, φo, we go to the O(δ2) problem

Pei

[

∂ni0

∂t
+

1
2
(

1 − r2
) ∂ni0

∂z

]

=
1
r

∂

∂r

(

r
∂ni1

∂r

)

+
∂2ni0

∂z2
+

1
r

∂

∂r

(

zini0
∂φ1

∂r

)

+
∂

∂z

(

zini0
∂φo

∂z

)

, (2.22)

1
r

∂

∂r

(

r
∂φ1

∂r

)

+
∂2φo

∂z2
= − 1

λ2

∑

i

zi ni1 , (2.23)

subject to the no-flux boundary conditions (2.11)–(2.12). With these conditions, we can
find the effective equation for each ni0 as a function of φo,

Pei

(

∂ni0

∂t
+

1
4
∂ni0

∂z

)

=
∂2ni0

∂z2
+

∂

∂z

{

zini0
∂φo

∂z

}

. (2.24)

The case of monovalent ions is a classical derivation if the Peclet numbers are the same
[1, 16]. If zi = ±1 and Pei = Pe, then we can define a conductivity σ and a charge density
ρE as

σ =
∑

i

z2
i ni0 , ρE =

∑

i

zi ni0 = 0 .
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By electro-neutrality, the charge density is zero, and we can add all of the equations in
(2.24) to obtain

Pe

(

∂σ

∂t
+

1
4
∂σ

∂z

)

=
∂2σ

∂z2
, (2.25)

while multiplying each (2.24) by zi and adding the remainder of the equations gives the
relation for the voltage potential

∂

∂z

(

σ
∂φo

∂z

)

= 0 , (2.26)

which states that the current density is uniform in the axial direction of the pore. If we
prescribe the conductivity along the blood side of the membrane σ = σb at z = 0 and at
the dialysate side of the membrane σ = σd at z = 1, then we can analytically find the local
conductivity and electric potential in the pore

σ =
ePe − ePe z

ePe − 1
σb +

ePe z − 1
ePe − 1

σd , (2.27)

φ0 = JE
ePe − 1

σb ePe − σd

(

z − 1
Pe

log σ
)

+ ζ . (2.28)

With (2.27) and (2.28) we can find relations for the net conductivity flux through the pore,
along with the net jump in voltage potential

Qσ = Peσ − ∂σ

∂z
= Pe

ePeσb − σd

ePe − 1
, φ0|z=1

z=0 = JE
ePe − 1

ePe σb − σd

{

1
Pe

log
[

σd

σb

]

+ 1
}

.

(2.29)
Unfortunately this argument does not generalise easily to a larger number of solutes of
general valency.

2.1.1 Nonzero Pore Charge Density. In this section, we consider the case when the
electro-neutrality condition in (2.21) is relaxed. The leading-order problem is then fully
nonlinear in terms of the species concentration and the electric potential. The classical
approach to this problem can be found in standard texts (e.g [1]), where the potential is
fixed along the pore wall at the ζ-potential. We focused on the case when the membrane
acts as an electrical insulator. In order to simplify the analysis, we consider the situation
when advection transport is small compared to diffusive transport.

We then consider the nonlinear problem, where both z and r are scaled on the pore
radius,

∇2Ci + zi∇ · [Ci∇φ] = 0 (2.30)

∇2φ = − 1
λ2

∑

i

ziCi = −α
∑

i

ziCi (2.31)

on the domain 0 < z < lp/rp � 3 × 103 and 0 < r < 1, subject to zero normal derivative
conditions

∂Ci

∂n
=
∂φ

∂n
= 0 ,

on the boundary. Note that there is no time-dependence on Ci, φ at this order.
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If (2.19) holds, and we consider a monovalent mixture, we can then lump the positive
species p and the negative species n as

p =
∑

zi=1

Ci , n =
∑

zi=−1

Ci .

If we define
C+ =

∑

zi=1

Ci(0)e−φ(0) , C− =
∑

zi=−1

Ci(0)eφ(0) ,

and with a shift in the potential by φ∗ = [log (C−/C+)] /2, we find the following nonlinear
eigenvalue problem for the shifted potential φ

∇2φ = −γ sinhφ . (2.32)

The two simplest classes of solutions for this problem are purely axial solutions and
purely radial solutions. For purely axial solutions, let us consider the simplest problem
with Dirichlet boundary conditions

d2φ

dz2
+ γ sinhφ = 0 , 0 < z <

lp
rp
, (2.33)

φ(0) = φ0 , lim
z→lp/rp

φ = φ1 . (2.34)

Equation (2.33) can be integrated once, and from the constant of integration, we find the
relation between the field strength to the difference in potential

(

dφ

dz

)2
∣

∣

∣

∣

∣

z=0

−
(

dφ

dz

)2
∣

∣

∣

∣

∣

z→lp/rp

= 2 γ [cosh φ1 − cosh φo] . (2.35)

From this relation, we note that the classical results arise depending on the value of γ. In
the limit γ � 1, then φ1 = φ0, or the pore acts like a conductor. In the limit γ 	 1, then
|φz|z=0 = |φz|z→lp/rp

, which corresponds to a continuous electric field along the membrane,
or the membrane acts like a perfect dielectric.

The purely radial problem
1
r

d

dr

[

r
dφ

dr

]

= −γ sinhφ(r)

needs to be solved numerically. The eigenvalue γ is found by optimizing over the unknown
reference potential φ(0).

2.2 Modified Solvent Flow. Osmosis through a semi-permeable membrane is de-
scribed directly in elementary chemistry courses for nonelectrolytes. A membrane is de-
signed to allow solvent molecules to pass through, but prohibit the transport of larger
solute molecules. Due to the estimates in kinetic theory, the number of impacts per mol-
ecule on either side of the membrane is approximately the same, but the side which has
a lower concentration of solute will have a larger number of solvent molecules striking the
membrane. Since the solvent molecules can pass through, this results in a net flow of solvent
from the low concentration side of the barrier to the higher concentration side. From [2],
the accepted equation for the volume flux of solvent in such a system is given by

Qp = Lp ΔP∞ − LΠ ΔΠ∞ ,

where Qp is the volume flux of the solute, Lp is a hydraulic coefficient, and the notation
ΔP∞ denotes the jump in bulk values of the hydraulic pressure P across the membrane.
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Table 6 Typical osmotic pressure drops found from bulk plasma and dialysate values,
assuming that there are no electrical effects. Note the bias in the hydrostatic pressure
given in Table 2.

Species Plasma (meq/L) Dialysate (meq/L) ΔΠ (kPa)
Sodium 140 140 0
Potassium 5 3 5
Chloride 114 110 10
Bicarbonate 20 35 −37
Urea 40 0 99

The additional term corresponds to the “osmotic pressure” Π = RT C∞, and LΠ is a
conductivity coefficient. For a perfect semi-permeable membrane, LΠ = Lp. Note that the
scale for Π is on the order of 0.35MPa, which is about one order of magnitude larger than
the characteristic hydraulic pressure scale. In the case when the membrane is “leaky”, or
some solute is allowed to pass through the membrane, Lp > LΠ. Note that these leaky
membranes are the standard approach to simple models of the dialysis process with spatial
variation (see [4]).

Note that the dialysis process is designed for the removal primarily of urea from the
blood. The osmotic pressures for urea, based on its concentration, is below the hydraulic
pressure difference between the blood and the dialysate (see Table 2.2). This suggests that
the membranes used in dialysis are leaky, and the coefficient LΠ needs to be determined
based on the concentration and electric potential effects within the pore. In principle, there
should be a single model that describes the flow of solvent in this situation for the mixture
of charged species, and we focus on this topic in this section.

We follow [2] in theme, but consider the case of charged species to find how the con-
centration gradients determine the fluid velocity in the pore. We begin by considering the
the momentum and continuity equations for fluid flow in the pore, assuming fluid inertial
effects are negligible (see [1])

∇ · u = 0, (2.36)
−∇p+ μ∇2u + ρEE = 0, (2.37)

on 0 < r < rp, 0 < z < lp, where u = ur +wz is the velocity field in the pore, p is the fluid
pressure, μ is the dynamic viscosity, ρE =

∑

i zi eF Ci is the charge density, and E = −∇φ
is the electric field.

We scale r on rp, z on lp, w on wo = δ [CoFkBTrp/μ], p on po = μwolp/r
2
p, and consider

the same asymptotic series expansion as in Section 2.1. For each of the concentration fields,
Nerst’s relation (2.19) holds (written here in dimensional form for clarity)

Ci = CoAi(z, t)e−zi F (φ(r,z,t)−Φ+)/RT .

Note that from this form, the osmotic pressures can be found formally as

Πi = RT Ci = −zi F
∫

Cidφ ,

which suggests that the Ai(z, t) are effectively the nondimensional partial osmotic pressure
of species i in the pore.
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From the leading order r-momentum equation, we have
∂p

∂r
+
∑

i

zinoi
∂φ

∂r
= 0 , (2.38)

which has a first integral that gives

p(r, z, t) = Po(z, t) −
∑

i

Ai(z, t)e−ziφ(r,z,t) . (2.39)

To consider the z-momentum equations, we note that
∂p

∂z
=
∂Po

∂z
−
∑

i

(

∂Ai

∂z
− ziAi

∂φ

∂z

)

e−ziφ ,

which results in the following problem for the axial fluid velocity w
1
r

∂

∂r

(

r
∂w

∂r

)

=
∂Po

∂z
−
∑

i

∂Ai

∂z
e−ziφ(r,z,t) , (2.40)

with limr→0 r∂w/∂r = 0 and w = 0 along the pore wall r = 1. Formally, the solution can
be written in terms of the following integral

w =
∫ 1

r

1
r2

∫ r2

0
r1

(

∂Po

∂z
−
∑

i

∂Ai

∂z
e−ziφ(r1,z,t)

)

dr1 dr2 .

To solve for u, we use the continuity equation (2.36) with the expression of w above.
Requiring that both u = 0 along r = 0 and r = 1 gives a constraint for Po in terms of the
electric potential φ. However, in this general form, the transport equations for n0i along
with Gauss’s equation for φ are highly coupled.

As a simple example, let us assume electro-neutrality in the pore, which gives φ = φ(z, t).
Note that the pressure p = p(z, t) still has the osmotic terms in its expression, and the
expression for w in this case becomes

w =
r2 − 1

4

(

∂Po

∂z
−
∑

i

∂Ai

∂z
e−ziφ(z,t)

)

. (2.41)

From (2.36), we find that u is given by

u = −
(

r3

16
− r

8

)

∂

∂z

{

∂Po

∂z
−
∑

i

∂Ai

∂z
e−ziφ

}

, (2.42)

and the requirement that u = 0 along r = 1 gives the following Reynolds equation for Po

∂

∂z

(

∂Po

∂z
−
∑

i

∂Ai

∂z
e−ziφ

)

= 0 . (2.43)

One integration gives that the flow rate through the pore is constant, or

Qp = − 1
16

(

∂Po

∂z
−
∑

i

∂Ai

∂z
e−ziφ

)

. (2.44)

A second integral, if possible, would give the leaky flux relation for solvent in terms of the
bulk hydraulic pressure and the bulk concentrations of each species. Note, however, that
the constant flow rate then gives a velocity profile of the form (2.4), which suggests that
the results of Section 2.1 hold for this particular example.
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3 Porous-Medium Membrane Model

In this section, the motion of the fluid through the cartridge is assumed to be pressure
driven. Opposing pressure gradients are imposed at both ends of the device in order to force
the blood and the dialysate to travel in opposite directions. Furthermore, the reference
pressure of the blood exceeds the pressure of the dialysate, resulting in fluid from the
blood flowing through the membrane and into the dialysate solution. The red blood cells
are unable to penetrate the membrane and as a result, their concentration in the fibre
increases. The goal of this section is to compute the large scale flow within a single fibre
and the surrounding dialysate. Using this fluid velocity profile, the concentration of red
blood cells in the fibre can be obtained. How the concentration of solute varies with the
removal of the plasma is left for a later work.

3.1 A Simple Model. To describe the essential features of the large scale flow, we
consider the two dimensional motion of fluid that is confined between two adjacent regions.
These regions are separated by a permeable membrane (see Figure 3). One of these regions
represents the interior of the fibre where the blood flows. The other represents the exterior
region of dialysate solution. We apply symmetry conditions along z = ±rt. For simplicity,
we assume that the “radius” of the dialysate region is equal to the radius of the fibre.
Changing this value should not have a significant quantitative effect on the dynamics of the
system. The length of the fibre, ld, is much greater than the radius rt in the cartridge, and
this fact will be used to simplify the governing equations. Since the flow is pressure driven,
we further assume that the pressure is prescribed at both ends of both regions.

The fluid in both regions is assumed to be modelled by the steady, incompressible,
Navier-Stokes equations. In two spatial dimensions, these can be written as

ρ (u · ∇)u = −∂p
∂x

+ μ∇2u, (3.1a)

ρ (u · ∇)w = −∂p
∂z

+ μ∇2w, (3.1b)

∂u

∂x
+
∂w

∂z
= 0 , (3.1c)

where u = u(x, z)x + w(x, z)z is the fluid velocity vector written in terms of components
along the standard Cartesian unit vectors, ρ is the fluid density, p is the hydrodynamic
pressure, μ is the dynamic viscosity of the fluid, and ∇ is the gradient operator in Cartesian
coordinates. The velocity of the blood and of the dialysate is denoted by u1 and u2,
respectively. Similarly, the pressure in the blood and in the dialysate is labelled as p1 and
p2. For simplicity, the density of the two fluids, as well as their viscosities, are assumed to
be equal. The concentration of red blood cells, b(x, z), is governed by a steady advection-
diffusion equation

∇ · J = 0, J = u1 b−D∇b, (3.2)

where J = J(x, z) is the flux of red blood cells and D is the diffusion coefficient. This
equation only holds in the interior of the fibre, since red blood cells cannot pass through
the membrane.
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Porous membrane

Dialysate: u2

P11

P21 P22

P12Blood: u1, b

z = 0

z = rt

z = −rt

x = 0 x = ld

Figure 3 Model geometry. The top region corresponds to the interior of the fibre where
the blood is flowing, whereas the bottom corresponds to the dialysate region exterior to
the fibre. The length and the radius of the fibre are denoted by ld and rt, respectively.
Governing equations will model fluid velocities u1 and u2 in the blood and dialysate
regions, respectively, as well as the blood cell concentration b inside the fibre. The Pij

denote prescribed fluid pressures at the ends of the system.

The symmetry of the system implies that there is a stress-free condition and a no-flow
condition on the fluid velocities at the center of the regions,

∂u1

∂z
= w1 = 0, z = rt,

∂u2

∂z
= w2 = 0, z = −rt.

Along the membrane, there is a no-slip condition on the horizontal fluid velocities , u1 =
u2 = 0 along z = 0. Since fluid can pass through this membrane, the vertical velocity
is governed by Darcy’s law at z = 0, which states that the vertical fluid velocity at the
membrane is proportional to the pressure difference across it

w1 = w2 =
k

μ

p2 − p1

lp
, z = 0, (3.3)

where k and lp are the permeability and the thickness of the membrane, respectively. The
permeability is assumed to be constant, which implies that none of the pores in the mem-
brane become blocked by red blood cells. It is further assumed that the pressure at the
ends of each region is prescribed,

pi = Pi1, x = 0,
pi = Pi2, x = ld,

(3.4)

for i = 1, 2. To obtain the correct flow, the following inequalities are assumed to be true

P21 < P22 < P12 < P11.

These are needed to ensure that the blood and the dialysate flow in opposite directions and
they allow the water from the blood to cross the membrane.

It is assumed that the concentration of red blood cells entering the device is a fixed
constant b0. Furthermore, there is zero flux of red blood cells at z = 0 and z = rt. The
condition at z = 0 arises because red blood cells cannot pass through the membrane and
the condition at z = l is from the symmetry. In summary, the boundary conditions for the
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concentration are given by
b = b0, x = 0,

J · n = 0, z = 0, rt,

where n is a unit vector normal to the boundary. Although the equation which governs the
concentration (3.2) is second order in x, further analysis will show that only one boundary
condition is required.

3.2 Scaling and Nondimensionalization. One of the characteristic properties of
each fibre is its length. Typically, a fibre is approximately one hundred times longer than it
is wide. Therefore, we define the small parameter ε = rt/ld 	 1 and rescale the governing
equations. In particular, we scale the physical dimensions by x → ldx, z → rtz, where the
new, nondimensional, domain is from 0 ≤ x ≤ 1, −1 ≤ z ≤ 1. The velocity components
and the pressure are scaled according to

u→ Ub u, w → εUb w, p→ μUb

rtε
p,

where Ub is the mean velocity of the blood through the device. With these new variables,
the Navier-Stokes equations (3.1b) become

ε2Re (u · ∇)u = −∂p
∂x

+ ε2
∂2u

∂x2
+
∂u

∂z
, (3.5)

ε4Re (u · ∇)w = −∂p
∂z

+ ε2
(

ε2
∂2w

∂x2
+
∂2w

∂z2

)

, (3.6)

∂u

∂x
+
∂w

∂z
= 0, (3.7)

where the Reynolds number is defined as

Re =
ρUb ld
μ

.

From Table 1, Re ∼ O(1). Therefore, to leading order, the pressure along the z direction
is constant, and the pressure gradient in the x direction is balanced by viscous diffusion in
the z direction. The boundary conditions essentially remain unchanged, except for scaling
the constant values in (3.4) and scaling Darcy’s law in (3.3) to become

w = K(p2 − p1),

where K = k/rtlpε
2 ∼ O(1).

The concentration can be rescaled according to b→ b0 b, resulting in the nondimensional
advection-diffusion equation

ε2Pe (u1 · ∇)b = ε2
∂2b

∂x2
+
∂2b

∂z2
, (3.8)

where the Péclet number for the blood cells is given by

Peb =
Ub ld
D

∼ O(ε−2).

Thus, to leading order, the advection of red blood cells is balanced by their diffusion in the
z direction. The boundary conditions simplify to become b = 1 at x = 0 and

ε2Pew b− bz = 0, z = 0, 1.
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As can be seen from (3.8), the second order derivative in x drops out. Indeed, only a single
boundary condition in x is needed to obtain a solution at leading order.

3.3 Solution. To leading order, (3.6) suggests that p = p(x). In addition, (3.5) gives
the following velocity profiles in the axial direction in each region

u1 =
dp1

dx

(

z2

2
− z

)

,

u2 =
dp2

∂x

(

z2

2
+ z

)

.

Conservation of mass (3.7), along with the no-flow conditions at z = ±1 gives the vertical
velocity component in each domain

w1 =
d2p1

dx2

(−z3

6
+
z2

2
− 1

3

)

,

w2 =
d2p2

dx2

(−z3

6
− z2

2
+

1
3

)

.

Applying the condition on w at z = 0 shows the pressure must satisfy the system of ordinary
differential equations given by

d2p1

dx2
= 3K (p1 − p2),

d2p2

dx2
= 3K (p2 − p1).

Each solution takes the form pi(x) = ai,1e
√

6Kx + ai,2e
−√

6Kx + ai,3x+ ai,4. The coefficients
are cumbersome functions of both K and the pressure’s boundary conditions, and showing
them here would provide no further insight.

Because the flow is assumed to be two dimensional and incompressible, stream functions
ψi can be found. Solving u = ψz and w = −ψx in each region yields the two stream functions

ψ1 =
dp1

dx

(

z3

6
− z2

2
+

1
3

)

,

ψ2 =
dp2

dx

(

z3

6
+
z2

2
− 1

3

)

.

Using the fluid velocity found above, the concentration of red blood cells in the upper
region can be solved. Despite the governing equation being linear, the velocities are suffi-
ciently complicated that it could not be solved analytically. Instead, a simple, upwinded,
finite differencing scheme was used. In particular, central differencing was used in the z
direction and backwards differencing was used in the x direction to account for the blood
travelling in the positive x direction.

3.4 Results and Discussion. The scaled streamlines can be seen in Figure 4. Blood
enters the top region from the left and has a small downward component, which is a result
of the prescribed pressure differences on the left and right boundaries and the porous mem-
brane. In the bottom region, dialysate enters from the right and also has a small downward
component. The flow from the top to the bottom region is expected, as this corresponds
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Figure 4 Scaled streamlines of the flow in two regions separated by a porous membrane
(dashed line).

to plasma water leaving the inside of the hollow fibres and entering the dialysate fluid
space, which is what happens during the dialysis process. This flow represents the underly-
ing convectively dominated régime of solute transport, assuming that electrical effects are
negligible.

The pressure found depends only on x, and although it is an exponential function, the
value of K is small enough for the function to be approximately linear in both regions. If
K is increased enough, there is a pressure drop in the center, and some of the fluid from
the right of the top region will flow to the left and then down into the bottom. Since K is
proportional to permeability, this intuitively means that increasing the permeability of the
membrane makes it harder for the fluid in the top region to make it across. Furthermore,
as the permeability tends to zero, the pressure becomes a linear function of x, and both
velocity profiles reduce to Poiseuille flow in Cartesian coordinates.

In Figure 5, the concentration gradient of red blood cells in the upper region can be
seen, along with the stream lines. The concentration increases toward the membrane and
also increases downstream to the right. Interestingly, the concentration gradient appears
everywhere to be almost parallel to the streamlines. This implies a large contribution to the
movement of red blood cells from diffusion, otherwise we would expect to see concentrations
that are constant along the streamlines. In fact, this solution is valid not only for red blood
cells, but for any solute that cannot pass through the membrane, such as protein. This is
provided the diffusion coefficient of the solute is on the same order as that for red blood
cells and, if the solute is charged, electric effects can be ignored.
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Figure 5 Scaled blood-cell concentration gradient and the streamlines in the fibre.

4 Bulk Solute Transport - Outer Solutions

In this section, we review the different models that try to estimate the solute distribution
away from the membrane. In all of these models, since the advective transport to the
membrane is much smaller than the advective transport along the filament axis, the effective
equations of motion are quasi-steady. In future work, additional details on how advection of
solute from the blood into the dialysate would need to be included in order to see changes
on this longer time scale.

4.1 Toy model based on transport equilibrium.
4.1.1 Assumptions. Our simplest model of a dialyzer assumes that:

1. The transport of solutes between the blood and the dialysate involves the sum of a
diffusive term (proportional to the concentration difference across the tube walls),
and an electrical term (proportional to the product of the charge on the species, the
electric field across the tube walls, and the average concentration).

2. Dialysis continues for sufficient time to allow the blood to come in to equilibrium
with the dialysate.

3. Electro-neutrality is maintained in the blood and dialysate at leading order (though
minute differences can lead to a significant potential difference, and hence an electric
field, across the tube walls).

4.1.2 Notation and equations. Consider n diffusing species. Each species i ∈ {1, 2, . . . n}
has valencey zi, and concentrations Ci in the blood and ci in dialysate initially. Since the
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Table 7 Initial concentrations Ci in the blood and ci in the dialysate, used in the example
in Section 4.1.3.

i Species zi Ci(0) ci

1 Na+ +1 100 c
2 K+ +1 1 0
3 Cl− −1 100 c
4 Pr− −1 1 0

dialysate is not recycled, the concentration there remains fixed at ci, while the concentration
in the blood can evolve to its equilibrium value C∞

i = limt→∞Ci(t).
The equations for our model, to determine the equilibrium concentrations C∞

i are then
as follows. For species that can pass through the tube walls we must have no net transport
at equilibrium. We assume that the advective, diffusive and electrical fluxes from the blood
to the dialysate are given, respectively, by

Qa = Q

(

Ci + ci
2

)

, (4.1)

Qd = Di(Ci − ci) , (4.2)

Qe =
qziDi

kBT

(

Ci + ci
2

)

E , (4.3)

where Q is the flux of fluid through the wall, E is the mean electric field strength, Di is a
species dependent mobility coefficient for passing through the tube walls. At equilibrium,
the total flux of each species must be zero. We also have no flux of fluid, so Q = 0 and
there is no advective transport to consider. Balancing the diffusive and electrical fluxes we
find that

Di

[

(C∞
i − ci) +

qzi
kBT

(

C∞
i + ci

2

)

E

]

= 0 . (4.4)

For species that are unable to pass through the tube walls, the concentration in the
blood cannot alter, so

C∞
i = Ci . (4.5)

Finally the condition of electro-neutrality gives us
∑

i

C∞
i zi = 0 . (4.6)

We now have n+ 1 equations for the n+ 1 unknowns {C∞
i } and E.

4.1.3 A simple example. For simplicity we consider just four diffusing species: Na+, K+,
Cl−, and Pr−(the latter representing a negatively charged protein ion). All the ions are
monovalent (zi = ±1), and the first three can pass through the tube walls, but the protein
cannot. Initial concentrations in the blood and dialysate are shown in Table 4.1.3. The
blood contains a mixture of all four, whereas the dialysate contains only a concentration c
of NaCl.

We want to find appropriate concentration c of NaCl in dialysate to allow removal of
K+ without affecting Na+ levels. But firstly we solve for the forward problem to determine
{C∞

i } for a given c.
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Figure 6 The equilibrium concentrations Na+ (C∞
1 ) and Cl− (C∞

3 ) in the blood as func-
tions of NaCl concentration c in the dialysate for the simple example in Section 4.1.3.

The equations are as follows:

(C∞
1 − c) + E′(C∞

1 + c) = 0 , (4.7)
C∞

2 (1 + E′) = 0 , (4.8)
(C∞

3 − c) − E′(C∞
3 + c) = 0 , (4.9)
C∞

4 − 1 = 0 , (4.10)
C∞

1 + C∞
2 − C∞

3 − C∞
4 = 0 , (4.11)

where E′ = qE/kBT .
From (4.8) either E′ = −1 or C∞

2 = 0. The former is ruled out by (4.7), since this
equation could then only be satisfied if c = 0. Hence C∞

2 = 0. We can then eliminate E′
between (4.7) and (4.9) to obtain a pair of equations for C∞

1 and C∞
3 :

C∞
1 − c

C∞
1 + c

= −C
∞
3 − c

C∞
3 + c

, (4.12)

C∞
1 = 1 + C∞

3 . (4.13)

The solution for C∞
1 and C∞

3 in terms of c is now straightforward:

C∞
1 =

√
1 + 4c2 + 1

2
, (4.14)

C∞
3 =

√
1 + 4c2 − 1

2
. (4.15)

These results are plotted as functions of c in Figure 6.
However, we are more interested in choosing a dialysate concentration c in order to

obtain optimal values for C∞
1 and C∞

3 . If we choose values consistent with (4.13) – necessary
to ensure electro-neutrality – the value of c can be computed by solving (4.12). This yields:

c =
√

C∞
1 C∞

3 . (4.16)
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So if we wish to obtain C∞
1 = 100 (so Na+levels are unaffected) and C∞

3 = 99 (to maintain
electro-neutrality after the loss of K+), we should set the dialysate concentration of NaCl
to be

c = 30
√

11 ≈ 99.50 . (4.17)

4.2 Argument for using a 1D model. Consider a small length δx of tube that has
a concentration drop ΔC1 from the centre to the boundary. The average radial concen-
tration gradient is ΔC1/rt. If we assume advection transport of solute is small compared
to diffusion, then the mass flux of solute due to diffusion at the boundary approximately
equals

D
ΔC1

rt
(2πrtδx) ⇒ Q = D

ΔC1

rt
(2πrt), (4.18)

where Q is the mass flux per unit length of tube. The number of pores in that section
of boundary is φp(2πrt)δx/Ap, and therefore the number of pores per unit length equals
φp(2πrt)/Ap, meaning that we may obtain a second equation for Q

Q = D
ΔC2

lp
Ap
φp(2πrt)
Ap

= D
ΔC2

lp
φp(2πrt), (4.19)

where ΔC2 is the concentration drop along a pore. Relating the two expressions for Q,

ΔC1

ΔC2
=
φprt
lp

≈ 0.02, (4.20)

which would suggest that most of the concentration drop takes place across the membrane.
Therefore we propose to use a 1D model when transport from advection is small compared
to diffusive transport.

4.3 One-dimensional steady model. The above assumption motivates a model in
one dimension, in which the concentration profile of a single charged species varies in the
axial direction along the tubes and along the dialysate, but not significantly in the radial
direction. We consider the model depicted in Figure 7. We use a one-dimensional model
and assume the flow and the concentration profiles are steady. We also make the simpli-
fying assumption that the velocities of blood and dialysate, Ub and Ud, respectively, are
independent of x. This is reasonable since the filtration rate is small compared to the fluxes
of blood and dialysate (Qp/Qb ≈ 1/24 and Qp/Qd = 1/48). Table 2 suggests that the
pressure drop, and hence the velocity of the blood in the pores, varies by around 20% along
the length, but for simplicity we assume here that the average velocities are constant along
the tubes.

In the blood we analyse a control volume consisting of a section of one tube of length δx,
as shown in Figure 7. We balance the solute flux across each of the surfaces. The flux along
the tube into the control volume is AtiUbCb(x), where Ati is the internal area of the tube and
Cb is the species concentration. The flux out of the control volume along the tube equals
AtiUbCb(x+δx). To find the flux across the curved surface of the control volume, we find the
number of pores, which equals the surface area, 2πrtδx, multiplied by the number of pores
per unit area, nppua = Np/As, and then multiply by the flux per pore. The dimensionless
flux is given by the expression Qσ appearing in (2.29), and the corresponding dimensional
flux is given by ApUpQσ/Pep. Since we are interested in the concentration of a single
charged species under electrically neutral conditions, the quantities σb and σd appearing
in (2.29) are directly proportional to Cb and Cd in this section. Thus the flux through
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Figure 7 Schematic view of one-dimensional model, showing one tube of the dialyzer with
porous walls. It is filled with blood and surrounded by dialysate.

the curved surface of the control volume equals 2πrtNpApUpQσ δx/(PepAs). Balancing the
fluxes into and out of the control volume and taking the limit as δx→ 0, we obtain

∂Cb

∂x
= −2πrtNpApUpQσ

PepAsAtiUb
. (4.21)

Unlike the blood, which is partitioned by the tubes, the region occupied by the dialysate
is connected, so to analyse the concentration in the dialysate, we consider a control volume
containing all of the dialysate between x and x + δx. This is a cylindrical region with
Nt cylindrical holes in it. The flux into the control volume through the surface at x is
(1 − φt)AdUdCb(x), the flux through x + δx equals (1 − φt)AdUdCb(x + δx), and the flux
from the tubes equals 2πrtNtNpApUpQσδx/(PepAs), meaning we obtain:

∂Cd

∂x
= − 2πrtNtNpApUpQσ

PepAs(1 − φt)AdUd
. (4.22)

Substituting the expression for Qb from (2.29), (4.21) and (4.22) become

∂Cb

∂x
= − λ

(ePep − 1)
(

ePepCb − Cd

)

, (4.23)

∂Cd

∂x
= − λκ

(ePep − 1)
(

ePepCb − Cd

)

, (4.24)

where

λ =
2πrtNpApUp

AsAtiUb
≈ 0.043m−1, κ =

NtAtiUb

(1 − φt)AdUd
≈ 0.50, (4.25)

Pep ≈ 1.8, ld ≈ 0.2m. (4.26)
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Figure 8 Concentration profiles in the blood (solid) and in the dialysate (dashed).

Table 8 Typical removal rates predicted by the model.

Solute Normal Pre- Dialysate Diffusion Removal Mass
conc. dialysis conc. coefficient rate removed

conc. (normal-
(mEq) [15] (mEq) [15] (mEq) [15] (m2/s) (mol/s) ised)

Sodium 142 142 133 2 × 10−9 1.1 × 10−25 0.78
Potassium 5 7 1 2 × 10−9 6.2 × 10−27 0.04
Urea 21mg/ml 200 0 1.8 × 10−9 1.4 × 10−25 1

These have solution

Cb =
(ePepCb0 − Cd0) e−γ x − κCb0e

−γ ld + Cd0

ePep − κe−γ ld
, (4.27)

Cd =
κ(ePepCb0 − Cd0) e−γ x + ePepCd0 − κCb0e

Pep−γ ld

ePep − κe−γ ld
, (4.28)

where

γ =
λ
(

ePep − κ
)

(ePep − 1)
.

This is plotted in Figure 8 for sodium, potassium and urea, assuming that each species
appears individually in solution. As can be seen, the concentration profiles show a near
linear variation over the lengthscale of the dialyzer.

The total flux of the solute out of the blood is

Qs =
∫ ld

0

ApUpQσ

Pep
dx =

ApUp

[

1 − e−γ ld
]

(ePepCb0 − Cd0)
λ(ePep − 1) [ePep − κ e−γld ]

. (4.29)

Removal rates are listed in Table 4.3
We may also calculate the ratio of advective to diffusive effects on both sides of the

membrane, which is shown in Figure 9. This shows that advection is much more important
than diffusion, particularly for sodium.
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Figure 9 Ratio of advective to diffusive transport at either end (solid – blood, dashed –
dialysate) of the pore for the concentration profiles displayed in Figure 8, see Section 2 for
details of the calculation.

5 Conclusions

We have investigated the transport of charged species over a variety of length scales.
Firstly, we considered the transport of species through a single pore in the membrane that
separates the blood from the dialysate. In the case when electro-neutrality holds, the volu-
metric flow rate remains constant, but depends in general on the local hydraulic and osmotic
pressures and on the local electric potential. The electric potential, a streaming potential,
depends only on the local solution conductivity if the Péclet numbers are identical for all
species. Formally, the classic membrane relations discussed in [2] are reproduced in our anal-
ysis in this limit, but the coefficients depend nonlinearly on the solute concentration and
electric potenial. In the case when electro-neutrality is weakened, there are two approaches
in modeling. The first, and classical, approach is to model the charge in the membrane as
a ζ-potential, and prescribe this potential as a Dirichlet boundary condition along the pore
wall. Our approach here considers the case of the membrane acting as a pure dielectric. In
this case, we find a nonlinear eigenvalue problem for the potential, where the eigenvalue is
the ratio of the pore radius to the Debye length scale.

Secondly, we considered the flow of plasma from the blood to the dialysate assuming
that concentration effects were negligible. We found that the pressure difference across the
dialysate decays exponentially over space, with the decay rate depending on the permeability
of the membrane. Although limited to looking at the plasma effects, this model forms a
foundation for developing the net charge transport across the membrane, since the solute
available to cross into the dialysate is found in the plasma. Further, extensions to this
model that include solute transport from the blood cells to the plasma could potentially be
implemented with a local analysis of the osmotic transport across the cell wall. Although
work for the future, one potential result from such a local analysis would be an effective
diffusion coefficient which depends on the local blood cell concentration.

Finally, we investigated the case where the solute distribution was independent of the
radial dimension. This case is appropriate if diffusive transport across the membrane is
dominant over advective transport. We find that in this case, advective transport appears
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to be dominant only for the case of sodium. Since advective transport is dominant for
sodium, the concentration depends not only on the axial coordinate but also on the radial
coordinate, suggesting that a boundary-layer approach is needed.
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