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1 Introduction
This report concerns the problem brought to the 1995 Study Group by Dr. John
Morgan of British Gas. The problem concerned the flow of a gas jet that was directed
downwards towards a planar surface. A number of different people worked on the
problem, and it emerged that there were a number of different ways of modelling the
flow, each having varying degrees of complexity. This report therefore gives some
basic details of the flow in question, and then examines three distinct modelling
approaches in detail, namely a 'vortex model' where the main concern is the location
of the horseshoe vortices in the wake behind the jet, a 'balance model' where some
simple conservation arguments are used to determine the properties and upstream
penetration of the jet and a two-dimensional model for the particle trajectories
is proposed. Next, a 'dimensional analysis' model is considered where alternative
approaches to the problem are examined. Finally some conclusions are discussed
and some recommendations are made.

2 Details of the Physical Problem
A schematic drawing of the flow and coordinate system used is shown in figure (1).
The jet is assumed to have originated from some 'adverse event' and, at its source
is pure CH4 (methane) having a density Pm = 0.665 kg/m". The jet issues into
air (density Pa = 1.205 kg/rn", all values calculated at an ambient temperature of
20 deg. C) vertically downwards from a tube of radius a = 5.4 mm at a speed
of Uj = 128 m/sec. The mouth of the tube is at a distance of 138mm from an
impermeable plane z = 0 and the cross-flow (of pure air) has a speed Ue = 5 m/sec
in the positive x-direction. The kinematic viscosities of air and methane are taken
to be equal, having the value of Vm = V« = 1.510-5m2/sec.

The methane jet at the mouth of the tube has a Reynolds number (based on
the tube radius) of 46000 and thus the jet is turbulent. As the jet spreads before
hitting the plane, turbulent entrainment decreases the methane concentration. After
striking the plane, the jet begins to spread radially, its direction influenced by the
cross-flow. The main parameter of interest to British Gas is the position of the 8
per cent methane contour, since methane/air mixtures existing below this critical
concentration do not burn. The 8 per cent contour may thus be thought of as the
'safety limit' in any hazardous adverse event.
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A number of previous studies have considered related problems. Birch et al.
(1988) made experimental measurements of concentration profiles in a turbulent
methane jet using Raman spectrometry, but no cross-flow was present. Fairweather
et al. (1990) developed a three-dimensional numerical model for a jet exhausting
from a plane vertically upwards into a cross-flow. Using a k-e model to simulate
the turbulence in the flow, they achieved satisfactory agreement with experimental
measurements. A simple integral model was also developed by Cleaver and Edwards
(1990). The existence of the wall below the jet renders the problem very similar to
the V/STOL (Vertical Short-Takeoff and Landing) problem, where the extent of the
jet of a landing aircraft must be known (a) to avoid injuring troops that may be on
the ground beneath the aircraft and (b) to avoid the problems that might arise if hot
air is sucked into the engine air intakes. A large amount of literature exists, and the
simple study of Skifstead (1969) is typical of the sort of basic model that has been
used to predict jet trajectories. A numerical study of ground effects was undertaken
by Bray and Knowles (1989). They used a large commercial code (PHOENICS) to
make comparisons with experimental results, finding satisfactory agreement in some
cases.

Figure (2) (originally provided by British Gas) shows some typical concentration
profiles and gross flow features. One of the most noticeable features of the flow is the
presence of 'horseshoe' vortices which curve around the front of the descending jet
and travel downstream, entraining air. We therefore begin by considering a model
for the position of these vortices.

3 A Vortex Model
Evidently the horseshoe vortices are an important mechanism for the dilution of
methane in the flow. To predict the position of these vortices, we assume that the
'horseshoe vortex system' arises from a point source of vorticity positioned where the
jet strikes the plane, and has tangent, normal and binormal t, nand b respectively.
Assuming that the horseshoe vortex lies close to the plane z = 0, we consider the
total velocity V of the system to be given by

V = uei+ ~hn+rKIOgEb+vwk, (1)

where i, j and k are unit coordinate vectors. The first term in this expression arises
simply from the cross-flow, whilst the second represents the contribution from the
horseshoe vortex image 'beneath' the plane at z = -h. The assumption that the
contribution to the total velocity arising from the image may be expressed in this
way is tantamount to a statement that h is small. The third term in (1) arises from
an expansion of the Biot-Savart integral that sums the contributions to the total
vortex motion from each part of the vortex (see, for example Batchelor (1985) p.
510). The local curvature K is multiplied by a term log E, which represents the core
radius of a line vortex (in practice small, but non-zero). Finally, the fourth term in
(1) arises from the fact that the spreading jet produces an 'effective vertical velocity'
as it spreads out, invading the cross-flow.
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For the horseshoe vortex system to remain at its current position, it must have a
velocity in the tangential direction only, so that V /\ t = O. For small h, this implies
that to leading order the image balances the cross-flow, so that h = O(r jue) and,
as well as providing a relationship between u and u., we find that the vortex is 'flat'
to lowest order. To next order, we find that, upon taking the scalar product with k
and assuming that Vw = O( -h log €), we have

-rKlog€ + Vw = O.

This equation allows the curvature of the horseshoe vortex system to be calculated,
provided that the velocity Vw is known, by solving the nonlinear differential equation

for the function Y (x) which represents the position of the horseshoe vortex system.
[Thus if Vw = 0, the vortex would be a straight line.] In practice, however, it seems
that a much more readily available quantity would be the surface pressure on the
plane z = O. If this was known, then the fact that this pressure is related in a simple
way to the x-derivative of the velocity potential ~ would allow the z-derivative of
~ (and thus vw) to be calculated. In one dimension this gives a Hilbert transform,
whose properties are well-known. In two dimensions the calculations required are
more involved, but could, in principle, be carried out to yield the curvature and
therefore eventually the height.

Once the position of the horseshoe vortex in the flow is known, the vorticial
entrainment may be predicted using standard models. It would also be possible to
estimate the entrainment into the layer by assuming (for example) that the layer
entrainment was proportional to the width of the layer. In this way a complete
model for the concentration of the gas mixture could be set up; it is somewhat
doubtful, however, whether the experimental results that are required to propose
this model would be easy to acquire.

Another important question regarding the flow upstream of the jet is the nature
of the upstream spread-limiting mechanism. This caused much discussion during the
week and two separate schools of thought emerged. Firstly, it was thought by some
that the vortex sheet produced by the downward jet rolls up under its own influence,
and this essentially determines the upstream distance to which the jet can penetrate.
One problem with this hypothesis is that this would suggest that a similar instability
might be present even without a cross-flow, and this seems somewhat unlikely.

Secondly, an alternative assumption was considered where the jet strikes the
plane z = 0, spreads radially, and is simply retarded upstream by entrainment and
competition with the cross-flow. Just before the cross-flow dominates and the jet
turns back downstream, there will undoubtedly be a region where the jet becomes
diffuse and may resemble a plume. After some discussions, however, it was decided
to ignore this region and see if some simple predictions could be made using the
assumption that the jet turns downstream when its speed has been reduced to that
of the cross-flow.
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4 A Simple Balance Law Model for the Flow
First, we consider the region between the mouth of the jet nozzle and the plane
z = o. There are a number of ways in which the calculation of the concentration,
jet radius and velocity in this region may be undertaken, but the simplest assumes
the 'ten degree' law, which states that, according to experimental observation, a
turbulent jet spreads by a semi-angle of Os = 10 degrees. At the jet nozzle the
concentration flux F = pAcu is given by F = Pm1ra2uj = 7.798 X 10-3 kg/sec whilst
the momentum flux M = Pm1fa2u; = 0.998 kg m/sec2. At a distance z from the jet
nozzle the jet radius is z tan Os, and we have

P = Pa(1- c) + Pmc

Thus the concentration c is given by

The distance from the jet nozzle to the plane is 138 mm, but we expect the radially
spreading jet on the plane to have a height of around 20-30 mm. (This value could
be altered if required.) At a distance z = 110mm below the jet nozzle we therefore
have

c = 0.218, U = 27.90 m/sec, A = 1.182 X 10-3 m2,

whilst with z = 138 mm we find that

c = 0.172, U = 22.01 m/sec, A = 1.860 X 10-3 m2.

These results are significant as they show that, even by the time the jet has struck
the plane z = 0, turbulent entrainment has forced the methane concentration to
drop by a factor of around 5.

An independent check of the results given above may be carried out by assuming
conservation of momentum and concentration flux as before, but modelling the
turbulent entrainment using the law

d
dz (pAu) = 21fapaE I Ue - U I (2)

rather than by assuming the (somewhat contrived) 'ten degree' law. In (2), u; is
the external flow velocity (zero for the downward jet), a is the jet radius and E is
a dimensionless entrainment coefficient which has been found experimentally to be
approximately 0.1 in a number of different flows (see Turner 1973, page 173). Using
(2) together with the previous definitions of F and M, we find that the concentration
at a distance z below the jet nozzle is given by

~ (~) = 2PaE J1fM
dz c F P
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and thus

VI - QC Q 1 (2 - QC - 2V1 - QC) _ 2) M Ez K- - - og - - 7r Pa- +
C 2 QC F

where
Q = 1 - Pm, K = -Jl=("t _ ~ log (2 - Q - 2Jl=("t) .

~ 2 Q

This gives C = 0.144 at z = 1l0mm, a lower value than the 'ten degree' rule, and
also yields U = 18A3m/sec, A = 2.607 X 10-3 m2.

A simple calculation explains the difference between these results, for if we use
the entrainment model with Pa = Pm, we find that Q = 0 and C is given by

F
C - -;::;-----:::-:-r~;;:::=_;:;_

- F + 2V7rMPaEz'

whilst the 'ten degree' rule gives

F
c= .

VPaM7rz tan Os
Comparing these two results for large z shows that Os = 10 degrees gives E rv 0.09,
confirming that the 'ten degree' rule is appropriate only for single density flows.

An estimate of the upstream penetration of the jet may now be made. Assum-
ing that when the jet hits the plane we have Co = 0.144, Uo = 18.43 m/sec and
TO = 2.881 x 1O-2m (as calculated above), we assume that although momentum
is destroyed by the plane, energy and mass are conserved. Thence the quantities
pA and U must both be conserved. The jet spreads out radially, and its area just
before hitting the plane is 7rr~. Just after contact, area is therefore preserved if the
spreading layer has a height ho = To/2. We therefore conserve the quantities

M = pu2h27rT,

and model the entrainment by

d
dT (27rTpuh) = Epa27rT I U - Ue I .

F=puch27rT (3)

(4)

As a simple first approximation, we take Ue = O. Some simple calculations now show
that

~ _ ~ _ 2EpaM7r ( 2 _ 2)
c2 c5 - F2 r r0 .

Assuming that the jet is effectively halted when U drops to 5 m/sec, we find that c
at this point has the value 0.039, so that T = 0.223m and the jet penetrates 223mm
upstream. Naturally this is an over estimate, since the cross-flow has been neglected
for entrainment purposes. Conversely, an underestimate of the penetration distance
may be calculated by assuming that the entrainment velocity is given by 'Ue = -ueer.

Using (3) and (4), we find that

~(~_!) + M log (Co(CM + FUe)) = 7rEpa (T5 _ T2),
ii; Co C Fu~ c( coM + Fue) F
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giving a penetration distance of 173mm. Experimental studies carried out by British
Gas have indicated penetration distances of approximately 170mm, which is well
in line with the two estimates produced above; evidently further models could be
proposed that also included the effects of momentum entrainment from the cross-
flow.

Finally, a two-dimensional model was proposed to predict the spread and concen-
tration in the jet. Assuming that u and v are the velocities in the x and y directions
respectively, and that both mass and momentum are entrained from the cross-flow,
the obvious conservation laws give

(uh)x + (vh)y = E I U - Ue I
(u2h)x + (uvh)y = EUe I U - Ue I (5)

(uvh)x + (v2h)y = O.
These equations may be thought of as two-dimensional shallow water theory with
no gravity, and must be solved subject to known conditions (see above) at the origin
where the jet strikes the plane z = o. At present the equations (5) do not include
concentration conservation, and so also density changes; once their structure has
been understood, however, concentration and density effects may easily be added.
The equations have real (though not distinct) characteristics, and may be integrated
numerically to determine particle paths: this was attempted at the meeting but there
was not sufficient time available to produce a working code.

5 Dimensional Analysis Model
A separate analysis of the problem, based largely upon dimensional arguments, is
also possible. Assuming simply that the maximum upstream penetration distance fm
can depend only upon the the cross-flow speed u; (of dimensions m/sec), the volume
flux Q (of dimensions m3/sec) and the specific momentum flux P (of dimensions
m4/sec2), then the obvious characteristic length is given by

pl/2
fu = --,

Ue

under the assumption that Q is not important. Assuming therefore that fm = aofu
where ao is an order one constant, we find that, according to British Gas data
ao '" 0.694, giving a simple scaling law for the penetration distance. If more accurate
results were required, then it would also be important to include density ratio effects.

A simple model for the spread of the jet may also be proposed using dimensional
arguments. Figure (3) shows the nomenclature used; r denotes the maximum extent
of the jet in the (J direction whilst t represents the transit time for a particle in the jet
to reach a given location. The main assumption in the model is that each direction
is similar to the upstream direction, except that the opposing velocity is Ue cos c/>.
Assuming that both Rand t are functions of u; cos c/>and P, we find that

x = uet - Rcosc/>
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Y = Rsin 1>
and thus

x = eu(C2 sec21> - c.)
Y = euCl tan 1>

where Cl and C2 are constant. Finally, therefore, we have

X = bo (Y)2 _ ao.
i. r.

Coefficients derived from British Gas raw data indicates that a good approximation
to the constants is furnished by ao = 0.694 (as before) and bo = 0.871. The bounding
shape of the jet is thus a parabola, with scaling law as given above.

Studies based on dimensional arguments were considered by Linden & Simpson
(1994) and List (1979). Such models also propose an alternative explanation for the
vortex structure that is seen at the edge of the spreading jet. Regarding each part
of the jet as a 'component jet', each of which is subject to a cross-flow Ue sin () and
an opposing flow Ue cos (), the lateral extent of the jet is determined by the envelope
of the particle paths. At points on the edge of the jet, the 'rays' converge and this
requires that fluid is pushed vertically upwards before it can travel downstream. A
vortex is thus produced at the envelope of the particle paths. It is hard to quantify
this effect at present; undoubtedly some numerical solutions of the equations (5)
would allow some firmer conclusions to be drawn.

6 Conclusions and Recommendations
Any study of this problem must acknowledge that this is a three-dimensional turbu-
lent flow, and it is unlikely that any simple models will give all the required details
of the flow. Recognizing that safety is the primary reason for studying the flow, it is
probable that a combination of the methods given above will be required if realistic
predictions are to be made. In many circumstances such as those pertaining here,
political expediency demands that a study of the flow is undertaken using a com-
mercial code such as PHOENICS or FLOW3D, in order that some wholly numerical
data may be obtained. Safety contours may then be proposed by multiplying the
relevant numbers by suitably chosen 'safety factors'. If calculations of this sort are
undertaken, it should be stressed that, in spite of the 'good agreement with experi-
ment' that has been reported in the literature, experience shows that the choice of
turbulence model is crucial and different codes may give very different results. It
is therefore strongly recommended that a number of computations are undertaken
if commercial codes are to be used, and that these should be used in parallel with
some of the methods described above.
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FIGURE(1) Schematic diagram of jet flow
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FIGURE (3) Nomenclature for dimensional analysis jet
extent calculation.


