
Prediction of freezing times of foods

MAFF, CSL Food Science Laboratory

1 Objective
To devise a simple method for the prediction of the freezing times of composite food
products such as pizzas and meat pies. The prediction of the freezing time should be
accurate to 10%.

2 Background
The freezing behaviour, more precisely the time dependence of the warmest point in the
sample (known as the (thermal centre') has to be determined by experiment for complex
composite foods. This is because the heat-transfer coefficient is unknown and a full 3-D
solution of the heat equation is difficult to obtain in industrial conditions. However, the
I-D or 2-D solutions of the heat equation give sufficiently accurate prediction of T(t) if

(i) the effective thermal conductivity and enthalpy as functions of temperature are a
realistic reflection of those of the real product, and

(ii) the correct value of the surface heat-tansfer coefficient is found by matching the
predicted and experimental T(t).

The I-D and 2-D solutions are relatively easy to implement and run on personal
computers. This is attractive for industrial use, for example by sales engineers, who
would not be able to run large packages. Moreover, the engineers are interested only in the
temperature at the thermal centre and do not require the full 3-D transient temperature
field.

3 Overview
This problem split into two parts. One was the consideration of appropriate heat-transfer
laws for given freezers and foods. The other was to determine suitable methods for
analysing the cooling and solidification of composite foods. Whereas the heat-transfer
coefficient has been used previously as a free parameter to obtain agreement with experi-
ment for individual food types, the Study Group recommends that a single coefficient (or
law) should be determined for a given freezer, taking into account air flow and other op-
erating conditions. The focus of further investigation should then be on the appropriate
modelling of the structure of different food types.
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Figure 1: The geometries of typical industrial coolers

4 When is food one-dimensional?
There are principally two types of freezer: those in which cold air circulates only above
the belt on which the food is placed; and those in which the cold air circulates above and
below the belt (figure 1). This distinction must be borne in mind when considering the
principal routes for heat transfer, which determine whether the food can be treated as
essentially one-dimensional. Many foods can be treated with a 1-D model if one of the
following conditions are satisfied.

(a) When there is flow above and below the plate, it is sufficent that the horizontal
dimensions L of the food be much larger than its height h, so that hi L « l.

(b) When there is flow just above the belt then heat can still be conducted along the
belt and thence up through the food. However, since the belt is quite thin (of
thickness d say) such transfer may not be very efficient. In this case, the food can
only be treated as one-dimensional if

kf £2
ks hd « 1,

where kf and k, are respectively the thermal conductivities of the the food and the
steel belt.

(c) For more equi-dimensional items of food, one-dimensional modelling may still be
appropriate if the sides of the food are relatively well insulated; for example, an
open flan with pastry sides, or a meat pie with dry crust but moist base, where
heat transfer may be principally through the base.

5 The heat transfer coefficient
Based on an air flow U of about 5 ms"! and food of horizontal dimensions L of about
10 cm, the Reynolds number Re = U£111, where 11 is the kinematic viscosity of the air,
is about 5 x 104. For Reynolds numbers of up to about 5 x 105 the mean heat-transfer
coefficient is well approximated by

where k is the thermal conductivity of the air, Pr = 1I1K, and K, is the thermal diffusivity
of the air. For the dimensions given above, this formula yields a value of about 25, which
is in good agreement with the empirically determined coefficients.
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Figure 2: Parameters for horizontally layered food

This formula could be used in most situations but any empirical modification of it
should be based more on the characteristics of the cooler (e.g. baffles included to make
the air flow more turbulent) than on the characteristics of the food.

Another important parameter determining appropriate ways in which to model the
cooling process is the Biot number

Bi = hTL
k,

which determines the relative importance of heat transfer from the air to the heat transfer
within the food itself.

If the Biot number is small, Bi « 1, then a lumped-system approach can be used in
which the rate of change of the total heat content of the food is set equal to the heat
transfer at its surface. Such a zero-dimensional model requires only the solution of an
ordinary-differential equation.

If the Biot number is close to unity or large Bi "" 1 or Bi » 1 then modelling using
partial-differential equations is necessary. In the case that Bi » 1 the model can be
simplified by assuming that the surface temperature of the food is constant and equal to
the temperature of the air.

Typical values of the Biot number for the foods that we considered during the week
were about 2.

6 The structure of food - layered systems.
When calculating the cooling history of a composite food, it is extremely important to
take account of the different thermal properties of the components of the food and the
amount of space they occupy. For example, in a simple, horizontally layered food (figure
2), the ratio of timescales rdr2, where ri = hVKi, determines which of the layers is most
significant and needs to be modelled most accurately, and the thermal centre of the food
will be inside the layer with the largest value of ri'

This having been said, it is fairly straightforward to write a numerical code in con-
servative form that can take account of the different layers within the food. During
the week, a code was written for one-dimensional situations and tested against known
experimental data.

7 The numerical code
A widely used method for the one-dimensional linear heat equation with constant coef-
ficients
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is the Crank-Nicholson scheme

with
rn+1/2 := (rn+1 + rn)/2,

which is stable for all time steps llt and is second-order accurate. Although it is an
implicit scheme it generates a tridiagonal matrix and thus the difference equations may
be solved efficiently using the Thomas algorithm.

The Crank-Nicholson method may be adapted to allow p, Cp and k to be functions
of x and T so that simulation of composite foods is possible. It is crucial that the new
method may be written in conservation form

ur+1
- Ur Fi+1/2 - Fi-l/2 0--=---~ + =llt llx

where U, = p(Xi., 1i)C(Xi, Ti)1i is a numerical formulation of the conserved quantity, in
this case enthalpy, and Fi+l/2 is the numerical heat flux from the cell centred on Xi to
that centred on XHl' As well as conserving energy conservation form ensures that the
correct boundary conditions will be applied automatically between layers where k, p and
Cp have discontinuities.

A possible choice for Fi+l/2 is

er I (kH1 + ki) (1i+1 -1i)-k- ::FH1/2 = -..:....-....;....--~..:....-..:--~
ox Hl/2 2 llx

For second-order accuracy F should be evaluated at the mid-step time by averaging F"
and pn+l. Unfortunately this will lead to non-linear difference equations due to the
dependence of k on the unknown T at the new timestep. An alternative is to perform a
half timestep llt/2 using k, Cp, p evaluated at t = nllt and use the result to approximate
kn+1/2. This will maintain second-order accuracy at the expense of calculating twice as
many timesteps. The full scheme used to produce the results in this report is

kn Tn+1/4 (kn + kn )Tn+1/4 + kn Tn+1/4
Hl/2 HI - ;'-1/2 ;'+1/2 i i-l/2 i-I = 0

llx2

with
rn+1/4 := (T· + Tn) /2

and
1e;.+l/2:= (le;.+ 1e;.+1)/2

to calculate T., an approximation to T at t = (n+ 1/2)llt. This is followed by

k• Tn+1/2 (k· + k· )Tn+1/2 + k· Tn+1/2i+1/2 HI - ;'-1/2 Hl/2 i i-l/2 i-I = 0
llx2 .

4



8 Phase Changes
For one-dimensional equations front-tmcking methods are very effective at calculating the
position of a phase change. However, these do not easily translate to 2D and 3D problems
and the composite nature of foods means that there is often no sharp freezing front to
track. Ideally, the enthalpy method would be used for this problem to allow for the latent
heat released on freezing to be distributed over a temperature range. However, for an
implicit solver this would lead to non-linear difference equations requiring iteration. This
may be avoided by including the latent heat in the specific heat capacity of the food (see
figure 3b) and simply calculating the temperature using the scheme described above. In
the ideal case of a sharp phase change this would require a delta function to be included
in the specific heat while for a real food the latent heat will be distributed over a larger
temperature range. Moreover, if the specific heat capacity is smoothed further (while
maintaining its total area) the numerical method may produce more accurate long-time
temperature distributions at the expense of a loss of accuracy in the position of the phase
boundary.

9 Results
The first test case was made for a chicken burger. This is a simple case in which the
food is macroscopically homogeneous. The specific heat and conductivity of a chicken
burger are given in figure 3. These were used as input data for the numerical model. The
heat-transfer coefficient used in the model was adjusted so that the time to cool to ooe
agreed with experimental observations (figure 4). This one-point correlation yielded the
excellent agreement for the cooling history shown in figure 4. Note that the heat-transfer
coefficient obtained in this way was 21, which is close to the value 25 obtained from the
formula given earlier. We kept the heat-tansfer coefficient fixed at 21 for the remainder
of the trials, on the assumption that this is a property of the cooler.

The same code was used to predict the cooling history of a pizza base at two different
air temperatures (figure 5a, b). No parameters were adjusted from the previous case of
the chicken burger except of course that the known conductivity and specific heat capacity
of a pizza base were used. Again there is very good agreement, which lends support to
the idea that it is not necessary to adjust the heat-transfer coefficient between foods.

The final trial was for a composite pizza. Unfortunately, we did not have available the
correct thermal properties of the topping, so the agreement found is very poor. (figure
6). In particular, the composition of the topping (especially its water content) has a
significant influence on both the latent heat content and the thermal conductivity of the
food. In the calculations, the thermal properties of the topping were taken to be those of
minced fish, whereas the actual topping is likely to have been based on a tomato puree
with much higher water content.

10 Conclusions
Simple numerical modelling, using a code in conservative form is sufficient to determine
the cooling history of many foods.

It is of paramount importance to model the composite structure of foods appropriately
in order to gain accurate predictions of the cooling history.
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A simple heat-transfer law for laminar flow is probably adequate for the sorts of
applications in mind. The heat-transfer coefficient is more a property of the cooler than
of the food to be cooled.

Participants
Gall Duursma, Warren Smith, John Taylor, Grae Worster.
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Temperatureinthecentreofa chickenburger
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Temperature in the centre of a pizza base
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Temperature (composite) pizza
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