
Mixing in the downward displacement of a turbulent wash by a
laminar spacer or cement slurry

When drilling an oil well, the well is lined by sinking a steel casing, or liner, into the drilling
mud (see Figure 1). The inside of the liner forms a central pipe, and leaves an annular gap
between the outside of the liner and the surrounding rock. The inside and outside of the liner
are initially filled with drilling mud, which is displaced by pumping a sequence of fluids down
inside the liner from the surface. Typically, a chemical wash is pumped down first, followed
by a spacer, and finally a cement slurry. The wash, which is usually water based, is less dense
than the spacer, a water-based suspension, which is itself less dense than the cement slurry.

The scenario of a light wash being forced down a pipe by a denser spacer fluid is liable to
instabilities of Rayleigh-Taylor type. The two fluids are miscible, so mixing between the wash
and the spacer is likely to take place. This may impair the intended efficiency of the wash in
displacing mud from the walls of the annulus.

Schlumberger Dowell asked the study group to estimate the amount of mixing between the
wash and the spacer, and its dependence on parameters such as the pumping rate, diameter
of the pipe, viscosity of the fluids etc. In particular, they asked us to consider the following
questions:

2 Flow regimes

Concentrating on the downward flow inside the pipe, the study group identified four different
flow regimes of interest.

2. Spanwise mixing completed, what streamwise stratification can be stabilised against
Rayleigh-Taylor instabilities?

The study group tried to estimate typical lengthscales and times cales associated with each
regime in turn.



Figure 1: Stages in drilling an oil well. The study group considered the fifth stage, in which
the wash is being displaced by denser fluids pumped from above.
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To fix ideas we considered some typical parameters, namely a pipe radius a = 0.1 m, a pumping
velocity of u =1 ms-1, a spacer viscosity ten times that of water (1/ = 10-5 m2 S-l), and a
density ratio flpj p = 0.3. We also assumed that the pipe would be nearly vertical, since shall
find that most of the mixing takes place near the top of the pipe. See figure 2(a). A wider
range of typical parameters are given below.

Typical material properties:

density p/kg m-3

wash 900 to 1100
spacer 1200 to 1600

viscosity 1//m2 S-l

9 x 10-7 to 5.5 X 10-6
1.8 X 10-5 to 4.1 X 10-4

Typical pipe radii and pumping rates:

radius a/m mean velocity u/ms-1

0.05 0.63 to 3.2
0.11 0.52 to 0.79
0.16 0.24 to 0.5

Re (1/= 10-5 m2s-l)
2000 to 16000
5700 to 8700
3800 to 8000

The Reynolds number in the wash may be expected to be somewhat higher due to its lower
viscosity.

Pipes are between 500 m and 5000 m in length. A typical volume of spacer corresponds to
between 100 m and 2000 m of pipe.



2.2 A simple model for turbulent pipe flow

The Reynolds number based on the pumping velocity, Re = au/v, is high enough for the
flow to be turbulent; Re = 104 for the above typical parameters (u = 1 ms-1, a = 0.1 m,
v = 10-5 m2 s-1). A 'universal' model for turbulent flow of a homogeneous Newtonian fluid
in a straight cylindrical pipe may be found in §154 of Goldstein (1938) or §5.6 of Townsend
(1976). A key parameter is the friction velocity u* = JCJwall/ p, where CJwall is the stress on
the pipe wall, and p is the density. The mean streamwise velocity u is related to the friction
velocity u* via the equation

u 1 * au* u*- = -k 10gRe + 5.5, where Re* = - = Re-.
~ v u

Re* is the Reynolds number based on the friction velocity u*, k = 0.4 is von Karman's constant,
and 5.5 is another empirical constant. Equation (1) is often rewritten in terms of the Fanning
friction factor fr = 2u*2 /u2,

as in Table A3 of Nelson (1990) or equation (19) of Goldstein (1938, §154), though the latter
uses, instead of fro For Re~ 105, Blasius proposed an approximate explicit formula for fr,
(equation 20 in Goldstein (1938) §155)

close to the pipe walls, where r is the radial coordinate (e.g. Townsend (1976) §5.6). The eddy
viscosity is expected to be uniform in the bulk of the flow, where we used the value D = ku*a.

Although the study group only considered Newtonian fluids, analogous equations exist for
power-law and Bingham fluids (e.g. tables A-4 and A-5 of Nelson (1990)).

3 Initial mixing across the pipe

We supposed that the denser spacer fluid would tend to form a finger running down the side of
the well, driving an upward return flow of the less dense wash, as shown in figure 2(b). This
scenario resembles a turbulent gravity current running down the lower side of the pipe. We
assumed that this flow would reach a terminal finger velocity Uf in which buoyancy is balanced
by the turbulent stress CJwall on the wall. We shall see below that this terminal velocity is an
order of magnitude larger than the pumping velocity, so we ignored the pumping velocity in
this calculation. Taking g = 10 ms-2, b..p = 300 kgm-3 and a = 0.1 m, the wall stress is

u* = JCJwall/P = Jgab..p/2p rv J150 ~a/l000 kgm-3 r-.J 0.4 liS-1.

From equation (1), the friction Reynolds number Re* = au*/v rv 4000, and the finger velocity
Uf (equated with u) is around 10 ms-1. This is an order of magnitude larger than the pumping
velocity, which is itself large enough for the flow to be turbulent. The corresponding eddy
viscosity is



Figure 2: (a) A typical well. We assume most of the mixing takes place near the top where
the pipe is nearly vertical. (b) Initial mixing via a turbulent gravity current. (c) Streamwise
mixing of a horizontally uniform mixture.

which is about 1000 times the molecular viscosity 1/. We assumed that D is also the eddy
diffusivity for mixing between the spacer and the wash. The diffusion time T for turbulent
mixing across the pipe is thus

T = a2/(2D) = 1.25V2ap/(gt1p) '" 1s,

which is independent of the molecular viscosities of the two fluids. In fact, this estimate holds
even for the worst case scenario (a = 0.16 m, t1p = 100 kgm-3). We conclude that turbulent
mixing will erase any variations in density across the pipe within a few seconds, by which time
the flow will have descended at most a few tens of metres from the inlet.

As the suspending fluid in the spacer is miscible with water, we modelled the spacer/wash
mixture as a single fluid with a spatially varying concentration C of heavy particles. Thus pure
spacer fluid would correspond to C = 1, say, and pure wash to C ~ O. As argued above, we
expect turbulent mixing to establish a uniform concentration across the pipe within a few tens
of metres from the inlet. We thus considered a mean concentration profile C(z) depending only
on the streamwise coordinate z, as shown in figure 2(c).

This concentration profile appears at rest in a frame moving with the pumping velocity
it '" 1 m s-l. The governing equations in this moving frame, in the Boussinesq approximation,
are

ac
-+u·VCatau
- +u· Vuat

Here u is the fluid velocity, a = (1/ p)dp/dC is the expansion coefficient, and /'i, and 1/ are
the possibly space-dependent concentration diffusivity and kinematic viscosity respectively. In



the Boussinesq approximation we neglect variations in density, and other material properties,
except for the variation in density in the buoyancy term aCg in the momentum equation. See
Chandrasekhar (1961) §8 or Drazin & Reid (1981) §7.2.

As the flow is turbulent, according to §2.2, we followed Reynold's analogy and used the
same turbulent value D for both /'i, and v. Equivalently, we assumed the Prandtl number to
be one. Having replaced /'i, and v by a turbulent effective value D, we assumed that (9a,b)
describe the mean part of the turbulent flow in some locally averaged sense. Making the usual
decomposition u = (u) + u' and C = (C) +C', we identified u and C in (9a,b) with their local
averages (u) and (C), and assumed that the small scale fluctuations u' and C' only influence
the mean flow by contributing to the turbulent eddy diffusivity D.

In the Boussinesq approximation we also assume that the molecular diffusivity, needed in
(1), is spatially uniform. As the turbulent diffusivity D depends only appears logarithmically
on the molecular viscosity v via the definition of Re* in (1), or as D oc v-1/8 from Blasius'
formula (3), this approximation should be reasonable even though v itself will vary according
to the local concentration of particles from the spacer.

In the frame moving with the pumping velocity u, the noslip boundary condition implies
that the mean fluid velocity should be -uz on the pipe wall. Thus we expect a mean profile of
the form u = U(r)z with U ~ 0 over most of the pipe, but with a shear layer near the wall so
that U = -u at the wall. However, we ignored the shear layer and assumed plug flow, u = 0 in
the moving frame, so we could formulate a tractable stability problem. As the eddy diffusivity
D = ku*(a - r) vanishes at the pipe wall r = a, this provides some justification for ignoring
the shear layer on the wall, and adopting what are effectively free slip boundary conditions.

Thus the pumping velocity enters the problem only in supplying the mean velocity u for
the turbulence model, from which we determine u* and D by solving equation (1).

4.1 Uniform streamwisestratification

By analogy with the Rayleigh-Benard problem for thermal convection (e.g. Chandrasekhar
(1961)) we considered the linear stability of a uniformly stratified layer, C = Co + z/L, where
L is the scale height. The key dimensionless parameter is the Rayleigh number,

b.p a4 b.p a2

Ra = g pL D2 = g pL k2u*2 '

where a is the pipe radius, and D the turbulent diffusivity. The stratified layer is expected to
be stable provided the Rayleigh number is below some critical value Ra < Racrit. We expect
that the lengthscale L for the mixed layer will be that for which the Rayleigh number defined
in (10) attains this critical value,

This idea seems to have been proposed first by Taylor (1954b), and is supported by experiments
reported by Lowell & Anderson (1982) and Taylor (1954b).

Letting C = Co + z / L + C' and u = u', and neglecting quadratic terms in u' and C', we
obtain

ac' '/Lat +W
au'
at

ac' , _ \j2C' and aaUt'= - \jp' - Ra z C' + \j2u',at +W - ,



where the Rayleigh number is defined in (10). The pressure and the horizontal velocity com-
ponents may be eliminated by taking V x V x of the perturbation momentum equation,

~ V2u' = RaVxVx(zC') + V4u', (14)

and then taking the vertical component [Drazin & Reid (1981) §8.1, Chandrasekhar (1961) §9],

.!!..-V2w' = -RaV2C' + V4w'
8t ~ ,

where VI = 8xx + 8yy = '12 - 8zz is the horizontal Laplacian. In other words, vertical density
gradients may be balanced by pressure gradients, so only horizontal density gradients remain
to drive an instability. Equations (13) and (15) now form a closed system for C' and w',
equivalent to equations (8.8,8.13) of Drazin & Reid (1981), or (74,76) of Chandrasekhar (1961)
§9, on replacing C' by -0'.

4.2 An eigenvalue problem for the Rayleigh number

We assumed that these equations become unstable via an exchange of stabilities, as in Rayleigh-
Benard convection between parallel planes [Drazin & Reid (1981) §9.1, Chandrasekhar (1961)
§11]. In other words, the time derivatives vanish at the critical Rayleigh number Racrit.

The onset of Rayleigh-Benard convection in a cylindrical pipe has been studies by Yih (1959)
and Batchelor & Nitsche (1993). The most unstable mode is independent of z [Proctor 1993]
and proportional to cosO in azimuth [Yih 1959]. A more complex mode, such as one with z
dependence, would encounter more dissipation, and would only become unstable for Rayleigh
numbers larger than the critical Rayleigh number for the mode considered here. Perhaps
surprisingly, the same is true for axisymmetric modes [Yih 1959].

The assumption of lack of z dependence, and also the boundary conditions for the eigenvalue
problem, only hold for a vertical pipe, so that z and g are antiparallel. We assumed that a
stable mixed layer will be established close to the top of the pipe, after the initial horizontal
mixing of §3, where the pipe is still very close to vertical (see figure 2(a)).

With these assumptions, (13) and (15) reduce to an eigenvalue problem for the perturbations
w' and 0' in the streamwise velocity and concentration respectively,

.cC' = w', and .cw' = RaC', where.cf = ~dd (rD(r)df) - ~.
r r dr r

The lack of z-dependence makes VI identical to '12, so we may 'cancel' one Laplacian in (15).
The boundary conditions are w', C' bounded as r -t 0, dC' / dr = 0 at r = 1 (no flux of

particles) and either w' = 0 at r = 1 (rigid) or dw' /dr = 0 at r = 1 (free slip). This eigenvalue
problem has an analytical solution for rigid boundaries [Yih 1959],

This critical Rayleigh number first appeared in Taylor (1954b). The corresponding solution for
free slip boundaries is

We also obtained the upper bounds Racrit ::;71.68 and Racrit ::; 11.51 respectively by consid-
ering the trial functions C' = r - r3/3, and w' = r - r3 or w' = r - r3/3, in a variational
formulation of (16) (see §4.4).

Although we allow for a spatially dependent eddy diffusivity D(r) in (16), the study group
only considered uniform diffusivities, for which the eigenproblem is analytically tractable. The
free slip boundary conditions were an attempt to compensate for the eddy diffusivity vanishing
at the walls according to (4).



4.3 Stability estimates

We used (10) to obtain an estimate for the minimum length L, above which a mixed layer
should be stable against Rayleigh-Benard convection. Using Blasius' approximate formula (3)
to obtain an explicit expression for u*, we find that

1 l::..p a2 1 l::..p a2 2 (ita) 1/4 ita
L=--g---~--g------ - forRe=-<105

Racrit p k2u*2 Racrit p k2it2 0.0665 v v f"V •

Using the free-slip critical Rayleigh number, Racrit = 12, and a vertical pipe (g = 10 ms-2),
this becomes

l::..pa2 (ita) 1/4 l::..pa2
L = 160- -2 - metres ~ 1600 - -2 metres,

pu v pu

with a in metres and it in metres per second. The latter approximation is based on the Reynolds
number being around 104, and highlights the main dependence on a and it. Substituting typical
parameters it = 1 ms-I, a = 0.1 m and v = 10-5 m2s-1 from §2.1, together with l::..pjp= 0.3,
we find

(
0.1)2 (0.1 X 1.0)1/4L = 160 x 0.3 x 1.0 x 10-5 metres ~ 4.8 metres. (21)

For a worst case estimate, we take a wide pipe a = 0.16 m, a slow pumping velocity it =
0.24 ms-1, and a large density contrast l::..pjp= 0.7, for which

(
0.16) 2 (0.16 x 0.24) 1/4

L = 160 x 0.7 x 0.24 x 10-5 metres ~ 390 metres.

For a best case estimate, we take a narrow pipe a = 0.05 m, a fast pumping velocity it =
3.2 ms-I, and a small density contrast l::..pjp= 0.1, for which

(
0.05)2 (0.05 x 3.2) 1/4L = 160 x 0.1 x 3.2 x . 10-5 metres ~ 0.04 metres.

Apart from the worst case estimate (22), these lengths are all much smaller than the total
length of spacer or wash in the pipe, between 100 m and 2000 m.

The estimates are all proportional to v-1/4 via Blasius' approximation (3). Thus using the
highest spacer viscosity v = 4 X 10-4 m2 s-l, or the lowest wash viscosity v = 9 X 10-7 m2 S-I,

instead of v = 10-5 ms-1, produces only about a factor of two variation either way in these
lengths.

4.4 A variational principle for the Rayleigh number

We also considered a variational principle for estimating the critical Rayleigh number, which
has the advantage of allowing for a spatially dependent eddy diffusivity D(r). A solution of the
eigenvalue problem for the critical Rayleigh number satisfies

-Ra z C' - 'Vp' + 'V·(d'Vu),
-w + 'V·(d'VC'),

(24a)

(24b)

where d(x) is a position dependent dimensionless diffusivity. Multiplying (24b) bye', taking
the inner product of (24b) with u, and integrating by parts over the domain, we obtain

r2~/k r1 r2~
(-)= Jo dz Jo rdr Jo dB (.).



The integration by parts involves discarding surface terms of the form c'~~',u·np' and u.~,
which vanish on the pipe wall due to the boundary conditions of no flux, no penetration, and
either no slip or free slip. The eigenmode is assumed to be periodic in z with period 2rr/k, so
the contributions from the two end surfaces z = 0 and z = 2rr/ k cancel.

Rearranging (25) we find [Proctor 1993],

where \7..1 = (ox, Oy,0) denotes the horizontal gradient operator. Proctor (1993) showed that
the solution of the Euler-Lagrange equation for minimising S is a z-independent solution of
the original eigenvalue problem (24a,b). The right hand inequality in (27) thus justifies the
assumption made in §4.2 that the most unstable mode is independent of z.

For the uniform diffusivity case d = 1 we obtained the upper bounds Racrit ~ 71.68 and
Racrit ~ 11.51, for rigid and free slip boundary conditions respectively, by considering the trial
functions C' = r - r3/3, and either w = r - r3 or w = r - r3/3. Taking d = 1 - r as in (4),
we obtain the bound Racrit ~ 2.2 for free slip boundary conditions respectively, which is in
reasonable agreement with the value Racrit ~ 1.84 obtained by solving a discrete form of the
eigenvalue problem numerically. Adopting this new value gives about a factor of six increase in
the lengths of the mixed layers estimated in §4.3

5 Streamwise dispersion

For a typical well of length Lp = 3000 m, and a pumping speed u = 1 ms-I, fluid is resident
in the pipe for a time tres = 3000 s. During this time the mixed layer between pure wash and
pure space will tend to broaden due to turbulent mixing, and also due to Taylor dispersion
[Taylor 1953], the effective streamwise diffusion due to variations in streamwise velocity across
the pipe,

Taylor (1954a) proposed the value D = 1O.1au* for the effective streamwise diffusivity
of a passive tracer in turbulent pipe flow, based on the 'universal' model outlined in §2.2.
Experimental evidence in support ofthis value may be found in Taylor (1954a,b). This value is
comparable with the one obtained by substituting the eddy viscosity D = kau* into the Taylor
dispersion formula D = a2u2 /4811 [Taylor 1954b] for laminar pipe flow with molecular viscosity
1I, which leads to D = 1.57au* Re1/4 with the aid of Blasius' approximation (3).

An order of magnitude estimate for the spreading of the mixed layer due to Taylor dispersion

LTaylor= V2Dtres = V20.2au*Lp/u = 1.92VaLpRe-l/16 ~ vaLp, (28)

where the residence time tres = Lp/u. Blasius' formula (3) has been used for the ratio between
the friction velocity u* and the mean pumping velocity u. For the three cases considered in
§4.3 the Reynolds number lies in the range 3800 ~ Re ~ 16000, for which 1.92Re-1/16 ~ 1 to
within 10%.

In other words, the mixed layer grows to a length which is roughly the geometrical mean
of the pipe radius and the pipe length, with a very weak dependence on the pumping velocity
and material properties. Pumping faster leads to a shorter residence time which almost exactly
compensates for the larger effective diffusivity. For the three cases considered in §4.3, and a
worst case 5000 m pipe, the estimated lengths after Taylor dispersion are 22 m, 28 m, and 16 m
respectively. Again, these lengths are all somewhat smaller than the total length of spacer or
wash in the pipe, which is between 100 m and 2000 m.

Taylor (1954a) reported some experiments which suggest that the dispersion D may be up
to a factor of two larger in a slightly curved pipe, even one where the radius of curvature is a
hundred times the pipe radius. This would increase the above estimates by .;2.



We also considered some more sophisticated one-dimensional models of two phase flow based
upon averaging over the pipe's cross-section. These models all reduced to advection-diffusion
equations for the volume fraction of spacer, or of particles, where the advection velocity is
comparable to the pumping velocity u and the diffusivity is comparable with the turbulent
diffusivity D. Thus the above conclusion based on dimensional analysis seemed robust - the
streamwise diffusivity is too small to allow substantial broadening of the mixed layer before it
reaches the end of the pipe.

6 Effects of a halt in pumping

The above estimates are all based upon an effective turbulent diffusivity D many times larger
than either the molecular viscosity or the molecular diffusivity of particles. This large diffusivity
is maintained by wall turbulence generated by the pumping velocity u. If pumping were to
cease, the diffusivities appearing in (10) would return to their molecular values, leading to a
large increase in the maximum stable density gradient calculated in §4.3. Thus the mixed layer,
which had previously been stabilised by turbulent diffusion, would be become unstable and
start to grow. However, the growth of an instability would itself drive turbulence which would
help to stabilise the layer. To obtain a 'worst case' estimate, we supposed that the turbulence
driven by pumping would decay quickly, and tried to estimate how rapidly the mixed layer
would spread in its the absence.

We tried to model the resulting turbulent convection by assuming that the spanwise mixing
model in §3 only "sees" the effective density contrast over a distance comparable with the pipe
radius. In other words, the effective density contrast is a!J.pj L instead of !J.p. Noting, from (6)
and (3), that the finger velocity Uf is approximately proportional to !J.p1/2, we first considered
a simple model in which the mixed layer grew with this modified finger velocity,

Here Uf is the finger velocity calculated in §3, and ufv!OJL the modified value based on a
reduced density contrast. Taking typical values Uf = 10 ms-I, a = 0.1 m, Lo = 30 m, we find
that L has doubled after 50 s. It seems that the mixed layer will not grow substantially so long
as the pumping is not halted for more than a few seconds.

6.1 A nonlinear diffusion model

A more sophisticated approach is to replace !J.p by a8pj8z in equation (6) for the friction
velocity,

* (9 8P) 1/2
U = VUwallj P = a p 8z

As above, this replacement is motivated by a mixing length approach, in which the effective
density contrast is that seen over a mixing length of approximately one pipe radius. In the
absence of a mean flow due to pumping, we expect the concentration C of the dense component
to diffuse with the eddy diffusivity D = kau*. This leads to a nonlinear diffusion equation for
the concentration C,

oC = ~ (DOC) = ka2 (a~)1/2 ~ (OC)3/2,at 8z oz p 8z 8z

where a is the expansion coefficient, p = Po + aC, as in §4, and k is von Karman's constant.
Holmes et at. (1991) and Baird et at. (1992) performed experiments on turbulent convective

mixing between salty and fresh water in tubes. Their experimental setup was quite similar to



the problem considered here, except their tubes were somewhat narrower (a < 3.3 em) and
much shorter (less than 1.3 m). They proposed an effective diffusivity of the same form,

_ 2 (g ap) 1/2D-£ -- ,
paz

based on dimensional analysis and an empirical study of their experimental data. The parameter
£ is a turbulent mixing length, which they found to be somewhere between their pipe radius
and pipe diameter by fitting their experimental concentration profiles.

The change of variables C(z, t) = (!::.pjo:) c(zjL, tjT) puts the nonlinear diffusion equation (31)
into the dimensionless form

ac _ i- (ac)3/2
aT - ax ax '

where x = zj Land T = tjT are dimensionless independent variables.
T is given by

T = 2- (~)2(~)1/2
3k a g!::.p

Eliminating the lengthscale L using the mixed length estimate (20) from §4.3, the diffusion
timescale T may be rewritten as

T = 2048 (!::'P) 2 g~a3 (ua) 5/8
3k p u5 II

We found in §4.3 that L varied by four orders of magnitude between the best and worst cases
considered. Since the diffusion timescale T is roughly proportional to L2, we find an even more
sensitive dependence of T upon the problem parameters, in particular a, u and !::.pj p. For the
three cases considered in §4.3, we find T ~ 1200 s, T ~ 7 X 107 s, and T ~ 0.2 s respectively.
For a more plausible estimate in the last case, corresponding to (23), if we take the length
L = 16 m based on Taylor dispersion from §5 the timescale becomes T ~ 4 X 105 s.

Some neglected constants may change these estimates by a factor of three or four. For
instance, the experiments of Holmes et al. (1991) and Baird et al. (1992) suggest that the
mixing length £ should be closer to 2a than to a, which would reduce the timescales in (34)
and (35) by a factor of four. In the lower stages of the pipe where the pipe axis is some way
from vertical 9 should perhaps be replaced by the reduced gravity 9 cos {3,though it is not clear
what effect a slanted pipe would have on the mixing length. A numerical solution of (33) with
initial conditions

{

o ifx<-l,

c(x,O) = x + ~ if Ixl < 1,
1 if x> 1,

shows that the time to double the width of the profile (i.e. halve the maximum gradient) is
only 0.3T. Conversely, the doubling time is 25/2T ~ 5.7T for the similarity solution derived
below.

However, despite all these possible modifications the timescales in (34) and (35) for realistic
initial mixed layer thicknesses all suggest that the mixed layer would not grow substantially if
pumping were halted for a few seconds or even a few minutes.

6.3 Approach to a similarity solution

Equation (33) has a similarity solution of the form c(x, T) = f(XjT2/5), where

{

0 if TJ< -TJo,
f(TJ) = {3TJ5 -1OTJ3TJ5 + 15TJTJ6)j3375 + ~ if ITJI < TJo,

1 if TJ> TJo.



Figure 3: Numerical solution of the nonlinear diffusion equation (33) with initial conditions
(36) computed using the NAg routine D03PGF. The solutions at t = 0.3 and t = 1 are indis-
tinguishable from the similarity solution (37).
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The constant 'fJo = 153/52-4/5 ~ 2.916 is determined by the requirement that f('fJ) = 0,1 at
the two turning points 'fJ =±'fJo. As with the more familiar similarity solution to the porous
medium equation, deviations from the background states c = 0, 1 are confined to a compactly
supported region, in this case 1'fJ1 < 'fJo. However, unlike the similarity solution to the porous
medium equation, f, f' and I" are all continuous at 'fJ = ±'fJo. Figure 3 shows a numerical
solution of (33) with piecewise linear initial conditions (36) approaching the similarity solution.
By t = 1 the numerical solution is indistinguishable from the similarity solution with the time
origin offset by 0.04.

Equation (33) may also be rewritten as a porous medium (Barenblatt) equation for the
density gradient h,

8h = 8
2

(h3/2) = ~~ (h1/2 8h) h h = 8c
8 8 2 8 8' were 8'T X 2 x x x

The above similarity solution then corresponds to a solution of (38) forced by the boundary
condition h = hoT-2/5 at x = 0, and satisfying h --+ 0 as x --+ ±oo. The constants 'fJo and ho
are related by 'fJ6 = 225ho·

We found in §4.3 that the length of the initial mixed layer is proportional to the density con-
trast llpj p, proportional to the pipe radius squared, and approximately inversely proportional
to the pumping velocity squared. Pumping faster causes more turbulence and so, somewhat
counterintuitively, allows less mixing between the wash and the spacer. This favours a narrow
pipe and a high pumping velocity. A small density contrast is also helpful.

The subsequent growth of the mixed layer due to Taylor dispersion was found in §5 to be
proportional to the geometric mean of the pipe radius and pipe length, but almost independent
of the pumping rate. Pumping rapidly produces enhanced turbulent dispersion which almost
exactly compensates for the reduced residence time. For two of the three cases considered,
Taylor dispersion was found to be the dominant spreading mechanism. This also favours a
narrow pIpe.

Halting pumping for a few seconds or even a few minutes seems unlikely to cause substantial
growth of the mixed layer, but again the growth rate would be minimised by a narrow pipe and
a high pumping velocity.



The critical Rayleigh number and the Taylor dispersion coefficient are both sensitive to the
mean flow profile, which could presumably be modified by changing the rheology of the spacer
fluid.

The problem was posed by Ian Frigaard and Guiliano Sona. Academic contributors included
P.J. Dellar, G. Duursma, A. Fitt, E.J. Hinch, O.G. Haden, J. King, J.R. Ockendon, D. Parker,
C. Please, N. Stokes and S. Wilson. The report was prepared by P.J. Dellar. Figures (1) and
2(a) were provided by Ian Frigaard.
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