
The evaluation of fish freshness by pressure testing

A principal area of food research is the development of techniques for measuring the freshness
of foodstuffs. For fish in particular, current standard tests rely heavily on "Sensory Eval-
uation Methods", which involve scoring the smell, colour, appearance, taste, etc. of a fish
sample. The scores are combined to a single "Quality Index" which is supposed to measure
the freshness of the sample. There are many disadvantages to this approach, especially the
expense involved in training people to conduct the tests and to rate different samples in an
objective way.

Therefore the search is on for standardised tests of fish properties which could be used to
evaluate freshness. Ideally, the tests should be

• simple, so that operators do not require expensive training;

• robust, so they can be used in the field rather than under controlled laboratory condi-
tions;

• fast, preferably producing a reading within seconds or minutes rather than hours or
days;

• nondestructive, so that stock need not be wasted on testing, and a customer can test
fish for freshness before buying it.

These requirements rule out many possible techniques. For example, one can evaluate fresh-
ness very accurately by measuring microbe levels and/or protein degradation, but this requires
at least twenty-four hours.

This document is concerned with a proposed new device for measuring the mechanical
propertis of a fish: it is believed that these may be correlated with freshness, at least for
some species. The idea is to push a probe into the surface of the fish with some prescribed
oscillatory motion, while the corresponding force is measured. This gives a measurement of
the effective local mechanical properties of the flesh and has the advantages that (i) it can in
principle be made reasonably small, such as for a hand-held device; (ii) if sufficiently small-
amplitude oscillations are used, the sample need not be damaged; (iii) it should be feasible
to obtain a reading within a few seconds.

A prototype experimental device has been built and tested at Robert Gordon University,
and is described in section 2. The output from the device is time series for probe displacement
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and force. Our first goal is to analyse these data mathematically. In section 2.1 we suggest a
few simple quantities which can easily be determined from the time series and appear to be
well correlated with the sample's mechanical properties.

In section 3 we present some possible mathematical modelling approaches to the problem.
We begin by analysing a simple lumped-parameter viscoelastic model and comparing its
predictions with the experimental observations. Next we improve on the model by allowing
for loss of contact between the probe and the sample. We also discuss briefly the classical
"punch" problem in which a probe is pushed into an elastic substrate. Finally we consider
modelling the fish as a saturated deformable porous medium.

2 The experiment
The experimental setup is illustrated in figure 1. A cylinder is pushed into the surface of the
sample to be tested and then oscillated up and down. The resulting force on the cylinder
is measured versus time. To find the corresponding distance penetrated into the sample, a
needle is suspended in the centre ofthe cylinder, and its displacement relative to the cylinder,
which corresponds to the "meniscus height" h, is measured. Notice that h is not the same
as the displacement relative to the equilibrium surface of the sample, but there is clearly a
relation between the two. In practice, it is observed (though this has not yet been accurately
measured) that the top of the meniscus does not move very much as the probe is pushed in,
which implies that h can be identified with the relative displacement of the sample surface.
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1. The cylinder is lowered until it appears to be in contact with the fish (see later discussion
of contact). This maximum height is fixed thereafter.

2. Now the cylinder is lowered at constant speed (set by the operator) while the force F
and meniscus height h are measured.

3. When F reaches a specified maximum value (also set by the operator) the motor is
reversed and the cylinder is then raised at the same constant rate.

4. When the fixed maximum height is reached, the cycle repeats (i. e. we go back to step
2).

The description above makes it clear that a sawtooth displacement is imposed in the
experiment. The period of the oscillations was typically several seconds. At the time of the
Study Group the force and displacement measurements were not calibrated but were both
given in terms of voltages. These were assumed to be related linearly to the actual values.
However it is difficult to be certain exactly how much force was being applied and how deep
the cylinder was penetrating in each experiment. As a rough guide we estimate that the
displacements were typically a few millimeters in a sample a few centimetres deep. The inner
and outer radii of the cylinder were 30mm and 40mm.

The above experiment was carried out on many different samples with different settings.
In particular, we verified that linear displacement-force graphs were produced for materials
we could expect to be reasonably linearly elastic (e. g. a credit card). For the purposes of this
report we present the results only for three samples: a sponge saturated with water, a fresh
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Figure 3: Meniscus height h versus force F (both uncalibrated) for a fresh fish sample with
loss of contact.

fish and an old fish. In each case the settings on the apparatus were otherwise identical. The
results are visualised by plotting h versus F as shown in figure 2 for the sponge. From this
plot we make the following observations.

• After two or three cycles the system rapidly settles down to a robust periodic "limit
cycle", which is traversed in an anticlockwise sense.

• In both the loading and unloading parts of the cycle, the h versus F graph is curved,
implying a nonlinear stress-strain relation for the sponge.

• The system is hysteretic, and the area enclosed inside the limit cycle corresponds to the
energy lost during each period.

The last of these suggests a viscoelastic constitutive relation, but we should be cautious
about jumping to such a conclusion. Qualitatively similar graphs were also generated by a dry
sponge. However, prodding of the sponge suggested strongly that any viscoelastic relaxation
times were much shorter (fractions of a second) than the timescale of the experiment, and
thus that viscoelastic effects should be negligible. Therefore it may well be the case that the
hysteresis seen in figure 2 is associated with specific properties of the sponge which make
its responses during loading and unloading different, rather than any classical viscoelastic
behaviour.

In figures 3 and 4 we show analogous graphs for samples of fresh fish and old fish respect-
ively. We see that in either case, as for the sponge, a limit cycle is reached fairly rapidly.
However, for both the fresh and the old fish samples, the cycle has a characteristic "banana"
shape which is quite different from that seen in figure 2 for the sponge. At the high-force
end the graphs become almost horizontal, implying that the fish becomes very stiff, while at
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Figure 4: Meniscus height h versus force F (both uncalibrated) for an old fish sample with
loss of contact.

the other end the graphs both have a vertical portion. This corresponds to loss of contact
between the cylinder and the sample, and the uncalibrated force value (which appears to
be around -0.67) corresponds to zero actual applied force. In both cases we can see that F
actually drops below this value, implying that the force briefly becomes negative. This must
result from adhesion between the surface of the fish and the cylinder as they lose contact.

This possibility of loss of contact between the sample and the cylinder seriously hinders the
use of this experimental setup as a quantitative measurement system. Many of the features of
experimental graphs like those shown in figures 2-4 (e. g. size and shape oflimit cycle), which
one might use to characterise the sample, depend crucially on the degree to which contact is
lost. Moreover, we have seen that the cohesion between the sample and the cylinder can play
an important role when contact is lost, and this is likely to be both difficult to characterise
and highly sample-dependent.

Therefore it seems sensible to perform the experiments, and to design any future testing
system based on them, in such a way that contact between the sample and the cylinder is
maintained at all times. With the present setup we achieved this by starting the experiment
with the cylinder already pushed a small distance into the sample. The resulting graph for
a fresh fish sample is shown in figure 5. Now the banana shape is much less pronounced,
with the very steep slope at small force eliminated. However, an undesirable feature is that
the system appears to converge somewhat more slowly to the limit cycle. Moreover the limit
cycle gradually drifts upwards as the apparatus damages the specimen.

It is not surprising that increasing the penetration to ensure good contact also increases
the likelihood of sample damage, which is to be avoided since the test is intended to be non-
destructive. Thus it appears that a compromise must be sought between (i) obtaining clean,
reproducible results, and (ii) protecting the sample as much as possible.
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Figure 5: Meniscus height h versus force F (both uncalibrated) for a fresh fish sample without
loss of contact.

2.1 Analysis of experimental results
In the graphs shown in figures 2-5, and others produced at the Study Group, we observe
that the general shape of the limit cycle is obtained fairly closely within the first few cycles.
However, it may continue to drift for several more cycles before settling down. Thus to obtain
a stable repeatable reading we may have to run the test for some length of time, during which
we run the danger of damaging the fish.

It seems sensible, therefore, to look for measurable properties which can quickly and easily
be calculated from experimental data like those shown in figures 2-5, and which we hope could
possibly be correlated with fish freshness. We propose to use

1. the area of the limit cycle which, as mentioned previously, corresponds to the energy
loss;

2. the princple moments of the limit cycle, which characterise its shape (e.g. its eccentri-
city);

3. the angle made by the principle axis with the horizontal, which measures some averaged
elastic modulus.

A = / !cycle dFdh = ~eriod F dh,

where the line integral is readily approximated as a finite difference and thus obtained from
experimental data points. Similarly it is easy to calculate the centroid and second moments



of the limit cycle via

AI'
F2

(2)= / fc FdFdh = i -dh,cycle period 2

Ali = /1 hdFdh = i Fhdh, (3)
cycle period

AMFF = / fc F2dFdh = i F
3

dh (4)
cycle period 3 '

AMFh = / fc FhdFdh = i F
2
h dh (5)

cycle period 2 '

AMhh = /1 h2dFdh = i Fh2dh. (6)
cycle period

Since we want to eliminate the drift of the limit cycle we subtract off the centroid (1', Ii),
defining

MFF = ~ / fc (F - 1')2 dFdh -2 (7)=MFF-F,cycle

MFh = ~ / fc (F - 1') (h - Ii) dF dh = MFh - Fh, (8)
cycle

Mhh = ~ /1 (h - 1i)2dFdh
-2 (9)= Mhh - h .

cycle

(Note that the centroid can readily be monitored also if desired; it might serve as a guide as
to when sample damage is starting to occur and so the test should be halted.)

Now the principle moments are the eigenvalues of the tensor

()_ 1 -1 ( 2MFh )- "2 tan M
FF

- M
hh

.

For each data point in the experiment we evaluated A+, A_ and () over the preceeding
period. Their evolution over time is shown in figures 6-8 for the three samples analysed:
the fresh fish with and without loss of contact, the old fish with loss of contact and the wet
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Figure 6: Maximum principal moment A+ versus time for (i) fresh fish without loss of contact,
(ii) fresh fish with loss of contact, (iii) old fish with loss of contact, (iv) wet sponge with no
loss of contact.
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Figure 7: Minimum principal moment A_ versus tim~ for (i) fresh fish without loss of contact,
(ii) fresh fish with loss of contact, (iii) old fish with loss of contact, (iv) wet sponge with no
loss of contact.
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Figure 8: Angle () made by the principle axis with the horizontal versus time for (i) fresh fish
without loss of contact, (ii) fresh fish with loss of contact, (iii) old fish with loss of contact,
(iv) wet sponge with no loss of contact.

sponge without loss of contact. The horizontal axis labels the data point at which each was
evaluated; the time between data points was about 0.25 s in this experiment.

We should make the point that the old fish sample was considerably thinner than, and of a
different species from, the fresh fish, so that no direct comparison between their measurements
can safely be made. Nevertheless the graphs have some striking and encouraging features.
In figures 6 and 8 we see that neither A+ nor () varies dramatically during the experiment,
implying that readings of these could be taken reasonably quickly. Moreover, the graphs for
the fresh fish with and without loss of contact are grouped together, and markedly different
from those for old fish and sponge. Thus A+ and () do not appear to be too sensitive to the
quality of contact, but can successfully distinguish between the three different samples.

In contrast, now consider figure 7. Here the readings do vary rather rapidly in places,
making quick, repeatable measurement problematic, and continue to drift significantly. Also
the contact problem appears to be much more of an issue for A_: the "old fish" graph lies
between the two "fresh fish" curves. Thus it seems that A_ is a some,what less reliable indicator
than either A+ or ().

Here we present a selection of mathematical modelling approaches each of which may be relev-
ant to the mechanical testing of fish. We should note that in general the problem is extremely
complex and we have not attempted to include all the possible physical complications in our
models. A fish is a three-dimensional object comprised of muscle - a highly anisotropic,
nonlinear viscoelastic material - supported by a flexible skeleton and saturated with water.



Compression of the fish results in deformation of the muscle and of the skeleton, and in the
squeezing of water through the flesh. Moreover, as already mentioned there is the tricky issue
of contact between the probe and the sample, which may depend on how "sticky" and/or
"slippery" the surface of the fish is, and is further complicated by the fact that the fish may
be encased in an elastic skin.

In this report we restrict our attention to very simple linear elastic and viscoelastic models,
which cannot hope to capture all the detail described above. In our defence, we point out that
any useful measuring device should not be too sensitive to such details, since we can expect
large variations in size, shape and surface properties from one fish to another, as well as in
where on the fish the measuring probe is placed. We can also argue that plastic deformations,
although clearly significant in some of our experimental results (e.g. figure 5), should be
ignored for the present, since the aim is to design a system which works without damaging
the fish.

3.1 Lumped viscoelastic model
The simplest possible modelling approach is to attempt to describe the fish deformation by a
single ordinary differential equation. If the behaviour is assumed to be linear and viscoelastic
in nature, the most obvious choice is something of the form

aF + bF = ciJ + dv,

where v is the fish deformation, F is the applied force, a, b, c and dare nonegative material
parameters. Of course we could choose anyone of these parameters to be unity, but it is safer
for the moment to leave them all in so that each one in turn could be set to zero if desired.
From the general form (13) the classical viscoelastic constitutive laws of Maxwell, Kelvin, etc.
can be recovered by taking appropriate limits.

In the simplest configuration, where the probe always remains in contact with the sample,
v is equal to the probe displacement h which, recall, is prescribed to be a sawtooth in time.
We scale such that the displacement oscillates between 0 and 1 with period 2, as shown in
figure 9. We note that the analysis of this section would be considerably simpler if a sinusoidal
forcing were employed, as in more traditional rheometry.

Of course it is straightforward to write the general solution of (13) for F(t) given v(t):

1lotF = - (ciJ + dv) eb(T-t)/adr.
a 0

However, the sawtooth form of v makes direct work with 'this expression rather cumbersome,
and one might as well solve (13) numerically. The result of such a calculation is shown in
figure 10. We see that, as in the experimental graphs of figures 2-5, the solution settles down
fairly rapidly to a limit cycle. This can readily be found analytically: the upper part of the
cycle is given by

F = dh bc - ad (1 b/a _ 2 b(l-h)/a) (15)
b + b2 (1 + eb / a) + e e ,

F = dh _ be - ad (1 + eb/a _ 2ebh/a) .
b b2(1 + eb/a)

10
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Figure 10: Numerical solution of the lumped o.d.e. (13) with parameter values a = 0.5, b = 1,
c = 1, d = 0.5.



ad-be (b)Fmin = b2 tanh 2a '

so that F becomes negative if and only if ad < be.
From the expressions (15, 16) we can readily calculate the area, moments, etc. defined in

section 2.1:
2(be - ad) (2a + b + (b - 2a)eb/a)

A = b3(1 + eb/a)' (18)

- d - 1
F = 2b' h = 2' (19)

and so forth. The lack of realism in the model as it stands (see below) means that it is not
worthwhile to pursue the increasingly lengthy and complicated expressions for the higher-
order moments.

Before modifying the model to make it more realistic, we note once more that the math-
ematical complication in analysing the solutions of (13) is almost entirely due to the sawtooth
forcing function which is currently used. If this is replaced by the sinusoidal form

1 1 ('Jrt)h(t) = 2 - 2 cos('Jrt) = sin2 2" '

which represents the first two Fourier modes of the function shown in figure 91, the anaylsis
becomes considerably more straightforward. We use the superscript S to denote the values
obtained when h is given by (20). In this case one can readily solve (13) as an initial-value
problem for F(t) (assuming F(O) = 0):

FS _ ~ (be - ad)'Jrsin('Jrt) - (bd + ae'Jr2) cos('Jrt) a(be - ad)'Jr2e-bt
/
a (21)

- 2b + 2(b2 + a2'Jr2) + 2b(b2 + a2'Jr2) ,

where the first two terms clearly represent the limit cycle. The area, centroid and moments
of this limit cycle are also much easier to abtain than for the sawtooth forcing:

-S d
F = 2b'

-S 1h =-2'

- S d2 + e2'Jr2 - S bd + ae'Jr2M ----- M -----
FF - 16(b2 + a2'Jr2)' Fh - 16(b2 + a2'Jr2)'

In general, for sinusoidal forcing of the form

(real part assumed) we can look for periodic solutions

F = P + GEeiwt, P = dh/b.
10£ course one way to solve (13) is to expand h(t) as an infinite Fourier series. This however introduces

its own problems through Gibbs' phenomenon when h is not smooth.



Thus the centroid is determined by the elastic modulus d/b, while for given w the shape of
the limit cycle is given in terms of the complex modulus G(w):

!VI _ 1t12R(G)
Fh - 4 '

G = d+ iwe.
b + iwa

Thus for a single frequency w, by measuring the position and shape ofthe limit cycle we obtain
d/b, and the real and imaginary parts of G. This gives us three relations which determine the
constants a, b, e, d up to an arbitrary scaling, except for the critical case ad = be in which
the limit cycle collapses onto a line segment.

For more general constitutive relations than (13), so long as they are linear we can still
define G in the same way and relate it to the limit cycle shape by (24). Again, for each w we
can only obtain three pieces of information from the properties of the limit cycle. Therefore,
if the material is chacterised by more than three parameters, we must vary w, and try to
determine the constitutive relation by monitoring the variations of R( G) and <;.5(G) with w.

The limit cycle defined by (15, 16) or by (20, 21) is always (i) convex and (ii) symmetric,
neither of which is always the case for experimental curves (see in particular figures 3 and 4).
Moreover, figure 10 shows that the force F may become negative at small h, which implies
suction of the probe by the sample; as discussed above this occurs if and only if ad < be. This
is unrealistic; while as noted in section 2 there may be a small amount of adhesion as the
probe loses contact with the fish, it is certainly not of the magnitude of that shown in figure
10, and in any case is not described by the model (13).

To address some of these issues, we now consider a simple model for an experiment in
which the probe may lose contact with the sample. First, suppose the probe is in contact
with the sample, so we have v = h. We require the force F to be postive; when F reaches
zero we suppose the probe loses contact with the sample and subsequently we require v > h
while F = O. This continues until v catches up with h when we return to the contact scenario.
Thus the problem to be solved is the o.d.e. (13) with

either (i) contact =} v = h, F > 0,
or (ii) no contact =} v > h, F = O.

As before, this can be solved numerically, and the limit cycle can be found analytically,
at least up to the solution of a couple of trancendental equations. The cycle starts with no
contact until h reaches a critical value hc1 at which contact occurs:

0, 0 < h < hel,

be - ad (1 _ eb(hcl-h)/a) + ~ (h _ h eb(hcl-h)/a) h h 1b2 b c1 , c1< <.

(27)

(28)



Figure 11: Probe height h versus force F for the lumped parameter model with loss of contact.
The parameter values are b = 1, e = 1, d = 0.5 and a = 0.25,0.5,1,2,4.

Then, as h is decreased from 1, the probe remains in contact until a second critical value
hc2 > hc1 is reached, at which contact is lost once more:

be - ad (eb(h-hc2)/a _ 1) + ~ (h _ h eb(h-hc2)/a)
b2 b c2 ,

0, hc2 > h> o.
(29)

(30)

(be - ad) (1 - 2eb(hc2-1)/a + eb(hc1 +hc2-2)/a)

hc2

bd (hC2 - hc1eb(hcl+hc2-2)/a),

h ed(hcl +hc2)/C
c1 .

(31)

(32)

In figure 11 we show the form of this limit cycle for b = 1, e = 1, d = 0.5 and various values
of a. For a = 4 we have ad > be so there is no loss of contact; a = 2 is the critical value at
which the limit cycle collapses onto a line segment; when a = 1 we first observe loss of contact
with the vertical segment of the cycle in which F = 0; as a is decreased further the cycle grows
and flattens, and the region of loss of contact grows likewise. On the whole, the introduction
of contact loss into the model has made the graphs more like the "banana" shapes shown in
figures 3 and 4. However, it still does not capture the concavity of the lower part of the cycle;
we speculate that this arises from nonlinear effects which cannot be described by (13).

The problem of finding the stresses and displacements caused by the indentation of an elastic
half-space by a punch is a classical problem in linear elasticity. Here we quote the results of
Spence 1968 for the case of a flat-ended cylindrical punch, which seems most relevant to the
present problem. The solution depends on whether the punch is smooth, so that the substrate
can slip freely under it, or rough, in which case there is no slip between punch and substrate.



In either case, a relation is obtained between the inward punch displacement h and the applied
force F:

2Eah
F = 1 2'-v
F __ 2E_a_h_Io_g_(3_-_4v_)

- (1 - v)(l - 2v) ,

where a is the radius of the punch, and E and v are the Youngs modulus and Poisson ratio
of the substrate.

Note that similar results can be obtained for the corresponding two-dimensional indent-
ation problem (see e.g. England 1971). Indeed it may be that a two-dimensional geometry
is applicable to the annular probe described in section 2. As noted there it is observed that
the centre of the meniscus appears to remain fixed as the probe is pressed into the sample.
This suggests that the annulus is wide enough that the opposite sides do not influence each
other much, and hence that a two-dimensional approach should serve as a reasonable first
approximation.

The results (33, 34) could be made more realistic in many other ways, for example by mak-
ing the substrate finite, considering different punch shapes or allowing more general contact
conditions. It is unlikely that analytical solutions will be available in these cases, although
they could of course be tackled numerically. However, it is clear that so long as linear elasticity
is employed, the form of the force-displacement law must be similar to (33, 34), namely

where f is a dimensionless function of v and the geometry of the substrate and punch.
Equally, even if a linear viscoelastic law is employed, for sinusoidal motion of the punch

the force-displacement law must still take a similar linear form:

where as before G is the effective complex modulus, which will depend on the geometry under
consideration as well as the material parameters of the substrate.

Finally we note in passing that solutions can also be found for the penetration of plastic
bodies (see Calladine 1985). We will not dwell on this for the reason quoted above, that the
aim is to avoid testing procedures which damage the sample.

3.4 Deformable porous medium model

It is believed that the squeezing of water through the fish flesh as the fish is compressed by
the probe gives rise to an important component of the force which is measured and helps to
explain the hysteresis which is observed. Therefore we now consider modelling the fish as a
deformable porous medium (Biot 1955).

The picture is of an elastic solid matrix which is saturated with water. We denote the
velocities of the solid and liquid phases by Us and Ul respectively and the volume fraction of
liquid by a. Since we assume that the matrix is everywhere saturated, the solid fraction is



simply 1 - a and we need not concern ourselves with infiltration, wetting fronts and so forth
(e.g. Sommer & Mortensen 1996). Thus, if we assume that both phases are incompressible,
conservation of mass for each phase reads

at +V· laud
-at + V . [(1 - a)usJ

(35)
(36)

1
Ul - Us = --K(a) . Vp,

'f/

where p is the liquid pressure, 'f/ the shear viscosity and K the permeability tensor. Here
we will only consider the isotropic case in which K can be replaced by a scalar k, which is
nevertheless usually strongly dependent on a.

Finally, a balance of total stress (neglecting inertia and gravity) gives

where u is the effective stress tensor in the solid matrix. This is defined to be the stress acting
in the solid, averaged over a surface area comprising both liquid and solid. Thus aij - p6ij is
the total stress in the fully saturated porous material. Put another way, u is the stress tensor
that one would measure in a completely dry sponge; p accounts for the extra component due
to the presence of water. Once a constitutive relation has been proposed for u (as well as a
functional form for k(a)) (35-38) gives a closed system for a, Ul, Us and p.

(
000)

u= 0 0 0 ,
o 0 a

and everything dependent on just one spatial component z and time t. Then (35-38) reduces
to

at + [awdz 0,. (39)
-at + [(1 - a)wsJz 0, (40)

k
(41)Wl- Ws --pz,

'f/
pz az. (42)

For purely one-dimensional motion, the specification of a constitutive relation for u is partic-
ularly simple: we need only specify a relation between a and the liquid fraction a. Typically
a(a) should be monotonic increasing in a, with a -7 -00 as a -7 0 and a -7 00 as a -7 1.
The equilibrium state is thus defined by the zero of a(a), say a(ao) = O.



F(t)

t
h(t) t

water permeable
mesh

aWL q
Ws = --1-- + -1--'-a -a

where q represents the total flux of solid and liquid and is given by the boundary conditons.
Then by combining this with (41) and (42) we find

WI = q - ~(1 - a)(j'(a)az.
TJ

Finally, by substituting this expression for WI into (39) we obtain a convection-diffusion equa-
tion for a:

In suggesting suitable boundary conditions for (45) we consider the experimental scenario
shown schematically in figure 12. Here a layer of saturated porous material with initial height
d sits on a porous base over a reservoir of water. A plunger is pushed a distance h(t) into the
top of the layer and the corresponding force F(t) is measured.

At the top of the layer both the liquid and solid velocities must equal that of the plunger,

q(t) == -it,



az = 0 on z = d - h(t).

At the bottom z = 0 the solid velocity Ws is zero and thus

ak(a)a'(a)az = 'fJk on z = O.

are sufficient to solve (45). Next we determine the force F (per unit area in the {x, y} plane)
applied to the plunger. From (42) we have

Since the boundary z = 0 is assumed to be permeable p is zero there, and so F is simply
given by

Before looking for solutions of this problem we first obtain a relation representing total
conservation of the solid phase by integrating (40) with respect to z and applying the boundary
conditions on z = 0 and z = d - h:

rd-h
Jo (1 - a) dz = const. = (1- ao)d.

Now we start by looking for a steady solution of (45-48) with h = Ii = const. Thus q = 0
and (45) implies that az = const. The boundary condition (47) tells us that this constant is
zero, i.e. that a is constant, say a. Then (51) gives

_ aod - Ii
a= d-h .

Note that we require Ii < aod so that a is positive. Finally, (50) gives the force

Thus, as might have been anticipated, in the steady state, the stress is purely elastic. Note
that a is a decreasing function of Ii while a is an increasing function of a so that P increases
with Ii, as expected.

Now consider an oscillatory perturbation, with

D = (1 - a)k(a)a'(a) ,
'TJ



1
a _D l'(0) = iw,
-a

f = _1 -= a ~ cosh (( z - d ~ h);;:;iD) .
a Y D sinh ( (d - h) Jiw / D )

Then (50) gives the complex modulus

G = ~ = -a'(ii)f(O) = (1- ~a'(ii) fiCOlh (fi(d - Ii)) .
The expressions (53, 58) for P and G can be related to the position and shape of a measured

limit cycle exactly as in section 2.1. Thus information about a(a) and k(a) can be obtained,
and these material properties of the flesh may hopefully be correlated with freshness.

As soon as we abandon the one-dimensional configuration considered above, there are serious
difficulties involved in constituting the elastic stress tensor oo. If, as in section 3.4.1, we allow
a to change by a finite amount, to be consistent we must also employ fully nonlinear elasticity
in our model for a. While in one dimension this merely involves specifying a single scalar
function a(a), in three dimensions the general equations are gruesome.

To avoid such complications, we henceforth consider only infinitessimal changes in a,
which corresponds to assuming that h is infinitessimal, so that 00 can be described using
linear elasticity. To this end we define a displacement field U in the solid matrix; within the
linear theory, this is related to the velocity Us by

auat = Us'

Then we propose the usual linear elastic constitutive relation for 00:

where).. and f.l are the Lame constants. Recall that this constitutive relation is for the matrix
as a whole, not for the elastic material of which it is made.

As noted above, our use of linear elasticity assumes that the velocities u/, Us are small
and that a varies by a small amount. Thus we set



Ut - Ul = k(ao) "Vp = k(ao) "V. (1'.

'f) 'f}

With (1' defined by (60), (62-64) form a closed system for ii, p, U and Ul.

We deduce a single equation for ii by taking the divergence of (64), substituting for U
and Us from (62, 63) and noting that

This looks deceptively simple: in general the boundary conditions will not be easily stated in
terms of ii, and a more useful rearrangement of the equations is

(66)

(67)

To fix ideas, consider the two-dimensional scenario shown in figure 13 (of course we could
equally consider a radially-symmetric version, with x replaced by r). Here a sponge with initial
length 1 and height d, is immersed in a bath of water. A probe of thickness 2a is pushed a
distance h(t) into the top of the sponge. Only half the geometry is shown; symmetry about
the x-axis is assumed. We now examine what boundary conditions might be appropriate in
modelling such an experiment. Since the problem is two-dimensional, we set U = (U, W).

The base z = 0 is assumed to be impermeable, which implies pz = O. For the displacement
U, we must decide whether the sponge is stuck to the base or free to slip; in the former case
we have U = 0, while in the latter, the normal displacement W, and the tangential stress axz

are zero, that is

no slip =} pz = U = W = 0 on z = 0,
free slip =} pz = Uz = W = 0 on z = o.

(68)
(69)

In general we could impose a friction law which contains both (68) and (69) as limits, but
this is unnecessarily complicated for our purposes. For a real fish, which is attached to a rigid
skeleton down its middle, (68) is probably the more physically relevant.
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Similar considerations apply below the probe. Once again impermeability implies a Neu-
mann condition for p. Now the normal displacement of the solid phase must be equal to that
of the probe, and for the tangential component as before we can impose zero slip or free slip:

no slip =} pz = U = 0, W = -h on z = d,
free slip =} pz = Uz = 0, W = -h on z = d.

(70)
(71)

Notice that the boundary conditions are imposed on the undeformed surface by linearisation.
The side x = l of the sponge is assumed to be fully permeable so that the pressure satisfies

Dirichlet data, and stress-free i. e. (Jxx = (Jxz = 0, and thus

If the top free surface is also assumed to be perfectly permeable then boundary conditions
analogous to (72) should be applied there. However, we might also want to consider cases
where the top surface is impermeable, e.g. for a fish sample with a skin. In the latter case we
have a Neumann condition for p and zero total stress:

permeable =} p = Uz + Wx = >'Ux + (>. + 2J.l)Wz = 0 on z = d, x > a, (73)
impermeable =} pz = Uz + Wx = >'Ux + (>. + 2J.l)Wz - p = 0 on z = d, x > a. (74)

As with the slip conditions imposed above, one could use a combination of (73) and (74) to
model a semi-permeable surface.

Finally, we impose the usual symmetry conditions on the centre-line

U = W = 0 at t = O. (76)

With h(t) specified (and assuming h(O) = 0), the boundary conditions (68 or 69, 70 or
71, 72, 73 or 74, 75) and initial conditions (76) are sufficient to solve the system (66, 67)



numerically. We do not attempt such a solution in this report, but note that it should be
reasonably straightforward with the aid of a package such as fastffa. The desired output from
such a calculation is the force (per unit length in the third dimension) exerted on the probe,
which is give by

3.4.3 Lateral squeezing model

A weakness ofthe one-dimensional model described in section 3.4.1 is that we cannot make the
base z = 0 impermeable without running into a contradiction unless h = O. This is because
we have not allowed for lateral squeezing of the liquid as the probe is pushed in, although
in the sponge experients this lateral motion of the water was observed to be significant. Of
course such effects are fully accounted for (albeit for small deformations) by the theory of
section 3.4.2, but this requires numerical solution rather than furnishing a simple expression
like (58) for the complex modulus which can easily be compared with experiments.

Therefore we now propose a quasi-one-dimensional model which includes lateral squeezing
but is considerably simpler than the two-dimensional theory of section 3.4.2. The model is
obtained under the assumption that the geometry is slender in the x-direction, that is d «: l
as shown in figure 14. We emphasise that this is not intended to be representative of the real
experimental configuration: the purpose of considering this limit is to obtain a simple "lumped
parameter" model like (58) which improves on the one-dimensional theory by including lateral
motion.

Under the usual assumptions of lubrication theory (essentially that z-derivatives dominate
over x-derivatives), the two-dimensional system (66, 67) can be simplified to

D (Ux + Wz)zz ,
/1Uzz,
0,

(78)
(79)
(80)

2We present all the equations in dimensional form and take the "lubrication" limit in an heuristic manner;
however, we point out that the analysis could be made more systematic by nondimensionalising and using
asymptotic expansions.



u = Px z(z - d).
2ft

The impermeability of the top and bottom surfaces tells us pz = 0 on z = 0, d. Evidently
this condition is satisfied identically at leading order by (80). Therefore we have to consider
higher-order terms to deduce the leading-order boundary conditions

Substituting for U from (81) we can now solve (78, 82) as a boundary-value problem for Wz.

However, when we look for periodic solutions proportional to eiwt, it is not necessary to solve
for W explicitly, since we can integrate (78) directly with respect to z and find

iw fad Ux dz + iw [W]~ = D [Uxz + Wzz]~ .

Now W is given on the top and bottom surfaces by (68, 70), Wzz by (82) and U by (81), so
that (83) reduces to

iw (d3Pxx + h) = _ dDpxx = _ daok(ao)pxx.
12ft A + 2ft TJ

For p(x) we have the symmetry condition Px = 0 at x = 0 and p = 0 at the edge x = l
(neglecting any pressure drop across the unsqueezed portion in x > l). Thus (84) gives

iw (l2 2) _ (daok(ao) iWd3
)- -x - ---+-- p.

2 TJ 12ft

2iwhl3 = (daok(ao) iWd3
) F

3 TJ + 12ft '

so that the effective complex modulus is

Thus we have succeeded in obtaining a lumped-parameter model for the squeezing prob-
lem. Indeed, (88) takes exactly the same form as the linear lumped-parameter model (25)
considered previously (with d = 0). Thus in the asymptotic limit employed in this section, the
effects of elasticity and porous-medium flow combine to make the material behave exactly like
a linear Maxwell fluid. The advantage of the approach adopted here is that we can associate
the parameters in (88) with real physical properties of the system such as porosity, viscosity,
Youngs modulus, etc ..



The expression (88) has a number of interesting properties. Notice that the bulk modulus
A does not appear so that, although the details of the spatial variations in a, W, etc. depend
on A, the response of the system as a whole does not. This is a consequence of the lubrication
limit, and can be explained physically as follows. When the sponge is compressed, liquid is
squeezed out horizontally by pure kinematics. The lateral flow of liquid is resisted by shear
stress in the solid matrix, and it is this shear stress which is responsible for the pressure
build-up, as described by (79).

We also note that an important dimensionless parameter sits in the denominator of (88),
namely

1> = iwd2
TJ

12jLaok(ao) ,

which is an effective Deborah number. As 1> -+ 00, the material becomes elastic, with

The work of this report falls broadly into two parts. First we analysed experimental data
generated at the study group in an attempt to find good robust indicators of a particular
u,mple's material properties. Encouragingly we found two scalar properties which appear, at

least with the limited data considered so far, to vary significantly from one sample to another,
and to be readily measurable. It should be straightforward to check whether they are at all
correlated with fish freshness.

We went on to present some possible mathematical models for the testing process. We
considered linear elasticity and viscoelasticity as well as deformable porous medium models,
in a variety of geometries. None of these models comes close to capturing all the complications
of a real fish. However they should aid understanding of the importance of various physical
effects such as elasticity and porosity.

We conclude by suggesting further experiments which could be carried out in the future.

4.1 Proposed future experiments

1. The proposed system is based on the idea that the constitutive properties of fish (i. e.
elastic and viscous moduli) can be used to measure its freshness. Before proceeding
any further with the project, it should be verified that the properties which could be
measured by this kind of machine really do vary with age of fish. Thus samples of
different species, age and taken from different parts of the fish, should be tested in
a professional rheometer over a wide range of frequencies. This would determine (i)



whether rheological properties are at all correlated with fish age, and if so (ii) which
are the best indicators of freshness and (iii) what frequency range a testing machine
should be designed to measure.

2. In any such machine, and in future experiments, it would make more sense to impose
a sinusoidal force (or displacement) rather than the sawtooth forcing used at present.
This would both simplify any mathematical modelling and tie in with more traditional
rheometry.

3. The measurement of the speed and attenuation of sound waves might a good way to
determine the mechanical properties. Note that this would only be worthwhile if the
rheological tests suggested in 1. above show that such properties are well correlated
with freshness. Note also that the limit of interest here is the opposite of that used in
acoustic microscopy: we do not wish to resolve the details of the skeleton etc. of the
fish but rather to obtain some locally averaged properties.
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