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Abstract

A model is presented for the gravity-driven flow of rainwater descending through the soil layer
of a green roof, treated as a porous medium on a flat permeable surface representing an efficient
drainage layer. A fully saturated zone is shown to occur. It is typically a thin layer, relative
to the total soil thickness, and lies at the bottom of the soil layer. This provides a bottom
boundary condition for the partially saturated upper zone. It is shown that after the onset of
rainfall, well-defined fronts of water can descend through the soil layer. Also the rainwater flow
is relatively quick compared with the moisture uptake by the roots of the plants in the roof.
In a separate model the exchanges of water are described between the (smaller-scale) porous
granules of soil, the roots and the rainwater in the inter-granule pores.
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1 Introduction

Green roofs are becoming increasingly popular around the world. The many benefits of a green
roof include assistance in the management of storm water, pollution control, building insulation,
recycling of carbon dioxide, in addition to being aesthetically pleasing. A green roof is subject
to various stresses from the weather, in particular wind-loading, which we ignore in this report,
and rainfall: it is the flow, drainage and uptake of rainwater that we model. An understanding
of where the water goes is essential to design a roof able to achieve sustained healthy plants
and loads that lie within the safe capacity of the supporting structure.

The main focus of this report is on the transport of water through the green roof structure.
Inadequate drainage can lead to the undesirable occurrence of a fully saturated soil which will
cut off the air supply to the plants. Conversely, if the saturation levels are too low plants will
die from lack of water. Ideally a degree of saturation that is less than eighty per cent should
be maintained at all times. Our goal is to model the distribution of the degree of saturation
through the depth of the soil layer, and to see how it changes due to spells of rain, and under
the influence of moisture-uptake by plant roots.

The basic structure of a common green roof is shown in Fig. 1. A waterproof root barrier
protects the underlying roof structure. A drainage layer sits atop this barrier. The typical
thickness of this layer is 8/15/20 mm depending on the type of roof. The soil and drainage
layers are separated by a thin sheet of perforated hard plastic containing holes approximately 2
mm in diameter and spaced 2 cm apart. There are two layers of soil at the top of the structure
separated by a layer of felt. A thin layer (< 2 cm) of refined rooting soil contains the plant
life, mainly sedum for thinner roofs and, for thicker ones, low growing grasses such as common
bent grass and/or other plants, such as cowslip and ladies bedstraw. Beneath the rooting soil
are pellets of lightweight expanded clay. This layer is 5-10 cm thick. Grain sizes are typically
< 2 mm for rooting soil and 4-8 mm for expanded clay pellets.

2 The Model

We model the dynamics of water flow through the soil layer. We consider a single soil layer
with thickness L ≈ 10−1 m and we ignore the presence of the felt layer. We assume that the
soil-drainage-layer interface is located at z = 0 and the soil surface at z = L. We consider two
possible scenarios: (i) the entire region 0 ≤ z ≤ L is unsaturated, so that the soil saturation S is
always less than 1 and (ii) a saturated region forms at the bottom of the soil layer for 0 ≤ z ≤ h.
Note that the model as presented here is one-dimensional, and represents a horizontal roof, but
can be easily extended to two (or three) dimensions, and to account for sloping roofs.
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Figure 1: Green roof structure.

2.1 The Unsaturated Region

We first assume the entire region 0 ≤ z ≤ L is unsaturated (S < 1). The basic model for this
region follows that outlined in [1] and [2]. The one-dimensional Richards’ equation for water
flow in the unsaturated soil is

φ
∂S

∂t
=

∂

∂z

(
D0D(S)

∂S

∂z
+ K0K(S)

)
− R, (2.1)

where S = S(z, t), φ is the constant porosity of the soil, taken here to be 0.25, D0D(S) and
K0K(S) are the water diffusivity and hydraulic conductivity respectively, with the functions
D(S) and K(S) given by

K(S) = S1/2[1− (1− S1/m)m]2, (2.2)

D(S) =
[1− (1− S1/m)m]2

S1/m−1/2(1− S1/m)m
, (2.3)

where 0 < m < 1. The value of m for the expanded-clay soil was not known but, for later use
in simulations and analysis of the model, was taken to be m = 1

2
. Likewise the values of the

constants K0, the conductivity for saturated soil, and D0, a representative value of diffusivity,
were not known. The water flux in the z direction is q = −(D0D(S)Sz+K0K(S)). Water uptake
by the plant roots is incorporated into the model through the last term in (2.1) and is given by

R = 2πakrld (pa − pcf(S) − pr) , (2.4)

where kr is the radial conductivity of water, a is the root radius, ld is the root length density,
pa is atmospheric pressure, pr is an effective pressure in the roots (although it can be negative),
pcf(S) is the capillary pressure in the soil, with pc another constant characterising the partly
saturated pellets, and

f(S) = (S− 1
m − 1)1−m. (2.5)
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We take parameter values from Roose and Fowler [2] and let 2πakr = 7.85 × 10−16 m2 s−1

Pa−1, ld = 5 × 103 m−2 and pc = 104 N m−2. The root pressure pr will be determined from
conservation of water within the root. Finally we must prescribe boundary conditions at the
top and bottom of the soil layer. At the soil surface we take

D0D(S)
∂S

∂z
+ K0K(S) = Qin(t) at z = L, (2.6)

where Qin is the rainfall rate averaged over the surface area of the ground. We assume, in this
unsaturated case, no outflow at the base of the soil layer and set

D0D(S)
∂S

∂z
+ K0K(S) = 0 at z = 0. (2.7)

We nondimensionalise the equations by scaling

z = Lẑ, pr = |P|p̂r, t =
L

K0

t̂, p = pa + pcp̂, R = 2πakrld|P|R̂, Qin = QtypQ̂, (2.8)

where P is the (negative) root pressure at the soil surface and we set |P| = 106 N m−2. The
time scale used here is that for flow though the soil layer under the action of gravity. The
dimensionless Richards’ equation (2.1) then has the form

φ
∂S

∂t̂
=

∂

∂ẑ

(
δD(S)

∂S

∂ẑ
+ K(S)

)
− η(θ− εf(S) − p̂r), (2.9)

where

δ =
D0

LK0

≈ 10−4, η =
2πakrld|P|L

K0

≈ 4× 10−6, θ =
pa

|P|
≈ 10−1, ε =

pc

|P|
≈ 10−2. (2.10)

Roose and Fowler [2] give values of D0 for different soil types and we can reasonably take D0 =

10−6 m2 s−1. However, the value of K0 is more difficult to determine as it varies significantly
with different soil types. The parameter values in (2.10) are given for K0 = 10−1 m s−1. We note
that η ≪ 1 suggesting that water uptake by the roots is negligible over the chosen timescale.
The dimensionless forms of the boundary conditions are given by

δD(S)
∂S

∂ẑ
+ K(S) = νQ̂ at ẑ = 1, (2.11)

δD(S)
∂S

∂ẑ
+ K(S) = 0 at ẑ = 0, (2.12)

where

ν =
Qtyp

K0

≈ 3× 10−6, (2.13)

with Qtyp taken to be some typical rainfall. We set Qtyp = 3 × 10−7 m s−1 for a “wet day" in
Ireland.
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2.2 The Saturated Region

When the soil becomes saturated we assume that a moving boundary forms at z = h(t) and
the soil saturation is identically one for z ∈ [0, h]. Our governing equation can now be written
in the (dimensionless) form

∂

∂ẑ

(
1+

1

γ

∂p̂

∂ẑ

)
− η (θ + εp̂− p̂r) = 0, (2.14)

where

γ =
ρgL

pc

≈ 10−1. (2.15)

The flux through the membrane at z = 0 is prescribed to occur at a rate proportional to the
pressure difference across it; Qmem = κ(p − pa) dimensionally, where pa is the atmospheric
pressure in the drainage layer beneath, p is the pressure at z = 0, and κ ≈ 10−5 m s−1 Pa−1

(determined experimentally in the next sub-section). This gives the dimensionless condition

1+
1

γ

∂p̂

∂ẑ
= αp̂ at ẑ = 0, (2.16)

where α = κpc
K0

≈ 1. At the saturation front ẑ = ĥ(t̂) ≡ h(t)

L
, p̂ = 0 (atmospheric), and

continuity of fluid flux requires

K(S) + δD(S)
∂S

∂ẑ
= 1+

1

γ

∂p̂

∂ẑ
at ẑ = ĥ. (2.17)

Neglecting the η term in (2.14) for this saturated region, and using p̂ = 0 at ẑ = ĥ along with
(2.16), gives

p̂(ẑ, t̂) =
γ(ĥ(t̂) − ẑ)

1+ αγĥ(t̂)
, (2.18)

so that (2.17) becomes

K(S) + δD(S)
∂S

∂ẑ
=

αγĥ

1+ αγĥ
at ẑ = ĥ. (2.19)

In principle equation (2.19) and boundary condition S = 1 at ẑ = ĥ(t̂) determine ĥ in terms
of the flux from the unsaturated region. However, we can simplify things if we notice from
(2.11) that the dimensionless flux will in general be small, of order ν (due to the rainfall). If
this is the case, then the value of ĥ required to satisfy (2.19) will be small. Physically, this is
because for the typical size of fluid flux considered, the pressure required to force it through
the membrane according to (2.16) is provided by the hydrostatic head of a very thin layer of
water (dimensionally, h is calculated to be much less than 1 mm).

Thus if a saturated region is created at the bottom of the soil layer, it will quickly grow to a
depth which is sufficient to drain exactly the same amount of water through the membrane as
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is arriving from the unsaturated region above. Provided this depth is substantially less than
the depth of the soil, the saturated region can be ‘collapsed’ (mathematically) onto the line
ẑ = 0, and the boundary condition applied to the problem in the unsaturated zone for some of
the numerical solutions of sub-section 2.5 is then

∂

∂ẑ

[
K(S) + δD(S)

∂S

∂ẑ

]
= 0 at ẑ = 0, 11 (2.20)

which states that whatever flux arrives there from above is allowed through the membrane (the
build-up of the small saturated layer which would physically enable this is therefore assumed
to happen instantaneously), with the uptake of water by the roots being neglected. We apply
(2.20) while K(S)+ δD(S)∂S

∂ẑ
> 0 at ẑ = 0 since water is trying to exit, not enter, the soil layer.

2.3 Experimental measurement of κ

The value of κ was deduced from a simple experiment, which involved puncturing a 2 mm
diameter hole in a plastic bottle, made with material similar to what we believe the drainage
membrane is made of. The rate of drainage through the hole driven by the hydraulic head
in the bottle was measured, and used to determine the coefficient of proportionality between
pressure difference across the membrane ∆p and the water flux through it q. Writing

q = k∆p, (2.21)

where ∆p = ρgh, the water depth in the bottle, h, satisfies the equation

Abottle

dh

dt
= −kρgh, (2.22)

where Abottle is the cross-sectional area of the bottle. Thus

logh = −
kρg

Abottle

t. (2.23)

Measurements of h against t made during the experiment are in Fig. 2, and the best fit value
of the time constant tc = Abottle/kρg was 74 seconds. The flux through an individual hole can
be converted into an average velocity through a membrane, using the area of the membrane
Amembrane that is drained by each hole. Thus

ū = κ∆p, κ =
Abottle

Amembraneρgtc
. (2.24)

Taking Amembrane = π cm2, and using the cross-sectional area of the bottle Abottle = 25 cm2,
ρ = 103 kg m−3, and g = 10 m s−2, gives κ ≈ 10−5 m s−1 Pa−1.

11More accurately the bottom condition might be specified in linear complementary form (1 − S)q = 0 with
1 − S ≥ 0 (for no super-saturation) and q ≤ 0 (for upward flux). We use (2.20) for its convenience in some of
the numerical simulations, but for others we approximate the more correct linear complementary form, as in
(2.33).
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Figure 2: Experimental measurements of h against t.

2.4 The Root Pressure

To determine the root pressure pr in equation (2.9), we assume that the root extends through
the full thickness of the soil layer of depth L. Conservation of water inside the root yields

kz

d2pr

dz2
+ 2πakr (pa − pcf(S) − pr) = 0, (2.25)

where kz = 10−14 m6 s−1 N−1 is the root axial conductivity and f(S) is defined in equation (2.5).
Zero axial flux at the root tip implies

dpr

dz
+ ρg = 0 at z = 0. (2.26)

In addition we prescribe a driving pressure at the root base yielding

pr = pa + P at z = L. (2.27)

In dimensionless form the root pressure will satisfy

d2p̂r

dẑ2
+ τ (θ − εf(S) − p̂r) = 0, (2.28)

subject to
dp̂r

dẑ
= −εγ at ẑ = 0, (2.29)
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p̂r = θ − 1 at ẑ = 1, (2.30)

where

τ =
2πakrL

2

kz

≈ 10−3. (2.31)

The parameters τ ≪ 1 and εγ ≪ 1 which implies d2p̂r
dẑ2

≈ 0 subject to dp̂r
dẑ

= 0 on ẑ = 0. The
root pressure is thus given by

p̂r = θ− 1. (2.32)

The complete model is now given by (2.9), with the definitions (2.2), (2.3), (2.5) and (2.32),

with boundary condition (2.11) at ẑ = 1 and (2.12) if S < 1, or (2.20) if S = 1, at ẑ = 0. An
initial condition is also needed.

The diffusion term in (2.9) is small, so the equation is essentially a first order non-linear wave
equation; the boundary condition (rainfall) is transmitted downwards as a wave. If rain starts
suddenly, there is a shock front that propagates quickly down to the bottom of the soil; if it
stops suddenly there is an expansion fan.

2.5 Numerical Solutions

The governing equation for the unsaturated region (2.9) was solved subject to boundary
conditions (2.11) and (2.12). As a first approach the η term in (2.9) is neglected so that
we are just considering drainage of the soil layer under gravity. The initial saturation was
taken to be uniform throughout the soil layer. Three different initial values of the saturation
Sinit : 0.05, 0.1, 0.15 were considered. The profiles obtained for S in each case when the com-
putation was stopped are shown in Fig. 3; a corresponding semilog plot is shown in Fig. 4, in
order to demonstrate the boundary layer of thickness δ1/2 in S at ẑ = 0 that is predicted by an
asymptotic analysis, and which is captured by the numerical solution, but which is not visible
in Fig. 3. For Sinit = 0.1 and 0.15, computations were stopped when the value of S at ẑ = 0,

Sbottom, reached 1; for Sinit = 0.05, Sbottom is still far from 1, even for the value of dimensionless
time (100) shown here. The time evolution of Sbottom is shown in Fig. 5, while that for S at
ẑ = 1, Stop, is shown in Fig. 6.

Thus, the results suggest an appreciable difference in the time at which complete saturation
is achieved at the bottom of the soil when Sinit is increased from 0.05 to 0.1. The effect of
the rainfall boundary condition (2.11) has (by the end of the simulations) only affected the
tiny region at the right of Fig. 3, where there is the beginning of a shock front propagating
downwards from ẑ = 1; since δ has been taken to be very small, the shock looks very sharp,
and the values on either side of it are the initial condition (below, or left, of the shock), and the
value given by K(S) = νQ̂ (above, or right, of the shock - this value is expectedly independent
of the initial condition, as shown in Fig. 6).
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Figure 3: S vs. ẑ for three different initial conditions (Sinit = 0.05, 0.1, 0.15) at either dimen-
sionless time 100 (Sinit = 0.05) or when S reaches 1 at ẑ = 0 (Sinit = 0.1, 0.15). Parameter
values are m = 1/2, δ = 10−4, ν = 3× 10−6.
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Figure 4: A semilog plot of S vs. ẑ for three different initial conditions (Sinit = 0.05, 0.1, 0.15)
at either dimensionless time 100 (Sinit = 0.05) or when S reaches 1 at ẑ = 0 (Sinit = 0.1, 0.15).
Parameter values are m = 1/2, δ = 10−4, ν = 3× 10−6.
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Figure 5: Sbottom vs. dimensionless time for three different initial conditions (Sinit =
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The complete problem, with a small saturated region allowed for by using boundary condition
(2.20), and with η 6= 0, was also solved by discretising in space and solving with the method
of lines using ode15s in Matlab. To apply the switch in boundary conditions smoothly, the
condition

q0 = q1e
−1000(1−S), (2.33)

was applied for the flux at the bottom node q0 in terms of the flux at the node above q1; thus
when S is close to 1 this becomes ∂q̂/∂ẑ = 0, and when S is less than 1 it becomes q0 = 0. The
diffusion coefficient is infinite when S = 1, but this does not cause any issues in the numerics,
possibly because the above boundary condition ensures S never quite reaches 1.

This seems to allow for steady states when rainfall is constant; if there is more rainfall than is
taken up by the roots, the saturation at the bottom is 1 and there is a boundary layer of width
δ1/2 in which it adjusts to the value as determined by K(S) ≈ νQ̂− η

∫L

0
R (Fig. 7). If there is

less rainfall than is taken up by the roots, the saturation at the bottom decreases almost to 0.

Fig. 7 shows the result of a sudden increase in rainfall from Q̂ = 0.1 to Q̂ = 10, which shows the
initial shock front travelling down into the soil and the eventual steady state. The saturation
at the bottom does not increase towards 1 until the shock front arrives there. Fig. 8 shows the
result of a sudden decrease back to Q̂ = 0.1. Note that the time intervals shown are longer;
there is an initial expansion fan on the timescale of the gravity drainage which reduces the
saturation to the value given by K(S) = νQ̂, followed by a slower decay (on the timescale
O( 1

η
)) as the roots take up the remaining water.

3 Two-Porosity Model

The expanded clay pellets used in green roof construction are quite large but contain lots of
pore space. The difference in pore sizes between these, and the inter-pellet space means water
can be drawn into the pellets and retained there for longer than it would otherwise remain in
the soil. Thus a two-porosity model would seem appropriate.

This is an outline of a “box" or “lumped" model for water storage in the macro-pores between
soil particles, which have saturation S, and in the micro-pores within the particles, which have
saturation SP. Transport of water into or out of the particles is parameterised to occur at
a rate proportional to the saturation difference S − SP.

12 The roots do not penetrate into
individual particles so provide a sink term R only from the macro-pores. This root uptake R(S)

is primarily due to the large negative pressure in the root system, but as saturation decreases
a large capillary pressure acts to counteract this; thus R(S) is roughly constant for S close to 1

but decreases at small S (as in the model above).

12A variant of this model might assume that water transfer into the particles occurs at a rate proportional to
the pressure difference pcPf(SP) − pcf(S); since the capillary pressure in the micropores would be larger than
in the macropores (pcP > pc), this would cause more water to be transferred into the micropores, and a larger
supply would be maintained there for the roots to take up.
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Figure 7: Profiles of saturation and root uptake at time intervals of 1 (in the dimensionless
units); the arrow shows the direction of increasing time. This is the result of a sudden increase
in rainfall to Q̂ = 10, from the steady state when Q̂ = 0.1, and the dashed line shows the
steady state that results. Parameter values are m = 1/2, δ = 10−2, η = 4×10−4, ν = 3×10−4,
ε = 10−2, γ = 10−1.

57



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z 
/ L

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R / R
0

z 
/ L

S

Figure 8: Profiles of saturation and root uptake at time intervals of 10 (in the dimensionless
units); the arrow shows the direction of increasing time. This is the result of a sudden decrease
in rainfall from Q̂ = 10, to Q̂ = 0.1. Parameter values are m = 1/2, δ = 10−2, η = 4 × 10−4,
ν = 3× 10−4, ε = 10−2, γ = 10−1.
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The following equations are dimensionless, and the time scale has been chosen to be that due to
uptake by the roots (the time scale differs from that used previously by a factor η). Drainage
from the volume of soil is supposed to occur due to gravity at a rate K(S), and occurs on
a time scale η compared to the uptake by the roots (see above). Rainfall provides a source
which is scaled to be the same size as the gravity drainage (note this is different to above -
the scale for the rainfall here is large and is intended to represent the size of heavy showers;
the dimensionless r(t̂) will be 0 most of the time, when it is not raining, and O(1) when it is
raining heavily).

φ
dS

dt̂
=

1

η
r(t̂) −

1

η
K(S) − λ(S− SP) − R(S), (3.1)

(1− φ)φP

dSP

dt̂
= λ(S− SP), (3.2)

where r = νQ̂, φP is the porosity of the pellets and

K(S) = S1/2[1− (1− S2)1/2]2, (3.3)

which comes from equation (2.2) with m = 1
2

and

R(S) = 1− ε
(1− S2)1/2

S
. (3.4)

The use of K(S) for the gravity drainage in equation (3.1) is motivated by the fact that the
water flow in the earlier part of the report is (since δ is small) essentially determined by this
hydraulic conductivity. The time scale for water to diffuse into individual particles is estimated
using their dimensions LP ∼ 1 cm and a diffusion coefficient DP ∼ 10−9 m2 s−1. L2

P/DP is
comparable to the time scale for uptake by the roots (∼ 105 s), so the parameter λ is order 1. In
equation (3.1) η is very small and in equation (3.4) ε is also small, and we consider especially
the distinguished case ε ∼ η2/7.

The behaviour of solutions to this model is quite straightforward, and an example solution
for a large rain storm followed by dry weather is in Fig. 9. When it is raining, r is order
1, and on a fast time scale, t̂ ∼ O(η), the saturation S relaxes towards the equilibrium given
by K(S) = r(t̂). This causes water to then transfer into the particles on an O(1) time scale
according to (3.2). By balancing terms in equation (3.1) we seek a similarity solution for small

S for which K(S) ≈ 1
4
S

9
2 . When it stops raining r = 0, and the saturation S decreases quickly

due to gravity drainage on an O(η) time scale; approximately

φ
dS

dt̂
∼
1

η
K(S). (3.5)

Thus, neglecting the small O(η
2
7 ) terms suggests S tends towards 0 as

S ∼

(
2φη

7t̂

)2/7

. (3.6)
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Figure 9: Solutions for macro-scale and particle-scale saturations S and SP, and root uptake R,
as a result of rainfall r(t) which represents a large rain shower. Dashed lines show the limiting
behaviour. Parameter values are η = 10−4, λ = 1, ε = 10−2.

On the O(1) time scale, therefore, S ∼ η2/7, and the equations are

O(η2/7) = O(η2/7) − λ(O(η2/7 − SP) −
(
1−

ε

S

)
, (3.7)

(1− φ)φP

dSP

dt̂
= λ(O(η2/7) − SP). (3.8)

Thus, ignoring the O(η2/7) terms, Sp decays exponentially and the water coming out into the
macropores is immediately taken up by the roots: R = λSP = −(1−φ)φPdSP/dt̂, as shown in
figure 9. Root uptake is maintained for a much longer period after it ceases to rain than would
be the case with no micropores, when S decreases rapidly towards 0.

3.1 A Model for Fast Saturation

Assuming instead fast saturation of the pellets,

SP = SOH(S) , (3.9)

where H denotes the Heaviside function, SP denotes the saturation of the individual pellets, SO

is the porosity of an individual pellet, and S is the saturation of the inter-pellet pores. The
required short time scale can arise from high capillary pressures associated with the very small
pores within the pellets.
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Taking now φ = 1
4

to be the total proportion of space occupied by air and water within the
soil, and SO = 1

5
, the inter-pellet porosity is ϕ = 1

16
(given by ϕ + 1

5
(1 − ϕ) = 1

4
). Equation

(2.9) can then be replaced by

1

16

∂

∂t̂
(S+ 3H(S)) =

∂

∂ẑ

(
K(S) + δD(S)

∂S

∂ẑ

)
− ηR̂ , (3.10)

with R̂ ∼ 1, from (2.9) and (2.32). (Equation (3.10) might be better written in terms of the total
water content, ST = 1

16
(S + 3H(S)), so that S on the right-hand side is replaced by S(ST) = 0

for 0 ≤ ST ≤ 3
16

, S(ST) = 16(ST −
3
16
) for 3

16
≤ ST ≤ 1

4
.)

Where the pellets are saturated, S > 0 and H(S) = 1, the equations are as in Section 2. Here,
for simplicity, an initially dry soil is considered, so that at t̂ = 0, S ≡ SP ≡ 0. For t̂ > 0, a
region Ŵ(t̂) < ẑ < 1 has become wet:

S = H(S) = 0 in 0 < ẑ < Ŵ , S > 0 and H(S) = 1 in Ŵ < ẑ < 1 . (3.11)

To obtain an order-one sized wet region, the relevant time scale must be that for the rainfall
(days) so that time has to be rescaled:

t̂ = t̃/ν . (3.12)

Note that this time scale is similar to that for the up-take of water by the plants’ roots. It is
also appropriate, from the top boundary condition, to rescale the saturation:

S = ν2/9S̃ , (3.13)

where, since we have assumed that m = 1
2
, K(S) ∼ 1

4
S9/2 and D(S) ∼ 1

4
S5/2 for small S.

Neglecting the time-derivative term (now effectively of order ν2/9), the partial differential equa-
tion becomes

1

4

∂

∂ẑ

(
S̃9/2 + δ̃S̃5/2∂S̃

∂ẑ

)
= η̃R̂ . (3.14)

Here η̃ = η/ν ≈ 1
3

and δ̃ = δ/ν2/9 ≈ 1
600

, using the values of Section 2. Although the value of

δ̃ is small here, because of the uncertainty in the values of the physical parameters describing
water transport through the soil, it could conceivably be of order one and it is therefore retained
in (3.14), for the present.

The differential equation is subject to the top boundary condition

1

4

(
S̃9/2 + δ̃S̃5/2∂S̃

∂ẑ

)
= Q̂in at ẑ = 1 (3.15)

and, assuming that the diffusive, δ̃, term is retained, a lower boundary condition

S̃ = 0 at ẑ = Ŵ(t̃) . (3.16)
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Finally, to fix the position of the free boundary ẑ = Ŵ(t̂) between dry and wet soil, conservation
of mass of water at this point, where SP jumps from 0 to SO, leads to

dŴ

dt̃
= −

4

3

(
S̃9/2 + δ̃S̃5/2∂S̃

∂ẑ

)
at ẑ = Ŵ(t̃) . (3.17)

(Since, for δ̃ > 0, S̃ = 0 at this point, the second term on the right-hand side should then be

interpreted as δ̃ lim
ẑ→Ŵ

{

S̃5/2∂S̃

∂ẑ

}

.)

Of course, if the pellets were already partially saturated, (3.17) would be suitably modified,
leading to a faster-moving free boundary.

Note also that if the diffusion can be neglected, (3.14) and (3.15) lead to 1
4
S̃9/2 = Q̂in + ẑ − 1

so (3.17) gives

−
dŴ

dt̃
=

16

3

(
Q̂in + Ŵ − 1

)
. (3.18)

The free-boundary condition (3.17) only applies for an advancing wet region, dŴ/dt̃ ≤ 0. An
alternative form is needed for when this region contracts, which will happen when the rainfall
decreases sufficiently. In any part of the soil between the lowest location of the free boundary
and its current position, the roots can continue to remove water from the pellets, thereby re-
ducing SP.

As described in this report we could could now have at least four types of region within the
soil layer:

1. Dry zone, where S = SP = 0;

2. Damp or moist (unsaturated) zone I, where S = 0, 0 < SP < SO;

3. Damp or moist (unsaturated) zone II, where 0 < S < 1, SP = SO;

4. Wet (saturated) zone, where S = 1, SP = SO.

4 Conclusions

In this report a one-dimensional time dependent mathematical model has been described for
the development of the saturation in the soil layer of a flat green roof. Our model suggests that
a fully-saturated (S = 1) region forms at the base of the soil layer and this region can be thin
relative to the total soil thickness.

62



From an initial dry state and from the onset of persistent rain, fronts of saturation were com-
puted to descend through the layer. The decrease of saturation from unity following a decrease
in rainfall was also described. The end result is that most of the rainwater falls through the
soil layer and exits through the network of holes in the bottom supporting sheet.

On a smaller scale, the pellets and soil particles are themselves porous and made up of microp-
ores. The water flow in and out of a typical particle is modelled using the flux between (a) the
macropores (whose saturation is as modelled above) and (b) the root system. This two-porosity
model suggests that during the time between spells of rain the micropores can retain (for long
periods of time) water that is available to be taken up by the roots.

Further work might include adapting the soil thickness L to rainfall at the site of the building
with the aim of making L as small as possible, while avoiding problems with saturation and
aridity. A first step towards this goal would be to carry out experiments to more accurately
determine the values of the constants. Further simulations using more extensive rainfall data
could then be carried out to determine the optimum soil thickness. In addition small modifi-
cations could be made to include the influence of a sloped roof.
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