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HEAT TRANSFER IN A CONTINUOUS BLOOMCASTER

Four approaches to detecting disruptions to the primary cooling process in
the continuous bloomcaster at BHP's Rod and Bar Division in Newcastle
are investigated. Three of these are based on heat conduction models of
the mould. A one-dimensional steady-state formulation leads to the con-
clusion that it may not be possible to detect changes in the length of the
lubricating flux layer between the solidifying steel strand and the mould
from data collected at thermocouples in the mould. Two two-dimensional
models give formal procedures for determining either the heat input to the
mould or the presence of hot spots in the strand from the thermocouple
data. The final approach suggests the use of time-series analysis to detect
changes in the heat transfer process.

1. Introduction

BHP Rod and Bar Division in Newcastle operates a four-strand bloomcaster
which has an average production rate of 280 tonnes per hour. The machine is
designed to cast continuously with downtime every fortnight. In this continuous
casting process, molten steel flows from a vessel at the top of the caster through
a nozzle into a 630mm by 400mm pool of liquid steel. This liquid is surrounded
by a water-cooled copper mould, of depth 800mm, which oscillates vertically
to facilitate the continuous process. The loss of heat from the steel causes it
to solidify on its outer edges. As the steel descends, the layer of solid metal
increases in thickness and the solidifying strand is continuously extracted from
the mould by a series of rollers. Finally, the strand is cut into workable lengths
known as 'blooms'. To aid the casting process, specialized mould powders are
added at the top of the mould. This powder melts and forms a lubricating layer
between the solidifying steel and the mould wall. This flux prevents the steel
from touching the mould and transmits heat from the steel into the mould (see
Figure 1). The distance from the 'hot' face to the cooling-water channels is
16mm and the major part of temperature drop from the molten metal to the
the water occurs across this distance. Heat flows from the liquid steel across the
layers of solid steel casting, liquid and solid flux into the surrounding mould.
Temperatures measured at the thermocouples, which are 13mm from the hot
face of the copper mould, provide the main source of information about the heat
transfer.

When the heat removal process is disrupted, the surface quality of the steel
deteriorates, subsurface cracking may occur or, in the worst case, the steel shell
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Figure 1: Diagram of the top of the bloomcaster.

at the bottom of the mould ruptures and a 'breakout' of molten steel occurs.
When this happens the machine supports must be replaced at enormous cost in
downtime and repairs.

The Study Group decided to examine the following specific aspects of heat
flow in the copper mould

• a model for the detection of flux length changes

• a model for the detection of heat flow changes

• a model for the detection of hot spots moving with the strand

• time series analysis of the thermocouple data

All of these were addressed with an 'inverse flavour', that is, to see if it is
possible to use the thermocouple data to infer information about the heat flow.
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2. A model for the detection of flux length changes

As described above, the flow of flux down the sides of the solidifying steel is
essential to the operation of the caster (Bland, 1984; Fowkes & Woods, 1989).
Since the flux provides a highly conductive path for the heat, one of the dis-
ruptions to the normal flow of heat occurs when the layer of flux between the
solidifying steel and the mould is broken. If the flux layer is broken, the heat
transfer must occur across a layer of air which has relatively high thermal resis-
tance and a 'hot spot' is likely to form. When this spot eventually descends to
the exit of the mould, the thickness of the shell may not be enough to support
the liquid steel in the interior of the strand and a breakout may occur. The flow
of flux will affect the length of the flux column. We addressed the question

, How does the length of the flux zone influence the temperature readings in
the copper mould?'

The simplest model that displays the required features is shown in Figure 2.
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Figure 2: A schematic diagram of the copper mould.

Since the mould is 16mm thick and 800mm deep, this model assumes that
the mould is one-dimensional and semi-infinite (y ~ 0) with uniform heat input
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from the steel over a region y = 0 to i: We assume that this is the length of the
intact flux layer and that there is no flux below this level in the mould so that
by comparison with the fluxed region the heat transfer is negligible. The heat
flow through the top of the mould is also taken to be zero. We denote the heat
flow to the mould from the cast by ! and assume that the heat transfer from
the mould to the cooling water takes place by convection with a heat transfer
coefficient, per unit width of the mould, h. The appropriate one-dimensional
heat conduction equation is

er a2T {!, if y < i1
PC-at = kay2 -h(T-Tw)+ 0, if y > i1

where p, c and k are the density, specific heat and thermal conductivity of
the copper mould, respectively, and Tw is the water temperature, all assumed
constant. The time-dependent form of this equation can be used to investigate
the response time of the copper mould temperature to a sudden change of the
flux length. A characteristic time-scale associated with a change in the flux
length can be seen to be pc/h. A typical value of the heat transfer coefficient is
10,000 Wm-2 K-1, the thickness of the mould is about 16mm and the density
and thermal conductivity of copper are about 8954 kgm-3 and 386 W m-I K-1,

respectively, so that a characteristic response time is about 5.7 seconds.

A number of important features of the model can also be obtained from a
steady-state analysis. The steady-solution of this problem is

-(t /h) cosh( Ify)T - Tw = --~;...:....~=-----..:.....:=-
[1 + tanh( Ifi)] cosh( Ifi) + !

h
for y < i

and

T - t; = L [ tanh( Ifi) 1e- .jf(II-l) for y> i
h 1 + tanh( Ifi)

If the flux is in contact with the mould for all y ~ 0, we have

Figure 3 shows typical temperature distributions calculated from this model.
We see that a lowered temperature (from the infinite flux column case), with
size dependent on l, occurs over a length scale of order JkTli. We can examine
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Figure 3: Scaled temperature distribution in the mould for two values of the
fluxed region. The heat input from the cast lies between 0 and the dashed line
in each case.

the effect of the flux length on the temperature difference,T - Tw, at the point
x = t. We see that

f [ tanh fit 1
X 1+ tanh 1ft
fX.F say.

A plot of F versus Vhlk l is given in Figure 4. We conclude that if our ob-
servation is taken at the end of the fluxed region, then this will be half of the
maximum temperature reached if flux is provided from -00 to 00, since just half
of all space is being provided with heat. We also note that if ..jhfk l > 1, we
have little hope of detecting intact flux length changes from the temperature
readings at the thermocouple probes. Using the typical values of the parameters
given above, we can estimate that ..fkTh is about 2.5 cm.

3. A model for the detection of heat flow changes

The Study Group also examined a two-dimensional model of the mould as-
sumed to be of width a and depth b. The aim of this approach was to see if it
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Figure 4: Fractional reduction in temperature at the end of the fluxed region.

was possible to estimate the temperature in the mould, and in particular at the
thermocouples, given the heat flux at the hot face. The aim of this modelling
was to use this model to solve the inverse problem associated with inferring the
heat flux at the hot face from the thermocouple data. If this could be done
rapidly and accurately then it might be possible to implement the inverse model
'on line' at the bloom caster to detect the appearance of a hot spot in the mould
and take appropriate action before the hot spot reaches the mould exit and thus
avoid a possible breakout.

Consider a two-dimensional steady state model of the mould. We assume
that the top (y = b) and bottom (y = 0) of the mould are insulated. We specify
a heat flow at the hot face (x = a) and a convective cooling to the water at the
cold face (x = 0). Thus we have

82T 82T { 0 ~ x s a
8x2 + 8y2 = 0 for 0 :s; y :s; b

with
-k 8T = 0 at y = 0, b

8y

er
-k- = f(y) at x = a

8x
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and
8T

-k- = heT - Tw) at x = 08x
where, as above, k is the thermal conductivity of the mould, h is the convective
transfer coefficient for heat loss to the water, which is assumed to have uniform
temperature Tw.

The solution to this problem can be found by separation of variables [Carslaw
& Jaeger, 1959). It is given by

where we have imposed the "no flow" conditions at the top and bottom of
the mould and the constants Bn, Cn, n = 0,1,2, ... are determined by the
conditions at x = 0 and x = a. If

00

fey) = L:an cos n:y
n=O

then
-aO

Co = k' Bo

and

(km!") 2 ( nb cosh m!"a + sinh m!"a)T rn:;r T T

If we assume a linear profile for the heat input at the hot face of the form

then we obtain the results shown in Figure 5, where we have taken the typical
values of the parameters given above, together with the fact that the mould is
16mm thick and 800mm deep.

The inverse problem involves determining the input heat distribution from
the temperatures recorded at the thermocouples. In terms of this model, we
wish to estimate the coefficients an in the assumed expansion for f(y) from the
temperatures recorded at positions (x, y) in the mould. The thermocouples are a
uniform distance from the hot face, and we denote their position by (Xp,Yi), i =
1,2,3, ... ,M. We can then obtain a Fourier Series of the form

i = 1,2,3, ... , M.
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This gives an M by M matrix equation for the unknown coefficients 'in in terms
of the known temperatures.

By using the series solution for T( x, y) given above, we are able to determine
the first M Fourier coefficients, an, for the heat flow at the hot face. Once these
coefficients can be determined, an estimate can be made of the temperature
distribution in the whole mould.

Some preliminary work undertaken at the Study Group, and subsequently,
indicates a number of problems with this approach, which is analogous to fit-
ting polynomials to data. The results give large oscillations in the temperature
distribution, while fitting the thermocouple data exactly.

An alternative approach is use a least squares method to fit a lower order
solution to the thermocouple data. We write

i = 1,2,3, ... ,M,

where N is less than M - 1. The 'in are chosen to minimise

M
E = L{T(xp,Yi) - (J(Xp,Yi)}2.

i=l

That is, the t; ensure that

= 0 ,n=O,···,N.

It is possible that other fitting procedures would prove useful. The possibility
of calculating the heat input to the mould 'on-line' makes the effort almost
certainly worthwhile.

4. A model for the detection of a hot spot moving with the strand

This problem was aimed at developing a model which would allow the de-
tection of a hot or cold spot moving with the strand, so that it is formally a
time-dependent problem. We consider the mould to be infinite in extent in the
y-direction. We assume that there is heat input given by the function fey - V t)
at the hot-face of the copper mould, where V is the speed of the moving strand,
taken to be constant. We also assume convective cooling at the cold face and
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Figure 5: Contour plot of the temperature in the mould.

obtain the following equation:

et
at

where", is the thermal diffusivity of copper, with boundary conditions

and

aT
k- = heT - Tw) at x = 0ax

er
k- = fey - Vt) at x = dax

93
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where k is the thermal conductivity of the mould, h is the convective heat transfer
coefficient and Tw is the water temperature, taken to be constant.

If we put T' = T - Tw, h' = hjk, I' = I jk then we obtain

er
at

with

er
ax

= h'T' at x o
and m:- = I'(y - Vt) at x = d

ax

We now solve this boundary-value problem using Fourier Transforms. We
define

where y'

T = i:eiWY'T'(x,y', t) dy'

y - V t and then T satisfies the equation

a2T _ _
,..ax2 - w2,..T = iVwT

or

where u2 = w2 + iVw.
It

The transformed boundary conditions are

aT
ax

= h'T at x o
and

aT
ax

where J is the Fourier Transform of 1'.
problem is

= /(w) at x = d

The solution of this boundary value

T(w,x) = K(w,x)/(w)

where K(w,x) is given by

K(w,x)
(u + h')eUX + (u - h')e-UX

=
u( u + h')eud + u( u - h')e-ud
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Formally, we can then invert the Fourier Transform to obtain

T'(x,y,t) = 21.100
K(w,x)J(w)e-iw(y-Vt) dw

1rZ -00

In addition, the problem of determining the heat flow into the mould from the
temperature at any point can be solved formally as follows. Since

J(w) = T(w,x)
K(w,x)

then
'( _1_100 T(w,x) -iw(y-Vt) dwf x,y,t) = ()e

21ri -00 K w, x

Both of these inversion formulae will require numerical methods and they are
unlikely to be numerically satisfactory, but it should be noted that the original
problem is ill-determined physically.

5. Time series analysis of the thermocouple data

BHP made a number of sets of temperatures obtained from the mould ther-
mocouples available to the Group, and some preliminary analysis was carried
out. It was suggested that it was very difficult to interpret the raw data directly
and that a frequency decomposition of the power in the time series may reveal
basic information about the original data. Using this technique it may be possi-
ble to detect features which are associated with a situation in which a breakout
may occur.

6. Conclusions

Four approaches to detecting disruptions to the primary cooling process in the
continuous bloomcaster at BHP's Rod and Bar Division in Newcastle have been
investigated. Three of these, based on heat conduction models, have been studied
in specific detail and the basic mathematical structure has been deduced.

Each of the two-dimensional detection models needs numerical implemen-
tation. Each is an inverse problem involving the indirect measurement of the
quantity of interest, namely, the heat input to the mould or the presence of a
hot spot in the strand, so that some form of stabilisation will be necessary for
each.

The approach based on time-series analysis does not rely on any physical
model but uses statistical methods to characterise the 'normal' or 'abnormal'
functioning of the caster.
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The implementation of these models is to be left to BHP.
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