
MECHANICAL CHARACTERISTICS OF CARBON FIBER
YACHT MASTS

This paper provides a preliminary stress analysis of a carbon rein-
forced layered cylinder such as would be found in a yacht mast. The
cylinder is subjected to a compressive load and both an analytical
and numerical analysis of the resulting stress fields is obtained. Some
conclusions are obtained regarding the failure mode for particular ex-
amples of such cylinders.

Fiber reinforced materials are being increasingly used in specialist structures
where high stiffness and low weight are of considerable importance. Examples
of such specialist structures are turbine blades in jet engines and racing yacht
masts. Carbon fiber reinforced materials provide many of the desirable charac-
teristics required in such applications, but they also often display some highly
undesirable and sometimes unexpected properties that cause problems in their
use in specialist structures. For example, although carbon reinforced turbine
blades may exhibit highly desirable characteristics in the radial direction, their
properties in the transverse direction may limit their usefulness in this appli-
cation. Similarly, in the area of racing yacht masts, it is possible to produce a
carbon reinforced cylindrical mast which has the highly desirable properties of
being relatively light and also has high stiffness in the axial direction along which
the fibers are aligned. Unfortunately, when subjected to standard compressive
loads in the axial direction, such masts are prone to fracture and splinter as the
fibers 'pop out' of the resin which binds them together to form the reinforced
composite. This undesirable property needs to be suitably countered if such
masts are to be useful in racing yachts. One method of overcoming the problem
is to wind layers of the fiber reinforced material around the mast both on the
inside and outside in order to stop the axial fibers moving out of line. These
inner and outer layers do 110tsignificantly improve the strength of the material
in the axial direction and of course add to the weight of the mast. It is therefore
important to minimize the inner and outer layers and to include no more mate-
rial than is absolutely necessary to ensure the fibers in the central layer remain
in line. The purpose of the preliminary analysis in this paper is to examine
the relevant stress fields with a view to determining the minimum inner and
outer reinforcing layers. To this end, the stress field in a layered fiber reinforced
cylinder under a compressive load is considered. Both analytical and numerical



solutions to the problem are obtained. Both solutions have their limitations, but
nevertheless provide some insight into the important features of the problem and
also provide information regarding the likely failure mode for cylinders of this
type.

This analysis is specific to a three-layer tubular mast structure in the form
of a circular cylinder which has thin walls relative to the mast radius. The
mast is fabricated from a fiber-reinforced material consisting of carbon fibers set
in an epoxy resin. The middle lamina is oriented with the fibres in the mast
direction, and the fibres in the inner and outer layers lie at 90° to the mast
axis (i.e. they are purely circumferential). The load is taken to be axial, so no
moment is supported and naturally the mast is straight. The fully anisotropic
behaviour of the materials is incorporated in the linear regime, so the important
consequences of these properties are fully evident in the final expressions. The
ratio of the stresses in all members to the applied load is obtained for all the
principal directions. How these ratios vary with the design of the laminae and
the elastic properties of the material is then discussed.
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Poisson's ratio coupling transverse to longitudinal strain
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refers to the outer, middle or inner layers



The conventions for stress are not totally consistent with those used in nor-
mal engineering practice, but the final formulae are quite simple and the sense
of the stress is obvious in each particular case. The final design formulae are
convention-independent.

Now for a material exhibiting transverse anisotropy (i.e. rotational symmetry
about the fibre axis), the stiffness matrix has only five unknowns and hence the
relation

va Et

V/t El
is easy to obtain (see for example Saada, 1974). The material properties relevant
to this calculation are
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8 GPa

125 GPa

2090 MPa

64MPa

1717 MPa

210 MPa

Vlt ~ 0.35
va ~ 0.02: very little Poisson coupling in this direction.

Note that, typically, (a + b + c)/r ~ 0.02, so the tube is truly thin and use of
the thin walled approximation in this analysis will only cause errors of the order
of 1%. Also note that Ed Et ~ 15, so the tube is much stiffer longitudinally
than transversely.

4. Theory for a simple longitudinal load applied to a straight mast,
prior to bending in any way.

If the composite is to deform as a whole under an applied load, then the
strains of each component lamina must be the same in the radial and longitudinal
directions. This is the central idea in the method of consistent deformations,
also called the force method (see for example Popov, 1978). Now because of the
symmetry of the stress field, the tube obviously remains circular, so any strain
in the circumferential direction causes an identical strain in the radial direction.
Thus, for example, we can write the total radial strain of the inner layer as
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The first term is the coupling of the strain (uii)/Et) caused by the normal
load to the circumferential direction via Vt/, and the second term is the direct
circumferential strain caused by the circumferential stress u~i)/ E/. For the other
two layers, the equivalent equations are
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Now if we consider a small section of the complete laminate, subtended by a
small angle dO, then there is no net radial force on such a section (such as might
come from internal pressure in boiler theory). Hence the radial projection of the
circumferential forces must be zero, which for unit length gives

(bu~m) + au~i) + cu~o))sin dO= 0

bu~m)+ au~i) + cu~o)= o.
Hence, the laminae cannot all be in either tension or compression; it will soon
become clear that the stress on the middle sheet is of the opposite sign to the
stress on the inner and outer strapping.

Using the same idea of considering a small section subtended by the angle
dO and applying radial force balance, it is easy to show that the interfacial stress
in the radial direction on, say, the outer lamina, is given by

u(mo-interface) _ -c u(o)
r - r () .

Similar relations can be written down for the other interfaces. Most importantly,
these stresses are less than the circumferential stresses by approximately a factor
of 50 (c/ r, b / r, a/ r), so it is realistic to neglect the Poisson induced strains in the
circumferential and longitudinal directions caused by these stresses. This is the
thin shell approximation.
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IT the laminate is not to fail between the layers, then these strains must be
equal. Equating the longitudinal strains (7,8,9) then gives two independent
equations, and similarly two further equations are obtained by equating the
radial strains (2,3,4). The force balance (5) provides a fifth equation. Now
there are six unknown stresses, O'~o),O'~m),O'~i),O'}o),O'}m) and O'}i\ so it is now
possible to express all of these stresses in terms of any single one of them. It is
appropriate to choose the longitudinal stress O'~m) in the middle layer as the free
parameter, since it bears the bulk of the load, as will be shown shortly. Solving
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for the longitudinal stresses. Thus, for a compressive load, all the laminae are
in compression in the z-direction, and the circumferential stress is tensile in
the hoop layers but compressive in the middle layer. This is intuitively very
plausible.

The relation (12) is most interesting. Clearly if we make the material
isotropic by putting Et = E, and thus V't = Vt/, then the right hand side of (12)
becomes 1, as it should, and the layers would then be indistinguishable. Alter-
natively, if the mast was made of three loose concentric layers (i.e. with no stress
coupling between the layers), then we would expect the above ratio to be
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as is well known. This in fact is obtainable from (12) by sending VIt, Vtl -+ 0 to
simulate 'loose coupling'. However when the layers are glued, the tension in the
outer lamina (for a compressive load) 'pulls' these layers in along the mast axis,
thereby increasing the fraction of the load taken by the middle lamina rather



slightly. For example, with the current mast proportions of b = 2a = 2c, the
factor in curly braces in (12) is about 0.986. However, for any realistic values
of a, band c, the curly brace factor is not going to differ appreciably from 1, so
this is not a significant fact.

What is interesting is that these stress ratio formulae are symmetric in a
and c. More precisely they are functions only of the sum a+ c. This is probably
due to the thin wall approximation - the basic algebraic system that has been
set up is unable to distinguish inside from outside. This may not be such an
unrealistic feature as might first be supposed.

It is useful to show a simplified form of the stress ratios for the special case
a = c (equal thickness inner and outer hoop layers). In this case the ratios are
functions of only one free parameter, a/b, and may be written in the simple
forms

0.33 < 0.33
1+ 31.5a/b -

0.66a/b < 0.021
1+ 31.5a/b -

(
a/b + 0.0283)

0.0636 a/b + 0.0318 ::; 0.0636

with the obvious inequalities on the right. Now if we compare these expressions
to the ratios

tensile strength
IT[

compressive strength
IT[

compressive strengthlTt
compressive strength

IT[

it is immediately clear that, for all a/b, the inner and outer layers will not fail
in longitudinal tension, nor in transverse compression, before the inner lamina
fails in longitudinal compression. Similarly the middle layer will not fail in
transverse compression before it fails in longitudinal compression. Interestingly,
these formulae indicate that even very thin hoop layers (a/b ~ 0) are at about
27% of their tensile strength, and, at worst, 52% of their transverse compressive
strength, at the point where the inner layer fails in longitudinal compression.



A numerical analysis relevant to the problem specified in Section 2 was car-
ried out using using the finite element package MSC/NASTRAN with bi-linear
quad shell elements (membrane plus bending). The analysis was based on classi-
cal bending theory. A linear static analysis was considered to examine material
failure prior to buckling. Also a linear buckling analysis (eigenvalue) and a ge-
ometric non-linear analysis (without imperfections) for local buckling of a thin
shell was considered to determine the failure load due to buckling (see figures 2,
3 and 4).

The results obtained are summarized in figure 1 which provides the failure
load for a cylinder under compression with the total width of the cylinder wall
being 1 millimeter and the percentage of the total material forming the inner
and outer layers given as percentage hoop reinforcment in the graph.
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Figure 1: Material failure and local buckling for a carbon/epoxy composite mast.
Wall thickness is 1 mID.

The numerical results indicate that buckling of the mast will occur before
compressive failure in the middle layer. Furthermore the results show that for a
mast of 1 millimeter thickness the load at which buckling occurs is maximised
by having at least 15% of the mast distributed equally in the inner and outer
layers. Since it is appropriate to have as much as possible of the mast in the
middle layer to support the compressive load these results suggest no more than
15% of the mast should be distributed in the inner and outer layers.



Local buckling is not
sensitive to LID ratio
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Figure 4: Linear buckling: eigenvalue analysis. (a) Compression, lowest eigen-
value. (b) Compression, higher mode. (c) Compression plus bending, lowest
eigenvalue.

If the possibility of buckling is ignored then the conclusion from the analysis
in Sections 1-4 would be to make the inner and outer hoop layers as small



as is convenient. This is because the area of the middle lamina would need
to be increased as much as possible in order to reduce the compressive stress
for a given load and mast weight. This seems to be in accord with a mast
constructor's observation that 'only a layer of sticky tape is needed to keep the
layers in'. Accordingly, if a/ b is small, it is possible to naively obtain an upper
bound for the stress in the middle lamina from equation (16),

1
00(m)! < IPI

z - 21l"T(0.113a+ b)'

assuming an applied compressive load P. This can be rearranged to give the
restriction

0.113a + b > IPI. (20)
2 compressive strength'1l"TO'I

but this formula is likely to grossly underestimate the required thickness since,
as is clear from the numerical analysis, buckling is very likely to occur prior to
pure compressive failure.

Unfortunately, there are no simple analytical formulae which give a clear
indication as to how the stresses vary in bending or local buckling. However,
buckling formulae are usually sensitive only to elastic constants (e.g. the Euler
formula or the beer-can formula), so the critical buckling load of this composite
is likely to be given by a complicated function of the anisotropic elastic constants
only. It is difficult to estimate how this will vary with a/b. Nevertheless, the
simple theory given above does give a reasonably accurate idea of how the stresses
are distributed prior to failure, and thus may be of some use in the construction
of yacht masts.

It seems likely that, given the slenderness ratios and rigging supports used
in practice, the material will fail in local buckling or longitudinal compression
well before the Euler load. But consider the beer-can formula for an isotropic
thin cylinder of thickness h and radius T (see Timoshenko, 1961):

Eh
O'er = J ( 2)'T 31-v

If h/T ~ 1, then the buckling stress O'er is usually well below the compressive
strength. Unfortunately, in the case of these masts, h/T is not especially small, so
the local buckling strength is likely to be of the same order as the compressive
strength. Another possible problem is that the beer-can failure wavelengths
might be quite large, so an experiment or finite-element calculation might have
to use a fairly long cylinder to avoid any finite-length dependence of the critical
stress. The simple isotropic formulae predict about a 30 millimeter wavelength
for a 92 millimeter diameter mast of thickness 1 millimeter.



It seems likely that a full finite element calculation has to be done to satis-
factorily analyse the problem. And given the size of the 'parameter space' (the
range of possible loads, afb, etc.) through which such a calculation would have to
search, perhaps some restrictive decision would need to be made about the type
of loads considered. The direct axial load may be a good starting point, since it
can be directly compared with the preceding theory; the expressions given above
are probably a good check on the finite element calculation prior to buckling.
Secondly, from the simple statics of the rigging etc., it should be possible to find
that part of the mast subject to the maximum moment, and use this moment
plus the axial load as the load conditions in another finite element computation.
Then it would be appropriate to try to maximise the load as a function of afb,
as was attempted at the MISG. Naturally the finite element result would have
to be mesh-independent, and free of any finite length artifacts.
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