
POLAR PLOTS OF DIAMOND SURFACE
ENERGY

Diamond surface energy O"hkl determines crystal habit. We discuss
three aspects of a paper by Terentiev (1991). Firstly, we compare
Terentiev's algorithm for exact O"hkl with the analytic solution for h S
k S land h + k < l. Secondly, we show that the general formula given
by Terentiev should be interpreted probabilistic ally in order to be self-
consistent. Finally, we replicate in principle the simulation results for
O"hkl in a nickel melt using nothing more than Matlab routines.

In this report, we investigate the surface energy of diamonds. The original
motivation concerned the growth of industrial diamonds. Such diamonds
may be grown from a solution of carbon in metal at relatively high temper-
ature and pressure. At lower temperatures, the crystal habit tends to be
cubic, and at higher temperatures it tends to be octahedral as illustrated
in Figure 1. Since the cubic habit is more valuable in industrial diamonds,
but the temperature range over which it forms is quite narrow, it seems
desirable to develop a theoretical understanding of the role of temperature
in the crystallisation of diamond from melt. The paper by Terentiev [1] dis-
cusses various aspects of this process. However, the presentation is in some
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Figure 1: Two habits of diamond crystal. The octahedral habit is most
common among natural diamonds, and cubic is most desired for industrial
diamonds.

respects hard to followand apparently contradictory. Our main aim in this
report is to present Terentiev's results in a coherent and rigorous form.

We note that the paper by Terentiev [1]has not been much cited-we
found only three entries in the ISI data base [2, 3, 4] and one in Google
Scholar [5]. Following crystallographic convention, we denote by [hkl] the
plane perpendicular to the vector n = hi +kj + lk, and we use the standard
unit cell of diamond with respect to these axes as shown in Figure 2. A given
macrocrystal is composed of a very large number of unit cells. We consider
only integer h, k and l. Without loss of generality, we take h ::; k ::; l
in lowest terms, that is, there is no integer which divides all three. The
vacuum surface energy of the plane [hkl] is defined as the energy per unit
area required to split the crystal into two along the plane. In other words, the
energy per unit area of the bonds that cross the plane. All bonds in diamond
are equivalent, so the vacuum surface energy is proportional to the number
of bonds broken by the surface. For some orientations the position of the
plane makes a differenceto the number of bonds cut, and in those cases the
real surface energy corresponds to the plane that breaks the fewest bonds.
We use G'hkl to denote the vacuum energy density of a diamond surface in
the plane [hkl] in bonds per unit area, where the area of one face of the unit
cube is 1.

In a melt, the surface energy is reduced as compared to a surface in
a vacuum because the interaction between the crystal surface and the sur-
rounding medium is equivalentto weak bonding. Hence in a melt the surface
energy of a crystal is smaller than in vacuum. By definition, a melt is dis-
ordered and the position of atoms in the melt cannot be given by a regular
pattern.
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Figure 2: Unit cell of diamond lattice. It contains 18 atoms and 16 bonds.
The bonds can be visualised by noting that four of the vertices do not form
bonds internal to the unit cell, and that each of the four internal atoms
bonds to one vertex and three face centres.

Terentiev [1] makes three contributions: a table of values for (Thkl for
several cases of small integers h, k and l, reproduced as Table 1, the formula

4

(Thkl = (T{11l} LXiCOS(q>d,
i=l

(where the Xi and the q>idepend on hkl-details are given in Equation (3)),
and a diagram of (Thkl versus temperature for two different surfaces in a melt
based on a simulation driven by the joint potential of all the atoms in a melt.
Accordingly, we structure this report around three related questions.

A: Terentiev used a computer search to find the entries in his table. Can
one find an expression in closed form that gives the correct values?

B: If the answer to A is in the affirmative, how does Equation 3 relate
to the (Thkl in the table?

C: Can Terentiev's simulated temperature-dependence of (Thkl for dia-
monds in a melt be replicated?

In Section 2, we discuss the first question. We formulate an equivalent
minimisation problem and solve it for the case h+k < l. In Section 3 we show
that Equation 3 leads to a contradiction if interpreted deterministically but
holds when the left-hand side is interpreted probabilistically. In Section 4



Plane
001
011
012
111
112
113
023
123

Terentiev value
4.0004
2.8284
3.5765
2.3094
3.2652
3.6198
3.3282
3.0922

Formula 2
4
2.8284
3.5777
2.3904
3.2660
3.6181
3.3084
3.2071

Table 1: Diamond surface energies for various orientations of the surface.
Energy is in number of bonds per unit area, where the edge length of a unit
cell is 1. The first column gives hkl, where h :S k :S lj bold face indicates
h + k ~ l. The second column gives the values reported by Terentiev [1]'
resealed to the current energy unit. The third column gives the value cal-
culated according to the formula reported here. Note that although the
formula was proved correct only for the case h + k < 1, it matches the
Terentiev value in some other cases.

we answer question C affirmativelyand, thanks to Matlab, using only a few
lines of code; we also consider other possible approaches to the simulation.

2 Analytical investigation of vacuum (Jhkl

When h, k and 1 are integers, the intersection of the plane [hklJ with the
diamond lattice forms a regular tesselation. The smallest unit parallellogram
of this tesselation is formed by the vectors v = -ki + hj and w = -li + hk.
This is easily proved as follows. The plane is perpendicular to n = hi +
kj + lk, and since v and w are orthogonal to n, they both lie in the plane
[hklJ. Hence they define a parallellogram that tesselates the plane. To
prove that it is the smallest of possible unit parallellograms, consider its
area Ahkl = Ilv X wl12 = hVh2 + k2 + l2. Any other unit parallellogram
must also be formed by vectors with integer components chosen from h,
k, 1 and their multiples, for otherwise two adjacent parallellograms would
differ in the patterns formed by the bonds they cut. But because k and 1
cannot be smaller than h, the area of another unit parallellogram cannot be
smaller than Ahkl which is therefore the smallest possible area of a tesselating
parallellogram. Hence v and w form the smallest unit parallellogram for



Figure 3: The unit brick of [111],showingonly the brick of unit cells (light
lines) and the unit parallellogram (heavy lines). In this case there are h x
h x (k + l) = 1 x 1 x 2 = 2 unit cells per unit parallellogram of the plane
[111].

tesselating the plane hkl so that each parallellogram in the tesselation cuts
bonds in the same pattern.

Corresponding to the unit parallellogram is a repeating set of unit cells,
here called the repeating brick, of h x h x (k + I) unit cells, as illustrated in
Figure 3 and Figure 4 in two different projections. In the repeating brick,
the unit parallellogram intersects with h(h + k + 1 - 1) unit cells. It can
be shown that this yields h copies each of h + k + I - 1 different pieces.
If we sum over different pieces to get n bonds, then overall they cut hn
bonds. SinceAhkl = hJh2 + k2 + 12, onehas (/hkl = n/Jh2 + k2 + 12. Thus
it sufficesto find the number of bonds cut by the h + k + 1 - 1 different
pieces. Nowconsider the projection of a unit cell onto the plane spanned by
nand k. The plane [hkl] is projected onto a line and the unit cell onto a
rectangle. The bonds appear as a network of lines. The position of the line
corresponding to [hkl] is different in each of the different pieces. When the
rectangle is resealed to a unit square and all h + k + 1~ 1 different cases are
superimposed, we have a calculation box. For an example, considerFigure 5;
in general the h + k + 1 - 1 lines intersect the sides of the calculation box 1
times and the top and bottom h + k times.



Figure 4: The unit brick of [234], projected onto the lk plane. Heavy lines
show the unit parallellogram, and dotted lines its intersection of the planes
zk = 1,2, ... ,h -1. Note that each of the two layers consists of 8 congruent
pieces of the unit parallellograrn. Each piece in one layer corresponds to a
congruent piece in the other layer; such pairs have matching numbers.

In a calculation box, the line segments corresponding to the plane form
a hatching with slope 8 = (h + k)ll. The intersections between the line
segments of the plane and the line segments of the bonds give the count of
bonds cut by the plane, as follows. If the plane [hkl] cuts a bond, then in
the projection the bond will project onto a line segment partly above and
partly below the plane. Conversely, if a bond is not cut by the plane it
will project onto a line segment entirely on one side of the plane. In other
words, the number of cut bonds is the number of interesections between the
projection of the plane and the projections of the bonds. Where more than
one bond projects onto a line segment, that segment obviously contributes
more than one bond to the count.

The calculation is eased by one of two simple constructions. If the slope
8 < 1, the construction stacks two calculation boxes in a column. If 8 > 1,
the construction linesup twocalculation boxes in a row. In each construction
the plane projects onto a set of line segments of equal length, as illustrated
in Figure 6. These line segments we call unit projections of the cutting
plane. When 8 < 1, there are I unit projections from left to right. When
8 > 1 there are h + k unit projections from top to bottom.

We treat the case 8 < 1 first. The l unit projections lie on the lines
Yi = -sx + di + 8, where d = 11l, i = 0,1, ... , l - 1 and 8 E (0,d) is the
offset. We define f(Yi) as the number of bonds cut by the unit projection
that lies on line Yi. For i > k + h - l8, we have Yi(l) > 0, hence the
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Figure 5:
(a) The calculation box of [236],with the plane suppressed, showing the
position of the 16 bonds.
(b) The full superposition of the calculation box of [236].The plane appears
as 10 line segments.

Figure 6: Examples of the construction of unit projections of the cutting
plane. Bonds are dotted lines, atoms are discs, unit projections are solid
lines.
(a) Case s < 1: there are l unit segments.
(b) Case s > 1: there are k + h unit segments.



line segments on those Yi go from right to left in one calculation box and
therefore cut 4 bonds each. However, when i < k+h-l8 we have Yi(j\) = 0
with Xi E (0,1) and the unit projections span two calculation boxes. On
such Yi the unit projections cut either 3, 4 or 5 bonds. This is illustrated in
Figure 6. The function f is therefore defined piecewise as follows:

'f 0 - h
1 < Xi < h+k
'f h - k
1 h+k < Xi < h+k
'f k - 11 h+k < Xi <
otherwise,

where i, Yi and Xi are as defined above.
The number of bonds #{hkl} then is the minimum with respect to 8 of

the sum of the f(Yi):

1-1

#{hkl} = minL f(Yi)'o . 0
t=

It is easily seen that f(Yi) = 3 exactly as often as f(Yi) = 5 for any d, and
hence we have constant #{hkl} = 4l. Hence

4l
(7hkl = v'h2 + k2 + l2 '

for the case h + k < l.
One can define a similar function g(Yj) for the k +h line segments of the

case k + h > l. For example, in the case hkl = 111, we have

3 if 0 < Xi < i
1 'f 1 - 1

1 8" < Xi < "2
f(Yi) = 9 'f 1 - 5

1 "2 < Xi < 8"

3 if i< Xi < 1
From this it is easy to see that either 4 or 12 bonds are cut. The minimum
is therefore 4 bonds, leading to (7111 = 4/0. Curiously, this is the same
as the value given by Equation 2. Also interesting is the average number of
bonds cut when d ranges uniformly over (0,0.5), Since the case of 4 bonds
is three times as frequent as the case of 12 bonds, the average is 6, which is
also the value given by the Terentiev formula in Equation (3).

As this example shows, we have been able to treat s > 1 only case by
case, and have not found a general formula. Hence question A receives only
a partial affirmative from us.



3 A probabilistic interpretation of Terentiev's for-
mula

As noted above, Terentiev gives the formula

4

0"{111} = O"{hkl} L Xi cos(q>d
i=l

for the surface energy of an arbitrary plane. Here Xi = q>il2:~=l q>j,and

COS(q>l) = Ih+ k + II
..J3v'h2+ k2 + l2 '

COS(q>2)= 1- h - k + II
..J3v'h2+ k2 + l2 '

COS(q>3) 1- h + k -ll
..J3v'h2+ k2 + l2 '

COS(<P4)=
Ih - k -ll

..J3v'h2+ k2 + l2

But since 2:;=2 COs2(q>i)= 4/3, an equivalent simpler form is

3 4
O"hkl = 0"1114" LCOS(q>i)'

i=l

Then setting hkl = 111 we reach the contradiction 0"111 = 1.50"111.

So the Terentiev equation is not a general formula for O"hkl. However, we
note that the the vectors

a = (1+ j + k) 1..J3,
c=(-i+j-k)/..J3,

b = (-i - j + k)1..J3,
d=(i-j-k)/..J3,

are the unit vectors giving the direction of the four bonds of an atom in the
diamond lattice. Furthermore, COS(q>l)= a· n/lnl gives the projection of
one of the bonds onto the unit normal of the plane. One may interpret this
as proportional to the probability of intersecting the bond in the direction
of a by a random plane. The average overall number of bonds cut per unit
area is then proportional to the sum:

4

(;hkl = CLcos(q>i)
i=l



~and setting hkl = 111 we find that C = 0"11d2. This gives

1 4
O"hkl = 0"111-Lcos(<Pi)'

2 i=1

As we have seen, for h + k < l the average is equal to the minimum, so
the Terentiev formula is exact for the same cases as ours. However, when
h + k > l this is not always the case and then it is correct only in an average
sense.

4 Simulation of (Jhkl versus temperature for a dia-
mond in a melt

We repeat here the Terentiev simulation.
The unit-cell is a cube with edge length 3.569A, the length of a carbon

bond is .;3/4 of the edge of the unit-cell, that is, 1.545A.
We place a number of (metal) molcules in a box where the bottom is the

surface of the diamond. The potential energy consists of three terms.

• First we have the molecule - molecule interaction. The potential energy
from a single pair of molecules with distance r is given by the Lennard-
Jones potential

Vi ( ) -12 b -61 r = aIr - lr ,

A12 A6where al = 24188.0647eV and b1 = 201.4115eV .

• The molecules are kept in the box by the Lennard-Jones potential

TT ( ) -12 b -6v 2 r = a2r - 2r ,

where r is the distance to the boundary, a2 = 7.4103eV A12, and
b2 = 2.68eV A6

.

• Finally, the interaction with diamond lattice is modelled by the fol-
lowing "Lennard-Jones" potential for each atom-vacancy pair

V3(rO, rl, r2) = a3r212 - b3(ro + rl)-6, (6)

where ro = 1.545A is the distance from the carbon atom to the vacant
site, rl is the distance from the molecule to the vacant site, and r2 is the
distance from the molecule to the carbon atom, a3 = 72.994geV A12

,

and b2 = 10.8808eV A6
• This potential has a minimum at the vacant

site and goes to infinity at the atom, as illustrated in Figure 7.



Using Matlab's optimisation toolbox we now minimise the potential energy
and count the number of "free" vacant sites, where a site is considered free
if the distance to any molecule is larger than 1.3A.

Below we describe a general procedure whichwas used in the cases 111,
001 and 110.

First we look at the [OOl]-plane. It obviously cuts the unit cell in a
square with side length 1, as illustrated in Figure 8. We use 4 x 4 of this
unit and let the height of the box be h. We parametrise the box with the
unit cube [0,lJ3 as the domain in the followingway

0······
•......

0······
"",.

Figure 8: The intersection between the [OOl]-planeand the unit-cell. The
side length is 1 and the area is 1. The atoms (filled)are all in the plane and
the two "vacant sites" (open) are both 1/4 over the plane.



[

X a] [i] [1/2 + i] [1/2 + i] [1 + i]~: = ~ , 1/2
0
+j , 1/2

0
+j , 1; j ,

[xv] [1/4 + i] [1/4 + i] [3/4 + i] [3/4 + i]Yv = 1/4 + j , 1/4 + j , 3/4 + j , 3/4 + j ,
~ 1~1~ 1~ 1~

[
ua] [i/4] [1/8 + i/4] [1/8 + i/4] [1/4 + i/4]
:: = j~4 , 1/8;j/4 , 1/8;j/4 , 1/4;j/4 ,

[
1/16 + i/4] [1/16 + i/4] [3/16 + i/4] [3/16 + i/4]

= 1/16+j/4 , 1/16+j/4 , 3/16+j/4 , 3/16+j/4 .
1/(4h) 1/(4h) ·1/(4h) 1/(4h)

and the distance between twopoints corresponding to the coordinates u, v E
[0,1]3 is Jlu- vII. Consider a point with coordinates (u, v, w) E [0, 1J3. Then
the distance to the floor and to the roof is hw and h(l- w) respectively, the
distance to the sides u = 0 and u = 1 is 4u and 4(1 - u) respectively, and
the distance to the sides v = 0 and v = 1 is 4v and 4(1 - v) respectively.
Now it is possible to write the potential energy, v, in (u, v, w) coordinates:



v =L (alllui - ujll-12 - blilui - Ujll-6)
i<j

+L (a2(4ui)-12 - b2(4ui)-6 + a2(4(1- Ui))-12 - b2(4(1- Ui))-6)
i

+L (a2(4vi)-12 - b2(4vi)-6 + a2(4(1 - Vi))-12 - b2(4(1 - Vi))-6)
i

+L (a2(hwi)-12 - b2(hwi)-6 + a2(h(1 - Wi))-12 - b2(h(1 - Wi))-6)
i

+L 2: (a31lui - ajll-12 - b3(llaj - Vjll + Ilui - vjll)-6)
j i

=2: (a1 ((Ui - Ujf A50lAOOl(Ui - Uj))-6
i<j

( T T )-3)- bl (Ui - Uj) AOOlAo01(Ui - Uj)

+L (a2(4ui)-12 - b2(4ui)-6 + a2(4(1- Ui))-12 - b2(4(1 - Ui))-6)
i

+L (a2(4vi)-12 - b2(4vi)-6 + a2(4(1 - Vi))-12 - b2(4(1 - Vi))-6)
i

+L (a2(hwi)-12 - b2(hwd-6 + a2(h(1- Wi))-12 - b2(h(1- Wi))-6)
i

+L 2: (a3 (( Ui - aj f A50l AOOl(Ui - aj )) -6
j i .

where Ui = (Ui, Vi, Wi) are the coordinatesfor the molecules,aj = (ua,j, Va,j, Wa,j)
are the coordinates for the carbon atoms, vj = (uv,j, Vv,j, Wv,j) are the coor-
dinates for the vacant sites, and d = V3/4 is the (constant) distance between
two neighbouring atoms in the diamond lattice.

The [llO]-plane cuts the unit cell in a rectangle with side lengths 1 and
v'2, as shown in Figure 9. We use 3 x 4 of this unit and as before let h
denote the height of the box. We parametrise the box with the unit cube
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Q 9• •
Figure 9: The intersection between the [llO]-plane and the unit-cell. The
side lengths are 1 and J2 and the area is J2. The atoms (filled) are all in
the plane and the "vacant sites" (open) are all J2/4 over the plane.

or, in matrix notation, x = AllOu. The atom/vacant-site pairs have the
coordinates

[

X
a] [3J2/8+ i1 [7..;2/8+ i1 [J2/8 +i12 [5J2/8 + i1
Ya = 1/8+ j , 1/8+ j , 7/8+ j , 7/8+ j ,
Za 0 0 0 0

[
xv] [3J2/8+ i1 [7/2/8 + i1 [J2/8 + i1 [5J2/8 + i1Yv = 3/8+j , 3/8+j , 5/8+j , 5/8+j ,
Zv 1/4 1/4 1/4 1/4

where i = 0,1,2 and j = 0,1,2,3. The corresponding (u,v,w) coordi-
nates are

[

U
a] [3/24+ i/3] [7/24+ i/3] [1/24+ i/3] [5/24+ i/3]

a= ~: = 1/32;j/4 , 1/32;j/4 '. 7/32;j/4 , 7/32;j/4 ,

[
uv] [3/24+ i/3] [7/24+ i/3] [1/24+ i/3] [5/24+ i/3]

v = vv = 3/32+ j/4 , 3/32+ j/4 , 5/32+ j/4 , 5/32+ j/4 .
wv 1/(4h) 1/(4h) 1/(4h) 1/(4h)



[
18 0 0]

lIull2 = U
T AflOAnou = [u v w] 0 16 0

o 0 h2

and the distance between two points corresponding to the coordinates u, v E
[0,lJ3 is Ilu - vII. Consider a point with coordinates (u,v,w) E [0,1]3.
Then the distance to the floor and to the roof is still hw and h(l - w)
respectively. The (x, y) coordinates ofthe point are ((6u+3v)y'2/2, 3vV6/2)
so the distance to sides v = 0 and v = 1 is v3V6/2 and (1 - v)3V6/2
respectively. Finally, the sides u = 0 and u = 1 corresponds to the lines
t(l, v'3) and (3V2,0) + t(l, -13) respectively. The signed distances to these
lines are

V3x - y -I3(6u + 3v)V2 - 3vV6 3V6
2 = 4 = -2-u

--I3(x - 3V2) + Y = 3V6(1_ )
2 2 u ,

respectively. This is of course obvious from symmetry. Now it is possible to
write the potential energy, V, in (u, v, w) coordinates:



v = L (a11lui - Ujll-12 - b111ui- Uj 11-6)
i<j

( (3V6 )-12 (3v'6 )-6 (3v'6 )-12 (3v'6 )-6)+ ~ a2 -2-Ui - b2 TUi + a2 -2-(1 - Ui) - b2 -2-(1 - Ui)

( (3V6 )-12 (3v'6 )-6 (3v'6 )-12 (3v'6 )-6)+ ~ a2 -2-Vi - b2 TVi + a2 -2-(1- Vi) - b2 -2-(1- Vi)

+L (a2(hwi)-12 - b2(hwi)-6 + a2(h(1 - Wi))-12 - b2(h(1- Wi))-6)
i

+L L (a3l1ui - ajll-12 - b3(lIaj- Vjll+ IIUi - Vjll)-6)
j

,,( ( T T ) -6 ( T T ) -3)=LJ<" a1 (Ui-Uj) All1All1(Ui-Uj) -b1 (Ui-Uj) All1All1(Ui-Uj)
• J

( (3V6 )-12 (3v'6 )-6 (3v'6 )-12 (3v'6 )-6)+ ~ a2 -2-Ui - b2 TUi + a2 -2-(1- Ui) - b2 -2-(1 - Ui)

( (3V6 ) -12 (3v'6) -6 (3v'6 ) -12 (3v'6 ) -6)+ ~ a2 -2-Vi - b2 TVi + a2 -2-(1- Vi) - b2 -2-(1- Vi)

+L (a2(hwi)-12 - b2(hwi)-6 + a2(h(1- Wi))-12 - b2(h(1 - Wi))-6)
i

+L L (a3 ((Ui - ajf AfllAll1(Ui - aj))-6
J •

-b3 (d +.J (Ui- Vj)T AfllAll1(Ui _ Vj)) -6) ,

where Ui = (Ui, Vi, Wi) are the coordinates for the molecules, aj = (ua,j, Va,j, Wa,j)

are the coordinates for the carbon atoms, Vj = (uv,j, Vv,j, Wv,j) are the coor-
dinates for the vacant sites, and d = J3"/4 is the (constant) distance between
two neighbouring atoms in the diamond lattice.

The [l11]-plane cuts two unit cells in a parallelogram spanned by the
vectors (J2, 0) and (J2/2, V6/2) as in Figure 10. We use 3 x 3 of this unit
and as before let h denote the height of the box. We parametrise the box
with the unit cube [0,1]3 as the domain in the following way:

3.,;2/2
3V6/2

a



Figure 10: The intersection between the [l11]-plane and two unit-cells is a
parallelogram spanned by (V2, 0) and (J2/2, -/6/2). The side length is V2
and the area is V3 . The atoms (filled) are all in the plane and the "vacant
sites" (open) are all -13/4 over the plane, and with a bond to the atom
below.

or, in matrix notation, x = AnI u. The atom/vacant-site pairs have the
coordinates

[

Xa] [3-/2/8 + (2i + j)V2/2] [7V2/8 + (2i + j)V2/2]
Ya = -/6/8 + jV2/2 , -/6/8 + jV2/2 ,
~ 0 0

[

5-/2/8 + (2i + j)V2/2] [9-/2/8 + (2i + j)V2/2]
3-/6/8 + jV2/2 , 3-/6/8 + jV2/2 ,

o 0

[
xv] [3-/2/8 + (2i + j)V2/2] [7V2/8 + (2i + j)V2/2]
Yv = -/6/8 + j..J2/2 , V6/8 + jV2/2 ,
Zv -13/4 -13/4

[

5-/2/8 + (2i + j)..J2/2] [9-/2/8 + (2i + j)-/2/2]
3-/6/8 + jV2/2 , 3V6/8 + jV2/2 ,

-13/4 -13/4

[

U
a] [1/12 + i/3] [3/12 + i/3] [1/12 + i/3] [3/12 + i/3]

a = :: = 1/12: j/3 , 1/12: j/3 , 3/12: j/3 , 3/12: j/3 ,

[
uv] [1/12 + i/3] [3/12 + i/3] [1/12 + i/3] [3/12 + i/3]

v = Vv = 1/12 + j/3 , 1/12 + j/3 , 3/12 + j/3 , 3/12 + j/3 .
Wv V3/(4h) -I3/(4h) -I3/(4h) ..J3/(4h)



[18 9 0] [U]IIull2 = UT Arn Am u = [u v w] 9 18 0 v
o 0 h2 W

and the distance between two points corresponding to the coordinates u, v E
[0,1]3 is lIu - vii. Consider a point with coordinates (u,v,w) E [0,1]3.
Then the distance to the floor and to the roof is still hw and h(1 - w)
respectively. The (x, y) coordinates of the point are ((6u+3v)J2/2, 3vV6/2)
so the distance to sides v = 0 and v = 1 is v3V6/2 and (1 - v)3V6/2
respectively. Finally, the sides u = 0 and u = 1 corresponds to the lines
t(1, v'3) and (3J2,0) + t(l, J3) respectively. The signed distances to these
lines are

J3x - y v'3(6u + 3v)V2 - 3vV6 3V6
2 = 4 = -2-u

-v'3(x -23V2) + y = 3~ (1_ u) ,

respectively. This is of course obvious from symmetry. Now it is possible to
write the potential energy, V, in (u,v,w) coordinates:



v = I: (a1lfui - Ujll-12 - b1J1Ui- UjJl-6)
i<j

( (3v'6 ) -12 (3v'6) -6 (3v'6 ) -12 (3v'6 ) -6)+ ~ a2 -2-Ui - b2 -2-Ui + a2 -2-(1- Ui) - b2 -2-(1- Ui)

( ( 3v'6 ) -12 (3v'6) -6 (3v'6 ) -12 (3v'6 ) -6)+~ a2 -2-Vi -b2 -2-Vi +a2 -2-(1-vi) -b2 -2-(1-vi)

+I: (a2(hwi)-12 - b2(hwi)-6 + a2(h(1 - Wi))-12 - b2(h(1- Wi))-6)
i

+ I: I: (asllui - ajJl-12 - bs(llaj - Vjlf+ JlUi- VjID-6)
j i

+ I: I: (as ((Ui - ajf AfllA1l1(Ui - aj))-6
J ,

-bs (d+V(Ui-Vj)TAfllA111(Ui-Vj))-6),

where Ui = (Ui, Vi, Wi) are the coordinates for the molecules,aj = (ua,j, Va,j, Wa,j)

are the coordinates for the carbon atoms, Vj =( Uv,j, Vv,j, Wv,j) are the coor-
dinates for the vacant sites, and d = V3/4 is the (constant) distance between
two neighbouring atoms in the diamond lattice.

We have not attempted to replicate exactly the diagram in Terentiev. This
is for two reasons. Firstly, the degree of smoothness in his diagram would
require a much larger computation than the one described above. Secondly,
we are unable to present results in terms of temperature. In the paper by
Terentiev [1],the point is made that lowdensity corresponds to high tem-
perature. The claim is made that they are inversely proportional. We have
not attempted to prove this claim or to find the constant of proportionality.



Hence we present our simulation results in terms of inversed density.
With these provisos,wereproduce typical runs of the algorithm described

above. The high-temperature behaviour is correct, in that the surface energy
of the HI-plane is the lowest, and that of the 100-plane is the highest. At
low temperatures the resolution is poor, and the results cannot be said to
be definitive. However, they are encouraging, in that the surface energy
of the HI-plane appears to be approaching 0 more slowly with decreasing
"temperature" than that of the nO-plane, which itself appears to go more
slowly than that of the 100-plane. We believe large-scale implementations
of the algorithm above would have better resolution, and in all likelihood
the diagram of Terentiev [1]would be replicated.

l~

Cll
~ 0.2
Cll
..:
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-001
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10 15
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Figure 11: Simulation results: the surface energy, in terms of bonds per unit
area, as a function of the inverse molecular density (as proxy for temper-
ature). Simulations boxes have a basis intersecting 12 to 16 unit cells and
contain 200 atoms of melt.



Obviously one would like to have a general formula for the vacuum surface
energy also for the case 8 > 1. In that case, as we have seen, the value of
f(Yi) changes at many places. It is easy to see that these are projections of
the atoms that appear internal to the calculation box. The order in which
these projections line up on the bottom plane is not constant, but depends
on h, k, and l. It should be investigated whether the number of different
possible orders are manageably small. If so, it may be that the bond count
leading to f(Yi) may be tractable.
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