
Proceedings of the 2nd Fields–MITACS Industrial Problem-Solving Workshop, 2008

Portfolio Optimization

Problem Presenter: Randall Selkirk (Mapleridge Capital Corporation)

Academic Participants: Nabeel Butt (University of Western Ontario), Haohan Huang
(York University), Kin Hung Kan (University of Western Ontario), Lung Kwan Tsui (Uni-
versity of Pittsburgh), John Chadam (University of Pittsburgh)

Report prepared by: Lung Kwan Tsui1and John Chadam1

Abstract. Two strategies are devised to maximize the Sharpe ratio of a portfolio
consisting of 35 risky assets. The first one uses periodically updated optimal weights
from standard Markowitz/Sharpe portfolio theory. The second strategy removes a
fixed number of assets that have highest positive correlation with the rest of the
portfolio. Both approaches perform better (have larger Sharpe ratio) than the
existing strategies.

1 The Problem

The challenge presented by the Mapleridge team was to devise an allocation strategy
among 35 risky assets that they had identified with the goal of maximizing the Sharpe ratio
over a prescribed time horizon. Their interest in the project arose from the counter-intuitive
results that they had obtained in house. Specifically, using the optimal allocation weights
(i.e., obtained via the Markowitz/Sharpe procedure) on out-of-sample data, produced re-
turns with a Sharpe ratio that was exceeded by less sophisticated strategies such as equal
weighting among the risky assets (the maximum entropy - least information strategy) and
weighting each asset by the inverse of its standard deviation (see Figure 1). The ques-
tion then is why did this counter-intuitive result occur and the challenge was to use this
information to devise allocation strategies to improve performance.

2 Background

Suppose one can invest (long and short) in N risky assets Si (N = 35 here). Suppose
that the expected returns of the individual assets in the time interval [0, T ] are µi, i =
1, ..., N and the covariance matrix of these returns is C = [σij ], i, j = 1, ..., N . If one creates
a portfolio of these N risky assets by allocating the proportion (weight) wi of the total
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Figure 1 The frequency distribution of Sharpe ratios for portfolios with random allocation
among 35 assets highlighting the values for the Markowitz optimal weights, equal weights
and inverse standard deviation weights.

investment to the i-th asset, then the expected return on this portfolio at the horizon T is

Πp =

N∑
i=1

wiui (2.1)

with the standard deviation of the portfolio returns given by

σp =

√√√√ N∑
i,j=1

σijwiwj (2.2)

A common risk measure that one might consider maximizing in the allocation procedure is
the Sharpe ratio Πp/σp. Indeed, Markowitz/Sharpe portfolio theory is built on the result
that the weights wi, i = 1, ..., N obtained from the optimization problem

max
wi

N∑
i=1

wiµi − rf√√√√ N∑
i,j=1

σijwiwj

(2.3a)

subject to

N∑
i=1

wi = 1 (2.3b)

where rf is the (T period) return on a risk-free bond (that is also available for investment)
provides the weights for the so-called capital market portfolio. By investing in this specific
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portfolio of the risky assets and the bond the investor obtains the best return for a given
risk (alternatively, the lowest risk for a given return) among all portfolios involving the
bond and N risky assets.

In applying this theoretical framework to their data the team from Mapleridge found that
they did not obtain the expected optimal performance. Beginning with 2606 days of daily
returns for each of their 35 risky assets, they used the first 1303 days to estimate the val-
ues of µi and σij . The Markowitz-Sharpe weights, wM

i , for the capital market portfolio
obtained from the optimization problem with rf = 0 were used to construct a portfolio of
the 35 risky assets and the performance was calculated using the last half (out-of-sample)
data. The counter-intuitive result was that the maximum Sharpe ratio was not obtained
with this portfolio. In fact, as Figure 1 shows, the portfolio that requires no knowledge
about the asset returns, wi = 1/N = 1/35, i = 1, .., 35, provided a higher Sharpe ratio

and the portfolio with wi = (σii)
−1(

∑N
j=1 1/σjj)

−1 does even better. Notice that the latter
attempts to minimize the risk by penalizing the riskiest assets but does not take advantage
of knowledge of the expected returns or the correlation dependence, σij , i 6= j, of the assets.

3 Two Approaches

It is well known that the Markowitz/Sharpe optimization procedure (2.3) to obtain the
weight wM

j is quite sensitive to the underlying assumptions and data. For example, if the

returns are not Gaussian, then skewness and kurtosis corrections are required [1]. Moreover,
errors in estimating µi and σij from the data lead to large variations in the values of wM

i [2].
Finally, if the data is not stationary, it is difficult to use data from the past to implement
strategies for the future. The team began the project by using the standard tests and, as
expected with real-world data, it possessed all three of the above deficiencies.

During the week the team came up with two approaches to these problems arising from
the data. The first is a straightforward, direct attempt to minimize the effect of the above
difficulties arising from the data. The idea is to periodically update the optimal weights
from (2.3) using the best possible estimates of the parameters µi, σij at that time. Opera-
tionally, there are two time scales to be determined - the reallocation times and the lookback
interval over the past data that provides the best estimate for the input parameters µi, σij
to the optimization procedure (2.3). Of course, frequent reallocation can lead to prohibitive
transaction costs. In discussions with the Mapleridge team it was agree that transaction
costs could be adequately modeled by simply reducing the portfolio value at a reallocation
time tj by a fixed percentage, 0.04%; i.e.,

Π(tj+) = (1− 0.0004)Π(tj−) (3.1)

Two independent computer codes (one is attached as an Appendix) were written to assure
the validity of our numerical experimentations. The first check was to reproduce the origi-
nal, single period, results of the Mapleridge team. Next, ad hoc experimentation with the
codes indicated that optimal performance was achieved with a reallocation period of 20
days and a lookback interval of 300 days (see Figure 2). Using data from the more distant
past distorts the estimates of the parameters used in the optimization step (2.3).

The second approach is based on the observation that although the yearly (250-day) re-
turns fluctuate wildly, their covariances do not. The implication is that even though the
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Figure 2 Time series of the portfolio value starting from $1 for different allocation meth-
ods. The order of magnitude of the Sharpe ratio appearing at the top are different from
those in Fig. 1 since different scaling is used.

data is not stationary, it does provide reasonable estimates of the covariances. The risk-
lowering strategy that is developed here is to remove those risky asset that contribute the
most positively correlated risk. That is, at each reallocation time (taken to be 1 year) we

completely remove from the portfolio a fixed number of risky assets, Si, for which
∑N

j 6=i σij
has the largest positive value. This reallocation process is repeated each year using updated
data to calculate the covariance matrix. Numerical experimentation with this covariance
reduction method suggests that the highest Sharpe ratio was obtained when about 7 of the
assets with the highest positive correlations were removed each year (See Figure 3). In spite
of diminishing performance with additional removals, this covariance reduction method still
out-performed the equally weighted portfolio when as many as 17 assets were removed.

4 Conclusions

The real-world data provided by Mapleridge on the daily returns of 35 proprietary assets
were, as expected, neither Gaussian nor stationary. Moreover, the annual returns fluctuated
wildly. Evidently the extent of the departure from these idealized assumption that underlie
Markowitz Portfolio Theory was sufficient to negate the optimality of its performance. Two
approaches were proposed and examined to improve performance (increase the Sharpe ratio)
by reducing the effects of the above deficiencies in the data. Both were based on periodic
reallocation in the portfolio using updated estimates of the relevant parameters required
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Figure 3 Sharpe ratio obtained from the reallocation process which removes assets with
the highest positive correlations.

for the particular reallocation procedure. The first simply used updated values for the
weights of the capital market portfolio as in the standard Markowitz approach while the
second removed from the portfolio (assigned a zero weight to) those assets Si that had the

highest positive values of
∑35

j 6=i σij . Both approaches are ad hoc and the results, though
convincing, are preliminary. This is, of course, due to the short amount of time available to
the Mitacs team. Some longer term projects that were suggested by this preliminary study
include incorporation of higher moments to overcome the non-normality of the returns and
a formulation of the optimal reallocation time as a stopping time problem. Finally, the
results for maximizing the Sharpe ratio could be compared with those using other measures
such as Sortino ratio, maximum drawdown, etc. The Sharpe ratio may not be the optimal
performance measure for non-Gaussian returns [3].
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Appendix A: Matlab Code

A.1 mainfunction.m

digits(10)

global PP;

PeriodVector=[20,20,20,20,20,20,60,60,60,60,125,125,125,250,250,250];

PPVector=[1300,600,300,120,80,40,1300,600,300,120,1300,600,300,1300,600,300];

% Period=60;

% SR_interval=1;

% StopNumber=1300;

for N=7:16

Period=PeriodVector(N);

SR_interval=1;

StopNumber=1300;

PP=PPVector(N)-Period;

[SR0,Truely_Price0]=Trans(Period,SR_interval,StopNumber);

disp(’Period,SR_interval,SR’);

[Period,SR_interval,SR0];

% SR0*sqrt(256)/sqrt(SR_interval)

% n=length(Truely_Price0);

% Truely_Price(n)

[SR1,Truely_Price1]=Equallyweighted(SR_interval,StopNumber);

SR1;

% figure(’2’)

[SR2,Truely_Price2]=one_over_sigma(SR_interval,StopNumber);

SR2;

[SR3,Truely_Price3]=Opone(SR_interval,StopNumber);

SR3;

hold all;

plot(Truely_Price0)

plot(Truely_Price1)

plot(Truely_Price2)

plot(Truely_Price3)

text(1200,Truely_Price0(1200),’\leftarrow Rebalance’,...

’HorizontalAlignment’,’left’)

text(1200,Truely_Price1(1200),’\leftarrow equally weighted’,...

’HorizontalAlignment’,’left’)

text(1200,Truely_Price2(1200),’\leftarrow 1/sigma’,...

’HorizontalAlignment’,’left’)



Portfolio Optimization 41

text(1200,Truely_Price3(1200),’\leftarrow optimize once’,...

’HorizontalAlignment’,’left’)

[SR4,Truely_Price4]=Second_Trans(Period,SR_interval,StopNumber);

plot(Truely_Price4)

text(1200,Truely_Price4(1200),’\leftarrow equally weighted reblance’,...

’HorizontalAlignment’,’left’)

tt=strcat(’Rebalancing period: ’, num2str(Period));

tt2=strcat(’; Look back date: ’,num2str(PPVector(N)));

tt3=strcat(’Sharp Ratio(equally,equally reblance,1/sigma,...

optimize reblance,optimize once): ’,num2str([SR1,SR4,SR2,SR0,SR3]));

ttt=strcat(tt,tt2);

tt5=sprintf(’%s \n %s’,ttt,’Sharp Ratio(equally,equally reblance,1/sigma,...

optimize reblance,optimize once): ’);

title(sprintf(’%s \n %s’,tt5,num2str([SR1,SR4,SR2,SR0,SR3])));

save_name=strcat(strcat(’figure’,num2str(N)),’.jpg’);

saveas(gcf,save_name);

hold off;

end

A.2 Trans.m

function [SR,Truely_Price]=Trans(Period,SR_interval,StopNumber)

global PP;

% Input:

% Period: reallocate period, unit: Number of days!

% SR_interval;%Sharp ratio interval, has to be less than StopNumber

% (default 500!), unit: Number of days!

% StopNumber:Default 500, the number of days we used as historical

% data, unit: Number of days!

% Output:

% SR: sharp ratio of Period we need

%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

% Period=256;% reallocate period 1 yr

% SR_interval=125;%Sharp ratio interval,

% has to be less than StopNumber/2 (default 500!)

AllReturn=xlsread(’Fields_Mitac_MapleridgeDataSet.csv’);

[m,n]=size(AllReturn);

No_of_Asset=n;

No_of_Day=m;

% StopNumber=500;

for i=1:No_of_Day-Period

% The return for each strategy between the period

Period_Return(i,:)=prod(1+AllReturn(i:i+Period-1,:))-1;
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end

% PP=1300-Period;

Old=Period_Return(StopNumber-Period+1-PP+1:StopNumber-Period+1,:);

correlation_old=corrcoef(Old);

mean_old=mean(Old);

std_old=std(Old);

H = ones([1,No_of_Asset]);

%iniValues=H*1/No_of_Asset;

LB = zeros([1,No_of_Asset]);

UB =ones([1,No_of_Asset]);

Quadraticfun = @(x)(-mean_old*x)/sqrt((std_old’.*x)’...

*correlation_old*(std_old’.*x));

opts = optimset(’fmincon’);

opts.LargeScale=’off’;

opts.Display=’off’;

Aeq=H;

beq=[1];

highfval=0;

for i=1:1

iniValues=randn(1,No_of_Asset).*0.1’;

[x,fval] =fmincon(Quadraticfun,iniValues’,[],[],...

Aeq,beq,LB’,UB’,[],opts);

if fval<=highfval

highfval=fval;

optX=x;

end

end

Weight(:,1)=optX;

k=1;

while(StopNumber+1+Period*k<No_of_Day)

Old=Period_Return(StopNumber+Period*k-Period+1-PP+1:...

StopNumber+Period*k-Period+1,:);

correlation_old=corrcoef(Old);

mean_old=mean(Old);

std_old=std(Old);

H = ones([1,No_of_Asset]);

%iniValues=H*1/No_of_Asset;

LB = zeros([1,No_of_Asset]);

UB =ones([1,No_of_Asset]);

Quadraticfun = @(x)(-mean_old*x)/sqrt((std_old’.*x)’...

*correlation_old*(std_old’.*x));

highfval=0;

for i=1:1

iniValues=randn(1,No_of_Asset).*0.1’;

[x,fval] =fmincon(Quadraticfun,iniValues’,[],[],...
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Aeq,beq,LB’,UB’,[],opts);

if fval<=highfval

highfval=fval;

optX=x;

end

end

Weight(:,k+1)=optX;

k=k+1;

end

Wealth(1)=1;

for j=1:k-1

new_wealth=sum(prod(1+AllReturn(StopNumber+1+Period*(j-1):...

StopNumber+1+Period*j,:))’.*Weight(:,j)*Wealth(j));

change=abs(Weight(:,j+1)*new_wealth-prod(1+AllReturn...

(StopNumber+1+Period*(j-1):StopNumber+1+Period*j,:))’...

.*Weight(:,j)*Wealth(j));

Transaction_cost(j)=0.0004*sum(change);

Wealth(j+1)=new_wealth-Transaction_cost(j);

Delta(j,:)=0.0004*(change);

end

% Wealth

% Transaction_cost

% Weight

% Delta=Delta’/.0004

% Truely_Price is the value of the portfolio each day from the beginning of

% the testing data.(i.e. the first day after Day StopNumber)

Truely_Price(1)=Wealth(1);

Truely_Price(2)=sum(Wealth(1)*(1+AllReturn(StopNumber,:))’.*Weight(:,j));

temp=Truely_Price(1);

No=1;

for j=3:No_of_Day-StopNumber+1

Truely_Price(j)=sum(temp*Weight(:,No).*prod(1+AllReturn(StopNumber+...

(No-1)*Period:StopNumber+j-2,:),1)’);

if((j+1)/Period==floor((j+1)/Period))

Truely_Price(j)=Wealth(No+1);

No=No+1;

temp=Truely_Price(j);

end

end

Portfolio_Return(1)=Truely_Price(SR_interval)/Wealth(1)-1;

for j=1:No_of_Day-StopNumber-SR_interval+1

Portfolio_Return(j)=Truely_Price(SR_interval+j)/Truely_Price(j)-1;

end



44 Portfolio Optimization

MU=mean(Portfolio_Return);

STD=std(Portfolio_Return);

SR=MU/STD;

A.3 Equallyweighted.m

function [SR,Truely_Price]=Equallyweighted(SR_interval,StopNumber)

AllReturn=xlsread(’Fields_Mitac_MapleridgeDataSet.csv’);

[m,n]=size(AllReturn);

No_of_Asset=n;

No_of_Day=m;

digits(10)

weight=ones(35,1)/35;

Truely_Price(1)=1;

for i=2:(m-StopNumber+2)

Truely_Price(i)=sum(Truely_Price(1)*weight.*prod(1+...

AllReturn(StopNumber:StopNumber+i-2,:),1)’);

end

for j=1:No_of_Day-StopNumber-SR_interval+1

Portfolio_Return(j)=Truely_Price(SR_interval+j)/Truely_Price(j)-1;

end

MU=mean(Portfolio_Return);

STD=std(Portfolio_Return);

SR=MU/STD;

A.4 one over sigma.m

function [SR,Truely_Price]=one_over_sigma(SR_interval,StopNumber)

AllReturn=xlsread(’Fields_Mitac_MapleridgeDataSet.csv’);

[m,n]=size(AllReturn);

No_of_Asset=n;

No_of_Day=m;

% StopNumber=1500;

Old=AllReturn(1:StopNumber-1,:);

correlation_old=corrcoef(Old);

mean_old=mean(Old);

std_old=std(Old);

for i=1:35

x3(i)=(1./std_old(i))/sum(1./std_old);

end

weight=x3’;

Truely_Price(1)=1;

for i=2:(m-StopNumber+2)

Truely_Price(i)=sum(Truely_Price(1)*weight.*...

prod(1+AllReturn(StopNumber:StopNumber+i-2,:),1)’);

end

for j=1:No_of_Day-StopNumber-SR_interval+1
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Portfolio_Return(j)=Truely_Price(SR_interval+j)/Truely_Price(j)-1;

end

MU=mean(Portfolio_Return);

STD=std(Portfolio_Return);

SR=MU/STD;

A.5 Opone.m

function [SR,Truely_Price]=Opone(SR_interval,StopNumber)

AllReturn=xlsread(’Fields_Mitac_MapleridgeDataSet.csv’);

[m,n]=size(AllReturn);

No_of_Asset=n;

No_of_Day=m;

digits(10)

PP=500;

Period=60;

for i=1:No_of_Day-Period

% The return for each strategy between the period

Period_Return(i,:)=prod(1+AllReturn(i:i+Period-1,:))-1;

end

Old=Period_Return(StopNumber-Period+1-PP+1:StopNumber-Period+1,:);

correlation_old=corrcoef(Old);

mean_old=mean(Old);

std_old=std(Old);

H = ones([1,No_of_Asset]);

%iniValues=H*1/No_of_Asset;

LB = zeros([1,No_of_Asset]);

UB =ones([1,No_of_Asset]);

Quadraticfun = @(x)(-mean_old*x)/sqrt((std_old’.*x)’...

*correlation_old*(std_old’.*x));

opts = optimset(’fmincon’);

opts.LargeScale=’off’;

opts.Display=’off’;

Aeq=H;

beq=[1];

highfval=0;

for i=1:1

iniValues=randn(1,No_of_Asset).*0.1’;

[x,fval] =fmincon(Quadraticfun,iniValues’,[],[],...

Aeq,beq,LB’,UB’,[],opts);

if fval<=highfval

highfval=fval;

optX=x;

end

end
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weight=optX;

Truely_Price(1)=1;

for i=2:(m-StopNumber+2)

Truely_Price(i)=sum(Truely_Price(1)*weight.*...

prod(1+AllReturn(StopNumber:StopNumber+i-2,:),1)’);

end

for j=1:No_of_Day-StopNumber-SR_interval+1

Portfolio_Return(j)=Truely_Price(SR_interval+j)/Truely_Price(j)-1;

end

MU=mean(Portfolio_Return);

STD=std(Portfolio_Return);

SR=MU/STD;

A.6 Second Trans.m

function [SR,Truely_Price]=Second_Trans(Period,SR_interval,StopNumber)

% Input:

% Period: reallocate period, unit: Number of days!

% SR_interval;%Sharp ratio interval, has to be less than StopNumber

% (default 500!), unit: Number of days!

% StopNumber:Default 500, the number of days we used as historical

% data, unit: Number of days!

% Output:

% SR: sharp ratio of Period we need

%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

% Period=256;% reallocate period 1 yr

% SR_interval=125;%Sharp ratio interval, has to be less

% than StopNumber/2 (default 500!)

AllReturn=xlsread(’Fields_Mitac_MapleridgeDataSet.csv’);

[m,n]=size(AllReturn);

No_of_Asset=n;

No_of_Day=m;

% StopNumber=500;

for i=1:No_of_Day-Period

% The return for each strategy between the period

Period_Return(i,:)=prod(1+AllReturn(i:i+Period-1,:))-1;

end

k=1;

while(StopNumber+1+Period*k<No_of_Day)

k=k+1;

end

Weight=ones(35,k)/35;

Wealth(1)=1;
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for j=1:k-1

new_wealth=sum(prod(1+AllReturn(StopNumber+1+Period*(j-1):...

StopNumber+1+Period*j,:))’.*Weight(:,j)*Wealth(j));

change=abs(Weight(:,j+1)*new_wealth-prod(1+AllReturn(...

StopNumber+1+Period*(j-1):StopNumber+1+Period*j,:))’...

.*Weight(:,j)*Wealth(j));

Transaction_cost(j)=0.0004*sum(change);

Wealth(j+1)=new_wealth-Transaction_cost(j);

Delta(j,:)=0.0004*(change);

end

Wealth

Transaction_cost

Weight

Delta=Delta’/.0004

% Truely_Price is the value of the portfolio each day from the beginning of

% the testing data.(i.e. the first day after Day StopNumber)

Truely_Price(1)=Wealth(1);

Truely_Price(2)=sum(Wealth(1)*(1+AllReturn(StopNumber,:))’.*Weight(:,j));

temp=Truely_Price(1);

No=1;

for j=3:No_of_Day-StopNumber+1

Truely_Price(j)=sum(temp*Weight(:,No).*prod(1+AllReturn(...

StopNumber+(No-1)*Period:StopNumber+j-2,:),1)’);

if((j+1)/Period==floor((j+1)/Period))

Truely_Price(j)=Wealth(No+1);

No=No+1;

temp=Truely_Price(j);

end

end

Portfolio_Return(1)=Truely_Price(SR_interval)/Wealth(1)-1;

for j=1:No_of_Day-StopNumber-SR_interval+1

Portfolio_Return(j)=Truely_Price(SR_interval+j)/Truely_Price(j)-1;

end

MU=mean(Portfolio_Return);

STD=std(Portfolio_Return);

SR=MU/STD;


