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Introduction
For convenience, we restate here the mathematical problem we have to solve

(see the problem description in the first part of the booklet).

We have the diffusion equation

∂c

∂t
= D

∂2c

∂x2
, t > 0, x > 0, (1)

that describes the diffusion process in a simple one component solution, with

initial condition

c(x, 0) = ceq, x > 0, (2)

right boundary condition

lim
x→∞

c(x, t) = ceq, t ≥ 0, (3)

and boundary condition at x = 0

lim
x→0

c(x, t) = cs(t), t ≥ 0, (4)

where c(x, t) is the bulk concentration of surfactant, cs(t) is the subsurface con-

centration. The latter is defined by a relation with the adsorption Γ(t) at the

interface, x = 0. This relation is called “the adsorption isotherm”. Different

surfactants obey different adsorption isotherms. Three of the most common ones

are given in Table 1, where K is the so-called adsorption constant, β is the inter-

action parameter, Γ∞ is the maximum adsorption, and θ is the surface coverage,

given by θ(t) ≡ Γ(t)/Γ∞.

Further, for the adsorption the following holds true:

dΓ

dt
= D

∂c

∂x

∣

∣

∣

∣

x=0

, t > 0, (5)

Γ(0) = Γ0. (6)
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Table 1: Typical adsorption isotherms

Adsorption isotherm

Frumkin Kcs =
θ

1 − θ
exp (−βθ)

Van der Waals Kcs =
θ

1 − θ
exp

(

θ

1 − θ
− βθ

)

Helfand, Frisch, Lebowitz Kcs =
θ

1 − θ
exp

(

3θ − 2θ2

(1 − θ)2
− βθ

)

Table 2: Typical surface equations of state

Equation of state

Frumkin
σ0 − σ

EBΓ∞

= − ln(1 − θ)−
β

2
θ2

Van der Waals
σ0 − σ

EBΓ∞

=
θ

1 − θ
−
β

2
θ2

Helfand, Frisch, Lebowitz
σ0 − σ

EBΓ∞

=
θ

(1 − θ)2
−
β

2
θ2

The difficulty in solving the problem (1)–(6), however, is in the fact that two

of the parameters, namely K and Γ∞, cannot be measured and, thus, are not

known. So our task is to find an algorithm for estimating the values

of those two parameters. For doing so, we are given experimental data for

the interfacial tension σ (see Fig. 1), which is related to the other variables and

parameters by the so-called “equation of state” (see Table 2).

The algorithms used for parametric identification are iterative [2, 3]. We

begin with an initial estimate for the unknown parameters and then proceed by

obtaining successive estimations that should converge to the real values. Those

algorithms rely on the ability to solve the differential problem efficiently,

if we know an estimate for the parameters. Thus, we begin our study with solving

the differential problem. For this purpose, we propose four different numerical

methods. Then, we explain how we can estimate the two unknown parameters.

Numerical Methods for Solving the Differential Problem
We suggest several different methods for solving the differential problem (1)–
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Figure 1: Experimental data for the interfacial tension

(6), that are explained below. Making numerical experiments, we compare them

in terms of computational time.

Explicit Difference Scheme–1. Our first approach is to construct a more or less

standard explicit difference scheme. In the set Ω̄ := [0,X] × [0, T ], we introduce

a uniform mesh ω̄hτ = ω̄h × ω̄τ , where ω̄h := {xi = ih, i = 0, n, n = X/h},
ω̄τ := {tj = jτ, j = 0,m,m = T/τ}.

We construct an explicit difference scheme in the following way. For the dif-

fusion equation (1) we use the finite difference approximations

∂c

∂t
≈

c(x, t + τ) − c(x, t)

τ
and

∂2c

∂x2
≈

c(x + h, t) − 2c(x, t) + c(x − h, t)

h2
.

We obtain the difference equations

cj+1

i − cj
i

τ
= D.

cj
i+1

− 2cj
i + cj

i−1

h2
, i = 1, n − 1, j = 0,m − 1.

The initial condition (2) and the right boundary condition (3) are approximated

exactly:

c0
0 = 0, c0

i = ceq, i = 0, n.

For the left boundary condition (4) we have

cj+1

0
= cs(tj), j = 0,m − 1.
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Approximating (5), after the rescaling θ(t) ≡ Γ(t)/Γ∞, we straightforwardly

obtain

θj+1 = θj +
Dτ

hΓ∞

(cj+1

1
− cj+1

0
), j = 0,m − 1.

For the sake of completeness we also include an approximation for the interfacial

tension σ(t), using the second row of Table 2.

σj+1 = σ0 − EBΓ∞

[

θj+1

1 − θj+1
−
β

2
(θj+1)2

]

, j = 0,m − 1.

For all other equations of state we proceed analogously.

Explicit Difference Scheme–2. The second finite difference scheme uses nonuni-

form mesh in space. The spatial step hi increases as a geometric progression with

ratio q:
ω̄h := {xi+1 = xi + hi, x0 = 0, i = 0, n;hi+1 = hi ∗ q, i = 2, n − 3}, with

an exception that the first 3 and the last 2 steps are constant (h0 = h1 = h2

and hn−1 = hn). Thus keeping the ratio q close to 1 the mesh is locally almost

uniform. The time step is constant as in the previous scheme.

In the tests performed here h0 = 2.5 ∗ 10−7 and hn = 2.5 ∗ 10−4 for q = 1.2,
n = 40 and the time step is τ = 5 ∗ 10−5.

In Scheme–2 we construct third order finite difference approximation of the

spatial terms ∂2c
∂x2 :

∂2c

∂x2
≈ ai

1.c
j
i−2

+ ai
2.c

j
i−1

+ ai
3.c

j
i + ai

4.c
j
i+1

+ ai
5.c

j
i+2

.

The coefficients ai
1 = u1, ai

2 = u2, ai
3 = −(u1 + u2 + u3 + u4), ai

4 = u3, ai
5 = u4(i =

1, n − 1), where the vector u is the solution of the algebraic system:

−(hi−1 + hi)u1 +(hi−1 + hi)
2u2 −(hi−1 + hi)

3u3 +(hi−1 + hi)
4u4 = 0

−hiu1 +h2
i u2 −h3

i u3 +h4
i u4 = 2

hi+1u1 +h2
i+1

u2 +h3
i+1

u3 +h4
i+1

u4 = 0

(hi+1 + hi)u1 +(hi+1 + hi)
2u2 +(hi+1 + hi)

3u3 +(hi+1 + hi)
4u4 = 0

A third order approximation of (5) (applying the rescaling used in the previous

scheme) is:

θj+1 = θj +
Dτ

hΓ∞

(11/6cj+1

0
− 3cj+1

1
+ 3/2cj+1

2
− 1/3cj+1

3
), j = 0,m − 1.

The other elements of the scheme are as in the previous Scheme–1.
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Ward and Torday Integral Equation. As it is shown in the problem descrip-

tion, the differential problem (1)–(6) is equivalent to the Integral Equation of

Ward and Torday. Here we will show this by using a different approach.

Denote now by c(x, t) the bulk concentration minus the equilibrium value ceq.

For the time evolution we then have the following problem:

∂tc(x, t) = D∂2
xc(x, t)

c(x, 0) = 0 (7)

c(∞, t) = 0

c(0, t) = cs(θ(t)) − ceq

The last equation is in terms of a function f , which is the adsorption isotherm.

Figure 2: The evolution of the bulk concentration minus its initial value, ceq. The

surface adsorption, Γ(t) grows in proportion to the diffusion flux from the bulk:

dΓ(t)/dt = D ∂xc(x = 0, t)

Table 1 lists three separate adsorption isotherms, the Frumkin, the Van der

Waals, and the Helfand-Frisch-Lebowitz isotherms.

The adsorption changes with time in proportion to the concentration gradient

at the surface:

dθ

dt
=

D

Γ∞

∂xc(x = 0, t) (8)

We will write down an expression for the solution to eq. (7), and then subse-

quently for the solution to eq. (8). We will initially treat f(θ(t)) as a prescribed

function, and then find a self consistent solution.

For the problem (7) we apply Duhamel’s Theorem, which states that if Φ(x, t, τ)
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denotes the solution to the auxiliary problem

∂tΦ(x, t, τ) = D∂2
xΦ(x, t, τ)

Φ(x, 0, τ) = 0 (9)

Φ(∞, t, τ) = 0

Φ(0, t, τ) = cs(θ(τ)) − ceq

where the right hand side in the last equation is taken to be a constant depending

on a parameter τ rather that on t, then the solution c(x, t) to the actual problem

is given by

c(x, t) =

∫ τ=t

τ=0

∂tΦ(x, t − τ, τ)dτ (10)

The solution of the auxiliary problem (9) is given by

Φ(x, t, τ) =
2(cs(θ(τ)) − ceq)

√
π

∫

∞

x
√

4Dt

exp(−η2)dη

The partial derivative in (10) evaluates to

∂tΦ(x, t, τ) = (cs(θ(τ)) − ceq)
x

√
4πD(t − τ)3/2

exp

[

−
x2

4D(t − τ)

]

Substituting this into (10), we get

c(x, t) =
x

√
4πD

∫ τ=t

τ=0

(cs(θ(τ)) − ceq)

(t − τ)3/2
exp

[

−
x2

4D(t − τ)

]

dτ

We thus have

∂xc(x = 0, t) =
1

√
4πD

∫ τ=t

τ=0

(cs(θ(τ)) − ceq)

(t − τ)3/2
dτ

The change in adsorption is given by:

dθ(t)

dt
=

D

Γ∞

∂xc(x = 0, t) =
1

2Γ∞

(

D

π

)1/2 ∫ τ=t

τ=0

(cs(θ(τ)) − ceq)

(t − τ)3/2
dτ

Integrating with respect to t, we arrive at the Ward and Torday integral equa-

tion

θ(t) = θ0 −
1

Γ∞

(

D

π

)1/2 ∫ t

0

(cs(θ(τ)) − ceq)

(t − τ)1/2
dτ
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which is equation (13) in the problem description.

As a first option for solving numerically the Ward and Torday integral equation

for t = tj = jτ, j = 0, 1, . . . we applied the method of quadratures by using

a modification of the Left Rectangle Rule:

θ(tj+1) =
Γ0

Γ∞

−
1

Γ∞

√

Dτ

π

(

j−1
∑

i=0

cs(ti) − ceq
√

j + 1 − i
+ 2(cs(tj) − ceq)

)

,

where

cs(ti) =
1

K

θ(ti)

1 − θ(ti)
exp

(

θ(ti)

1 − θ(ti)
− βθ(ti)

)

, 0 ≤ i ≤ j, j ≥ 0.

is expressed by using the Van der Waals equation for the adsorption isotherm.

Equivalent Fractional Order ODE. It is well known [1], that the integral equa-

tion

y(t) =

⌈α⌉−1
∑

ν=0

y(ν) t
ν

ν!
+

1

Γ(α)

∫ t

0

(t − u)α−1f(u, y(u))du (11)

is equivalent to the initial value problem for the fractional order ODE

Dα
∗
y(t) = f(t, y(t))

y(k)(0) = y(k)

0
, k = 0, 1, . . . , ⌈α⌉ − 1,

where ⌈α⌉ is the smallest integer ≥ α.

For the Ward and Torday integral equation we have α = 1/2, ⌈α⌉ = 1 and

the integral equation (11) reads:

y(t) = y0 +
1
√
π

∫ t

0

f(u, y(u))
√

t − u
du, (12)

where

f(u, y(u)) =

√
D

Γ∞

(ceq − cs(u)).

The equivalent differential problem is

D1/2
∗ y(t) = f(t, y(t)) (13)
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y(0) = y0. (14)

To solve the problem (13)–(14) we use a modification of the Adams method

for fractional order ODEs, proposed and investigated in [1]. The method is

of predictor-corrector type. Applied to the problem (13), (14), it reads:

Predictor scheme:

yP
k+1 = y0 +

1

Γ(α)

k
∑

j=0

bj,k+1f(tj, yj),

where the coefficients bj,k+1 are given by

bj,k+1 =
hα

α
((k + 1 − j)α − (k − j)α).

Corrector scheme:

yk+1 = y0 +
1

Γ(α)

⎛

⎝

k
∑

j=0

aj,k+1f(tj, yj) + ak+1,k+1f(tk+1, y
P
k+1)

⎞

⎠ ,

where

aj,k+1 =
hα

α(α+ 1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(kα+1 − (k − α)(k + 1)α) j = 0,
((k − j + 2)α+1 − (k − j)α+1

−2(k − j + 1)α+1) 1 ≤ j ≤ k,
1, j = k + 1

Parametric Identification
In the section “Numerical Experiments”, we give examples of using two im-

plemented in MATLAB and R functions for numerical optimization. Here we

propose a basic iterative algorithm that explains how we can obtain an estima-

tion for the two parameters.

Let us denote

ε(Γ∞,K) =

√

√

√

√

1

n

n
∑

i=1

(

σ̂i − σi

σ̂i

)2

.

where σ̂i are the values of the numerical solution while σi are the experimental

data.

The algorithm is the following:
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1. Begin with an initial estimation for the parameters—Γ
(0)
∞ , K(0).

2. Let us have (Γ
(k)
∞ , K(k)). We solve the differential problem with those values

for the parameters to obtain ε(Γ(k)
∞ ,K(k)).

3. Solve the differential problem with values for the parameters, consecutively,

(Γ
(k)
∞ +δ,K(k)), (Γ

(k)
∞ −δ,K(k)), (Γ

(k)
∞ ,K(k)+δ), and (Γ

(k)
∞ ,K(k)−δ) to obtain

an approximation of ∂ε
∂Γ∞

(Γ
(k)
∞ ,K(k)) and ∂ε

∂K (Γ
(k)
∞ ,K(k)).

4. Obtain the next estimation as

(Γ(k+1)
∞

,K(k+1)) = (Γ(k)
∞

,K(k)) −

(

µ
∂ε

∂Γ∞

, ν
∂ε

∂K

)

,

where µ and ν are determined adaptively, so that the error decreases.

Remark: For the initial estimation of the parameters Γ∞ and K we propose

the following approach.

Starting with an initial value for Γ∞ and using the surface tension σ at t = 64

from the experimental data, we derive the following cubic equation for θ:

βθ3
− βθ2 + (2 + 2A)θ − 2A = 0,

where

A =
σ0 − σ(64)

EBΓ∞

.

Let us denote the real root of the above equation as θ1. Substituting θ1 in the

Van der Waals equation for the adsorption isotherm we obtain an initial value

for K:

K0 =
1

ceq

θ1
1 − θ1

exp

(

θ1
1 − θ1

− βθ1

)

(15)

Numerical Experiments
First, we compare the computational times for solving the differential problem

(1)–(6) and its equivalent formulations by using the different numerical methods.

In Table 3, we present computational times for the aforementioned numerical

methods. The programs, used for the tests, were implemented in the FORTRAN

programming language.
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Table 3: Computational times for solving the differential problem with different

numerical methods

Numerical method Computational time

Explicit difference scheme–1 5.48433s

Explicit difference scheme–2 2.04687s

Ward and Torday integral equation–1 1.92554s

Fractional order ODE 1.59375s

Second, we compare the accuracy of the methods for solving the Ward and

Torday integral equation on a particular case of this equation:

u(t) = 1 −
1
√
π

∫ t

0

u(τ)
√

t − τ
dτ,

whose exact solution is known:

u(t) = exp(t)erfc(
√

t),

erfc being the Complimentary Error Function. As expected, the Adams method

for fractional order ODE is more accurate than the modification of the Left

Rectangle Rule.

Now, we give some results for the estimated model parameters Γ∞ and K.

Using the explicit difference scheme–1 and the MATLAB procedure “lsqnonlin”,

we obtain the following values—Γ∞ = 5.0741×10−6 and K = 19.3733. For those

values we obtain the result for σ, that is shown on Figure 3.

Using the algorithm described in the section “Paramametric Identification”

and again the explicit difference scheme–1, we obtain similar results—Γ∞ =

4.9728 × 10−6, K = 20.0028.
We have used also the modification of the Left Rectangle Rule for the integral

equation and a general-purpose optimization R function ’optim’ [4] with default

options to find the two unknown parameters K and Γ∞. From previous experi-

ments it is known that Γ∞ is approximately of order 10−6. We set initial value

of Γ∞ = 0.5 × 10−6 and derive K0 from equation (15). These are our starting

values in the optimization procedure. We minimize the relative error equal to

ε(Γ∞,K), defined above, where σ̂i are the values of the numerical solution while

σi are the experimental data.
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Figure 3: Numerical solution σ(t) for model parameters Γ∞ = 5.0741× 10−6 and

K = 19.3733

Figure 4: Numerical solution σ(t) for model parameters Γ∞ = 5.659 × 10−6 and

K = 15.659
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Conclusion
As a result of the work of our group we present different ways for solving

the differential problem (1)–(6) and its equivalent formulations. All of them

give similar results, but the Adams method for solving the equivalent fractional

order ODE is the fastest one. In addition, this method has better accuracy than

the modification of the Left Rectangle Rule for solving the equivalent integral

equation.

We also propose different ways for estimating the two unknown parameters—

by means of already implemented in MATLAB and R functions, as well as by an

algorithm we have implemented.
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