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1. Introduction
A common problem in reservoir simulators is the history matching problem,

where a number of wells are operated at a prescribed flow rate, measured by

the operator. The data provides input to a simulator which then has to match

various other measured quantities, such as pressure drop at wells, movement of

saturation fronts, water break-out and other. A common problem is that the

input data is very rough and if input directly would cause considerable numerical

difficulties, such as excessive Newton iterations to converge or excessively small

time-steps.

2. Posing the Problem

A typical input for a well is a flow rate, specified at discrete time instances,

which is positive at every instance. The goal is to replace the “rough” flow rate

with a smoother function, which retains two properties of the original:

• It remains positive at every instance;

• The integral over the entire time range is preserved.

Different smoothing scenarios are expected to be seen.

2.1. First Scenario: Approximation by Smoothing Splines and Newton-

Raphson Method

Replace the data function f(t) by a smoothing spline Sf ∈ C2 with restrictions

T
∫

0

f(t)dt =

T
∫

0

Sfdt and Sf > 0

for 0 ≤ t ≤ T .
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Let us assume that the data sites {tj}
N
j=1

with t1 < t2 < · · · < tN are given

with some data fj ≥ 0, which are assumed to be the values of a function f (t) ,
i.e.

f (tj) = fj for j = 1, 2, . . . , N.

The problem is to “smoothen” those data fj, which represent a very abrupt

jump, by finding a function g (t), for which the following conditions hold

tN
∫

t1

Lf (t) dt =

tN
∫

t1

g (t) dt

g (t) ≥ 0 for t1 ≤ t ≤ tN ;

here the function Lf (t) is the linear interpolating spline, which satisfies

Lf (tj) = fj for j = 1, 2, . . . , N.

For solving this problem we propose to use approximation (smoothing) cubic

splines Sf (t), which by definition belong to C2 (t1, tN ) [1, 2] (i.e., have two con-

tinuous derivatives), having a parameter λ, which provides a trade off between

the “goodness of interpolation to the data fj” and coarseness of the graph of the

spline function Sf (t) . Such a spline Sf is defined as the unique solution of the

following problem:

min
Sf

⎛

⎝λ
N
∑

j=1

wj (S (tj) − fj)
2 + (1 − λ)

tN
∫

t1

ϕ (t)
∣

∣S′′ (t)
∣

∣

2
dt

⎞

⎠ . (1)

Here the parameter λ, the so-called smoothing parameter is given. We assume

also: given weights wj ≥ 0, which show how good we wish to have the size of

|S (tj) − fj| for every j, and also the function ϕ (t) ≥ 0 in the interval [t1, tN ],

which shows the “roughness” of the function Sf (t) at every particular point t.
We will not use this large freedom but we will choose ϕ (t) = 1.

However we will use essentially the weights wj in order to satisfy the condition

C :=

tN
∫

t1

Sf (t) dt =

tN
∫

t1

Lf (t) dt. (2)
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2.2. Second Scenario: Replace the initial piece-wise linear “rough”

curve by another piece-wise linear less “rough” curve

The new curve must be subject to the above restrictions. This is possible to

implement and to get a simple explicit relationship to some new average value

(see Figure 1):

ti-1 ti ti+1 ti+2ti-2

fx
fx

fi+1

fi

fi+2fi-1

fi-2

fx

Figure 1: Graph sketch of the moving average. The areas under the solid line

(four trapezoidals) and dashed line (two lateral trapezoidals and two congruent

rectangles) are equal.

fx =
fi−1(hi−1 + hi) + fi(hi + hi+1) + fi+1(hi+1 + hi+2)

hi−1 + 2(hi + hi+1) + hi+2

(3)

where hi = ti − ti−1, i = 1, N procedure for i = 1, . . . , N by step 4. Let us note

that it is possible to divide to groups of more trapezoidals but then one can lose

the general trend of the original empirical curve. Also, obviously fx > 0 for any

empirical data. Applying this procedure one cuts the largest deviations of the

measurements.

2.3. Other Scenarios: Approximation by Discrete Wavelet Trans-

form

One can approximate any piecewise continuous function by using a pair of

orthogonal bases containing scaling and wavelet functions ϕ(t) and ψ(t). The
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scaling function ϕ(t) =
∑

n

√
2h(n)ϕ(2t − n), where h(n) is the lowpass filter co-

efficient estimated with h(n) = 1
√

2
⟨ϕ(t/2),ϕ(t − k)⟩, while the wavelet function

ψ(t) =
∑

n

√
2g(n)ψ(2t − n), where g(n) is the highpass filter coefficient. Both

filter coefficients are coupled with the explicit relationship g(n) = (−1)nh(1− n)

(see, for example [3] and [4]). The wavelets expand the signals into separate fre-

quency components, and then one can study each component with a resolution

matched to its scale. The discrete wavelet transform (DWT) is a special case

of wavelet transform that provides a compact representation of a signal in time

and frequency that can be computed efficiently. The decomposition of a given

function f(t) for j-level by the above basis functions is:

f(t) =
∑

n

h(n)ϕ(t − n) +
∑

j

∑

n

g2j+n(n)ψ(2jt − n) = fa(t) +
∑

j

fdj
(t). (4)

The first term fa(t) is the approximation function, while the second term is a sum

of the so-called detail functions. An example of decomposition for level j = 3

with the orthogonal 10-taps Daubechies wavelet is shown on Figure 2.

Two approaches are possible to be considered:

a) For uniform mesh (UM) on the time segment [0, T ] the integral of the function

f(t) can be approximated for a given j-level by the discrete wavelet decomposition

fa(t) with error ε0:
T
∫

0

f(t) =

T
∫

0

fa(t) + ε0;

b) For non-uniform mesh (NUM) on the time segment [0, T ] the integral of the

function f(t) can be approximated also with fa(t) but with another error ε1:

T
∫

0

f(t) =

T
∫

0

fa(t) + ε1.

Simpson’s integration rule [5] for smooth functions is preferable compared to

the trapezoidal rule [5, 6] since the error is roughly proportional to 10−4 and it

does not require a dense mesh to attain a priori desired accuracy. Although the

trapezoidal rule is inefficient in general, it can be shockingly efficient for very

jagged and periodic functions fast approaching zero. This simplest numerical

integration technique can be extraordinarily efficient when it is skilfully applied

for getting reliable approximations of empirical data and relationships.
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Figure 2: DWT of the customer function for level j = 3 with the orthogonal

‘db10’

3. Numerical Results

In the particular set of data we have N = 585 and the area under the empirical

curve is given by the integral

C =

tN
∫

t1

Sf (t) dt = 1.316303598725274.

For solving the system (1) and (2) we need one more free parameter: we
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Figure 3: First scenario: original empirical data (dashed line), approximating

curve with restriction for smoothing parameter λ = 0.08 (solid line).
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Figure 4: First scenario: original empirical data (dashed line), approximating

curve with restriction for smoothing parameter λ = 0.01 (solid line).

consider the unknown weights (with unknown parameter x):

w1 = · · · = w10 = w576 = · · · = w585 = x

wj = 1 for 11 ≤ j ≤ 575

and we solve the system by using a Newton-Raphson solver.
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Figure 5: First scenario: original empirical data (dashed line), approximating

curve with restriction for smoothing parameter λ = 0.001 (solid line).
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Figure 6: Second scenario: original empirical data (dashed line), piece-wise linear

curve with restriction from Figure 1 (solid line).

For different values of the parameter λ we obtain solutions Sf (t), which satisfy

condition (2) with precision 10−16.

To demonstrate how does the procedure work we provide some experimental

results with different values of the smoothing parameter λ. It is clearly seen on

Figures 3, 4, 5 that the smaller values of the parameter λ smooth more the

spline Sf (t) . Also, condition Sf (t) ≥ 0 is satisfied. The latter is attained by

manipulation of the weights wj and the function ϕ (t).

For the first scenario – smoothing splines with restrictions and sequential

Newton-Raphson technique we get the results: OldArea = 1.316303598725274

and NewArea = 1.316303598725274. They are practically identical because the
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error reaches the machine epsilon, i.e., Err ∼ 10−17

For the second scenario based on the explicit formula (3) – replacement of one

piece-wise linear curve by another one the numerical results cover fully the pre-

diction given by the first scenario of smoothing: OldArea = 1.31630359872527,

NewArea = 1.31630359872527, with Er ∼ 10−17 (Figure 6).

Since the customer data form a jagged function with fast approaching zero

parts the trapezoidal rule for integration in the third scenario is used. The cal-

culated integral value is

T
∫

0

f(t) = 1.311518426300291 with T = 585.

The minimal-approximation absolute errors for UM and NUM are tabulated in

Tables I and II. Obviously, the accuracy of the approximating integrals depend on

the uniform mesh and the levels of DWT. From the level decompositions for UM

when j = 1, . . . , 5 and NUM of j = 1, 2, 3 we conclude that the increase of j-level
leads to both a decrease of the accuracy, and an increase of the approximation

errors ε0 and ε1 (see Figures 7 and 8). The higher levels of DWT, however,

provide smoother functions, which is the customer preference. The magnitudes

of errors of the both methods vary as follows: ε0 ∈ (10−6, 10−4), ε1 ∈ (10−4, 10−2).

Table I: The minimal approximation
errors for UM

level wavelet |ε0| ∗ 10−4

1 ‘sym2’ 0.025
2 ‘db15’ 0.890
3 ‘db2’ 3.941
4 ‘bior3.1’ 0.243
5 ‘db41’ 1.105

Table II: The minimal approximation
errors for NUM

level wavelet |ε1| ∗ 10−4

1 ‘db42’ 0.4668
2 ‘sym9’ 6.9017
3 ‘db42’ 35.44

Conclusion

Which scenario to choose? Actually the developed scenarios are equivalent as

a prediction and an order of approximation of the quadratures. Their advantage

consists in the fast computer realization provided the output results as input data

for the further computer processing and simulations. These procedures are not

unique – they can be varied depending on the needs of the user.
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Figure 7: The approximation function for UM with ε0 for: (a) j = 5 with the

orthogonal wavelet ‘db41’; (b) j = 4 with the biorthogonal wavelet ‘bior3.1’;

(c) j = 3 with the orthogonal wavelet ‘db2’; (d) j = 2 with the orthogonal

wavelet ‘db15’; (e) j = 2 with the symmlet ‘sym15’. Empirical data (dashed

line), approximation function (solid line)
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Figure 8: The approximation function for NUM with ε1 for: (a) j = 3 with the

orthogonal wavelet ‘db42’; (b) j = 2 with the symmlet ‘sym9’; j = 1 with the

orthogonal wavelet ‘db42’. Empirical data (dashed line), approximation function

(solid line)
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