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Problem statement

In medical diagnostic tests, including pregnancy testing and tests for typed
red blood cells, a small fluid sample is placed at one end of a capillary
channel, which has been lined with a dried reagent. If the sample contains the
analyte (the substance being tested for) then an agglutination reaction occurs
between it and the reagent in the channel, and the agglutinated complexes
progressively slow the flow and may even block the channel, partially or
completely, so that the flow only reaches the far end very slowly, or not
at all. The aim is that this should give a reliable detection of quite low
concentrations of analyte in the sample. Platform Diagnostics would like a
mathematical model of the process, so that, for known binding forces in the
agglutination complexes, the channel size and shape, and the fluid viscosity,
can be designed to maximize the reliable detection of low concentrations.
A key question is how the flow time depends on channel size, fluid surface
tension and viscosity, (a) in the absence of agglutination, and (b) in the
presence of agglutination.
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Figure 1: Figure showing the method of aggregation .

1 Introduction

The aim of the Platform Diagnostics device is to reliably test for a very low concentration
of a specific analyte. The principle on which this device works is based on a relatively old
technology termed latex agglutination which has been in use in clinical laboratories since
the 1950s. The latex agglutination procedure, as it was originally devised, is performed
by coating many latex microparticles with an antibody to the analyte. These are then
mixed with a sample on a glass slide and the slide examined under a microscope. If
latex particle aggregates are detected in this mixture it demonstrates the presence of
analyte in the sample, the aggregates being formed by the analyte binding to antibodies
on different microspheres (see figure 1).

Platform Diagnostics’ device consists of two identical capillary tubes, with triangular
cross section, formed by impressing grooves into a plastic sheet. These grooves are
covered with an adhesive tape, which forms the upper surface of the tubes (see figure
2). Both tubes start from a reservoir of fluid and make their way, after several turns,
to two separate small chambers (see figure 3). Each chamber is hooked up to a pair
of electrodes which can be used to detect when fluid reaches the end of its capillary.
The operation of the device requires that fluid is introduced into the reservoir; capillary
forces then pull the fluid from the reservoir up the capillaries and into the chambers. In
practice this requires that the surface of the plastic sheet be treated with a reagent to
make it perfectly wetting; the adhesive tape (which forms the top of the capillary) is
non-wetting.

Latex microspheres are placed into the bottom of each of the capillaries. In one, a
control experiment is carried out using microspheres with no attached antibodies while in
the other the full experiment is carried out using microspheres with antibodies attached.
Thus, in the presence of the analyte, the microspheres are able to bind together to form
aggregates whereas in the control they are not. The formation of aggregates, in the
presence of the analyte, increases the viscosity in the full experiment, causing the time
for the fluid to reach the chamber at the end of the capillary to increase in comparison
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Figure 2: The capillary shape.

with that of the control. The difference between these two times indicates the presence
of the analyte.

1.1 Application

A similar device has been successfully used to test for blood type in a scenario in which
a reaction between the blood and a reagent causes clotting and leads to a detectable
slowing of the flow in comparison to a control in which no reaction (and hence clotting)
occurs. Platform Diagnostics are currently trying to develop the technology in order
to detect the hormone hCG in the urine of pregnant women. The level of accuracy
required in this device is that it is able to reliably detect 25 mIU per millilitre of urine
(1mIU= 54.1 ng) which corresponds to the level present in a pregnant woman 2 days
after a missed period. Current pregnancy tests can be completed within 3 minutes, so
they need this new device to work at least as fast as that.

1.2 Experimental parameters

Laboratory experiments have been carried out using the following protocol. A solution
containing a certain concentration of hCG is prepared. Latex beads (5% by volume) with
the antibodies attached are introduced, and the mixture is well stirred. The solution is
then put into the reservoir of the apparatus and is allowed to flow along the tubes. The
experimental data is shown in figure 4.

We can see that the time taken for the liquid to flow through the apparatus increases
with concentration, as expected. Note that 25 mIU/ml level lies at the left hand side
of the graph, and that the error bars here indicate that reliable detection of a difference
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Figure 3: Schematic of the device.

between the control track and active track is impossible. In the experiments, a “tongue”
of fluid is seen to travel down the capillary ahead of the main body of fluid.

There are a number of physical parameters in the system, and a number of design
parameters. The physical parameters are

Density, ρ ≈ 103 kg m−3,
Surface tension, γ ≈ 70 × 10−3 kg s−2,

Viscosity, μ ≈ 10−3 kg m−1s−1,
Diffusivity of hCG in water, D ≈ 2 × 10−10 m2s−1,

and the design parameters are

Length of capillary tube, Ltot ≈ 0.3 m,
Radius of microspheres, rB ≈ 200 nm,

Width of channel top, 2d ≈ 5 × 10−4 m.

We note that the easiest thing to change in the design of the experiment is the radius of
the latex microspheres.

2 Flow in the capillary

The flow equations and boundary conditions

We assume the fluid in the capillary is Newtonian (albeit that its viscosity is affected
by the size of latex bead complexes). The flow thus satisfies the Navier-Stokes equations
(see [2])

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + ρgey + μ∇2u , (1)
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Figure 4: Graph showing how the time taken for the liquid to reach
the end of the tube varied with concentration.

where g is the acceleration due to gravity, y measures the distance below the adhesive
tape and ey is the unit vector in this direction, p is the pressure in the fluid, u is the
velocity, ρ is the density and μ is the viscosity. On the edge of the capillary ∂Ωe the
no-slip boundary condition,

u|∂Ωe = 0, (2)

is satisfied. At the free surface formed by the advancing edge of the fluid in the capillary,
∂Ωfs, the normal and tangential force balances and kinematic conditions

n.σ.n = −2γκ, t.σ.n = 0, vn = u · n|∂Ωfs
, (3)

are satisfied. Here σ is the stress tensor, γ is the surface tension, vn is the normal velocity
of the free boundary, n is the normal to the free surface, t is a tangent to the surface and
κ is the mean curvature. Finally, the pressure in the reservoir is equal to atmospheric
pressure, which gives us the initial condition p|z=0 = 0. We note that the length of the
liquid, L(t), in the capillary is not known a priori and we must specify a law of motion
in order to determine the position of the contact line.

An ad-hoc approximation to the flow problem

Rather than solve the full problem comprised by equations (1)-(3) we look for an
approximate solution which will enable us to find an expression for the length of fluid,
L(t), in the capillary as a function of time t and for now we neglect gravitational effects
assuming that the device lies on a level surface.

For a capillary cross-section formed by an equilateral triangle (as used in practice)1

1providing the tube remains completely flooded
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Figure 5: The coordinates in the plane of the capillary cross-section .

there is an exact Poiseuille solution2 to the Navier-Stokes equations (1) with no-slip
boundary conditions (2). This takes the form

u = λy(y +
√

3x −
√

3d)(y −
√

3x −
√

3d)ez, p = −Δp1

L
z , (4)

where ez is the vector pointing down the capillary, x and y are coordinates in the plane
of the capillary cross-section (see figure 5) and 2d is the length of the sides of the triangle.
The parameter λ can be evaluated in terms of the pressure drop along the capillary, Δp1,
the length of the fluid in the capillary, L, and the viscosity, μ, and is given by

λ =
Δp1

4
√

3Ldμ
. (5)

Note that the assumption that the flow has the Poiseuille profile (4) all the way down
the capillary is unrealistic; there is an adjustment region in the vicinity of the front. The
reduced Reynolds number Re for the flow along the capillary (Re = ρd2/μT , where T is
the time taken for the fluid to reach the end of the tube) is approximately 1.4 × 10−3.
In turn the small size of Re implies that the adjustment region is of length O(d). When
L � d the effects of the adjustment region on the Poiseuille flow taking place in the
majority of the capillary is negligible.

Since the major pressure drop in the capillary occurs over the Poiseuille flow region
(and not in the adjustment region) the pressure at the capillary front is constant to
leading order. This means that the mean curvature of the free boundary κ is constant
(to a first approximation) and given by

2κ ≈ −p|∂Ωfs

γ
≈ Δp1

γ
. (6)

Here we have made use of boundary condition (3a) and the fact that p = 0 at the capillary
entrance (z = 0). Furthermore we know that the contact angle that the fluid makes with

2see the appendix for a proof

D-7



Wetting
surface

Wetting
surface

Fluid

Air

Non-wetting adhesive tape

Figure 6: The fluid profile in the capillary at a point near the front.

the completely wetting surface is zero while that on the non-wetting surface is given by
some constant θc. Given that the mean curvature of the surface is constant we could,
in theory, solve a PDE for the free surface shape using the contact angle conditions as
boundary conditions on the PDE. The result of this calculation would determine the
constant mean curvature of the free boundary and hence the pressure at the interface.
In practice though all we require is a fairly rough estimate of the mean curvature and
pressure drop. We thus consider the cross-section of the interface (in the x-y plane) at
the value of z at which the fluid first completely uncovers the adhesive tape covering the
top surface. It will look somewhat like that presented in figure 6. Assuming that the
mean curvature is dominated by curvature of the interface in the x-y plane, the shape
of the interface in this cross-section is approximately circular with radius R = 2d/

√
3.

Hence the pressure drop along the capillary is given by

Δp1 ≈
√

3γ

2d
= 240 Pa, (7)

which is the equivalent to several centimetres of water. The average fluid velocity uav

along the capillary can be calculated by integrating the Poiseuille profile (4) across the
cross section of the capillary and dividing by its area. On substitution for λ from (5),
this gives

uav =

√
3λd3

5
=

d2Δp1

20Lμ
(8)

Substituting for Δp1 from (7) gives

uav =

√
3dγ

40μL
. (9)

It follows that the length L of fluid in the capillary satisfies the ordinary differential
equation

dL

dt
=

√
3dγ

40μ

1

L
, (10)
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Figure 7: Graph showing the experimental results (dots) and the
results given by (11) for pure water (solid line). The dashed line
provides a better fit to the data.

and hence

L =
31/4

√
20

(
dγt

μ

)1/2

. (11)

Thus, the width of the channel, the surface tension of the interface and the viscosity
of the liquid all play a role in determining the speed with which the front moves. In
particular, increasing the viscosity is not the only way to slow down the front; it can also
be achieved by reducing the width of the channel or reducing the surface tension.

We carried out a table-top experiment to see whether the evolution of the length of
the fluid was captured by the solution given in (11). We put some water (dyed blue)
into the well at the end of the device and recorded the time that it took for the liquid to
progress to the end of each of the lanes. The experiment was repeated. The experimental
results are shown as dots in figure 7, and the prediction from (11) using parameters for
pure water is shown by the solid line. We see that there is remarkably good agreement
between the two (especially given the table-top nature of our experiment!). We note that
a better fit to the data can be obtained (dashed line) by slightly altering the geometric
factor.

The effect of gravity on the experiment

If the device is placed on a non-level surface (as might happen in practice)
gravitational effects may be important. In order to estimate whether this is the case
we compare the size of the gravitational term in (1) with the typical pressure gradient
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induced by capillary forces (in the first section of the capillary tube). The key parameter
is the ratio of the hydrostatic pressure to the capillary pressure, the Bond number Bo,
given by

Bo =
ρgH

Δp1

=
ρgH√
3γ/2d

, (12)

where H is the difference in height between the ends of the device. Provided Bo � 1
gravitational effects are negligible and thus (in keeping with the size of the capillary
pressure found earlier) we find that

H � 1

8.25 × 104d
. (13)

The current device has d = 2.5×10−4 m which implies that H � 5 cm. This suggests that
the test may be insufficiently robust, as it stands, to be used at home rather than in the
laboratory, since the presence of any significant incline will always result in a retardation
of the flow in part of the capillary which may prevent the front from progressing. It may
therefore be worth considering using a chemical reaction to lower the pressure in the
chamber at the end of the capillary. This would enhance the pressure difference between
the ends of the capillary and correspondingly reduce the Bond number for any given H.

Reducing the width of the channel would also make the experiment more robust.
Reducing d by a factor of 10 would mean that the difference in height between the two
ends could increase by a factor of 10. However, this would increase the time of the test
by a factor of 10, all other things being equal, which is undesirable.

3 The agglutination process

For the device to be successful as a pregnancy test kit, it must be able to detect
concentrations of hCG as low as 25 mIU per millilitre. This corresponds to approximately
2.1 × 1010 molecules per millilitre of fluid. In contrast to this a 1% solution of 200 nm
diameter beads gives approximately 2.5 × 1012 beads per millilitre. There are therefore
many more beads than molecules. If the beads and hCG are stirred together only a
very small percentage of beads will find an hCG molecule to bind to. In a homogeneous
mixture this, in turn, means that only a tiny percentage of these beads will bond to form
anything other than a dimer. There is clearly an advantage, therefore, in ensuring that
the mixing is slow enough to form a non-homogeneous mix.

Diffusion timescales for hCG

The timescale τ for a substance to diffuse a distance L is given by

τ =
L2

D
, (14)

where D is the diffusivity of the substance in a particular solvent. We suspect that D
for hCG in water is about D ≈ 2 × 10−10 m2 s−1 (this is based on the assumption that
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the Stokes radius for hCG is approximately 1 nm). The timescale for diffusion of hCG
across the capillary (a distance of 0.5 mm) is thus approximately 1250 seconds (much
longer than the time of the experiment). The diffusion timescale for hCG over the typical
distance between 200nm particles at 1 percent (i.e. approx 10−6 m) is about 5 × 10−3

s, whereas the diffusion timescale over the typical distances between 5 μm beads at 1
percent (i.e. 2.5 × 10−5 m) is about 2.5 s.

Bond strength and shear forces

Typical bond strengths between an antibody and a hCG molecule are of the order
of 5 × 10−11 N. A typical shear rate in the device is of the order of 10s−1. The force F
on the bond between two latex particles, radius rB, travelling in this flow is then given
very approximately by

F ∼ 6πμsr2
B, (15)

where s is the shear rate of the flow. If the two particles are held together by a single
bond then it is a requirement, in order for the bond to hold, that F < 5× 10−11 N. This
gives a critical radius rB (in order for a dimer to hold together) of order of 10−5 m. In
the case of a chain of m particles F ∼ 6mπμsr2

B.

The Einstein formula for the viscosity of dilute suspensions

This formula relates the volume fraction φ of spheres in a dilute suspension to the
viscosity of the suspension η and can be simply stated as

η = μ(1 + 2.5φ), (16)

where μ is the viscosity of the fluid. A consequence of this formula is that dense
aggregations of particles will hardly change the viscosity of the suspension, since they
do not significantly change the underlying volume fraction. However, sparse (or fractal)
aggregations can be expected to significantly change the effective volume fraction and
hence the viscosity (see figure 8). In particular, dimers can be thought of as a type of
dense cluster and are therefore not desirable since they will not significantly affect the
viscosity of the solution.

Conclusion

We are left with the problems that (i) it takes a long time for hCG to diffuse across the
capillary, (ii) there are vastly more beads than hCG molecules and so we are most likely
to form dimers, (iii) dimers won’t change the viscosity of the solution enough to provide
a detectable change in the duration of the flow.

It is conceivable that extremely heterogeneous mixing in which a fluid layer,
containing hCG and no beads, is sheared over a second fluid layer, containing beads
and no hCG, will lead to significantly larger numbers of clusters being formed than the
homogeneous mixing we have been discussing above. However the treatment of this
subject is considerably beyond the scope of this report.
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Figure 8: Sketches showing different types of clustering of latex microspheres.
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Figure 9: Redesign of the device with an inserted porous medium.

4 Process redesign to overcome the difficulties with

the low concentration of hCG

The main difficulty to be overcome when designing a device to detect small concentrations
of hCG is to ensure that the hCG molecules can form bonds in a manner which gives
rise to a significant change in the flow time in the capillary device. One way of doing
this is to introduce a porous medium previously coated in antibodies, then flush through
a quantity of the sample (in the absence of latex beads) before introducing latex beads,
coated in antibodies, into the flow. If designed properly this will cause (i) most of the
hCG to bind to the walls of the porous medium before (ii) latex beads flow through the
medium binding to sites previously activated by the hCG; in turn this will (iii) lead to
constriction of the pores (in the medium) and a consequent retardation of the flow.

For this device to work the following requirements must be met:

1. The bond must be sufficiently strong to hold a latex bead to the porous medium
walls against the action of fluid shear.
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2. The bead radius must be large enough to cause a significant narrowing of the pores
it adheres to.

3. There must be sufficient hCG to bind beads over a surface area comparable to the
surface area of the porous medium.

4. The diffusion timescale of the hCG across a pore must be less than (or equal to)
the typical time for flow through the porous medium.

5. The pressure drop across the porous medium must be of the same order (or greater)
than the maximum pressure drop along the rest of the capillary.

6. The time required to perform the test must be less than three minutes.

7. The porous plug must fit inside the capillary.

As a first step to evaluating these criteria we assume that the porous medium is
formed by N identical cylindrical pores of length Λ with radius a.

Furthermore we denote the average fluid velocity in a pore by vav and the pressure
drop across the pore by Δp2. Note that the average velocity is related to the pressure
drop across the porous medium by the relation

vav =
a2Δp2

8Λμ
, (17)

and thus conservation of fluid dictates that

Nπa2vav =
√

3d2uav. (18)

With these definitions the criteria outlined above can be rewritten as

1. (
Bond strength

6πμr2
B(− ∂u/∂r|r=a)

)
> 1 =⇒ rB <

(
Ba

24πμvav

)1/2

,

where B = bond strength.

2. Given some O(1) constant k,

rB =
a

k
.

3.
Number of molecules hCG × πr2

B

Surface area of porous medium
≥ O(1).

Assuming that a volume V0 millilitres of sample, carrying hCG at concentration C
molecules per millilitre, passes through the porous medium before the beads start
passing (i.e. M molecules bind) then

V0Cr2
B

2NΛa
≥ O(1).

D-13



4.

Diffusion timescale across pore

Flow timescale through medium
≥ O(1) =⇒ a2/D

8Λ2μ/(a2Δp2)
≥ O(1). (19)

5.
Pressure drop across porous medium

Pressure drop across rest of capillary
=

Δp2

Δp1

≥ O(1).

This ratio can be calculated by substituting (8) and (17) (the expressions for uav

and vav) into (18), noting that the maximum drop is when L = Ltot, the total
length of capillary, to obtain

Δp2

Δp1

=
2
√

3d4Λ

5πa4NLtot

≥ O(1).

6. Once the front of the flow has passed through the porous medium it is driven by
the pressure difference generated by surface tension in the capillary,

√
3γ/(2d).

In line with assumption 5 we assume that the major pressure drop occurs over
the porous medium so that Δp2 is approximated by the surface-tension-generated
pressure drop leading to the relation

Δp2 ≈
√

3γ/(2d). (20)

We then use (17) and the continuity relation (18) to derive expressions for vav and
uav:

vav ≈
√

3γa2

16dΛμ
, uav ≈ Nπa4γ

16d3Λμ
. (21)

Furthermore, since in all cases of practical interest Ltot � Λ, this implies that for
the flow to take place over a timescale less than Treq (= 180 seconds) we require

16d3ΛLtotμ

Nπa4γTreq

< 1.

7. The porous plug must fit inside the capillary. The cross sectional area of the plug
is

√
3d2 and, assuming hexagonal packing of the pores, the area associated with

the porous medium is approximately 2
√

3Na2. Thus we must choose N such that

2Na2 ≤ d2.

In order to examine these conditions, we first choose the relationship between the bead
radius and the pore radius, and set the number of pores. We set k = 4 and N = d2/2a2

thus obviating relations 2 and 7. The other relations, taken in numerical order, can be
simplified by eliminating Δp2, uav and vav using (21)-(20) to give
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Figure 10: Graph showing the feasible region for the solution to
(22). The black line represents the first condition, the red line, the
second condition, the green line, the third condition, the blue line,
the fourth condition and the cyan line, the fifth condition. Shaded
areas are excluded from solution space. The dot indicates a possible
solution.

a3

Λ
<

32Bd

3
√

3πγ
,

a3

Λ
≥ O

(
16d2

V0C

)
,

a2

Λ
≥ O

(√
16μDd√

3γ

)
,

a2

Λ
≤ O

(
4
√

3d2

5πLtot

)
,

a2

Λ
>

32dLtotμ

πTreqγ
.

(22)

To determine if there are possible solutions to this system, we suppose that, in
addition to the parameter values stated earlier, we have

B = 5 × 10−11 N, C = 2.1 × 1010 molecules ml−1, V0 = 1 ml, Treq = 180 s. (23)

In figure 10 we show the range of solutions to (22) in log a—log(a/Λ) space. We
can see that there is a small feasible region for picking a and Λ. We indicate one such
solution by the dot in figure 10. This solution corresponds to the following set up. The
porous plug is 0.27 mm long, contains 1.5 × 103 pores, each with radius 4.5 μm. The
beads required are of 1.1 μm radius, and the timescale associated with the experiment
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Figure 11: Graph showing the feasible region for the solution to
(22). The black line represents the first condition, the red line,
the second condition, the green line, the third condition, the blue
line, the fourth condition and the cyan line, the fifth condition.
The dashed lines correspond to the feasible region shown in figure
10. Shaded areas are excluded from solution space. The dots
indicate the original solution and solution consistent with the
shifted constraints.

is 172 seconds. Note that, to use beads of radius 200 nm, we would beed to reduce the
length of the porous block, and increase the number of pores.

Of course, there are many other possible choices for the parameters which will give
different porous media. For example, if we reduce d by a factor of 2 and reduce Ltot to
0.1m, we shift the feasible region to that shown by the solid lines in figure 11. We see
that the solution given above does not reside in the new feasible region, but one in which
the porous plug is 1.7 cm long, contains 40 pores, each with radius 14 μm does. The
beads required are of 3.5 μm radius, and the timescale associated with the experiment
would be 162 seconds.

Of course, it would be straightforward to investigate the effects of changing each of
the design parameters, but we do not do that here.
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5 Other possible ways to redesign the apparatus

In the previous section we looked at including a porous medium in the flow so that
we could concentrate the hCG and get it closer to the surfaces and hence clog the
system. Another way to slow up the capillary would be to clog, and thus retard, the
air/liquid interface. One way of doing that would be to make the beads surface active (i.e.
hydrophobic) so that they accumulate at the surface. In the control track, these would be
swept away by the stagnation point flow to the edge of the capillary (where they would
clump). However, in the reacting track (where the beads are coated with hCG antibody)
the hCG near the surface will move to the surface and bind the beads together. There
will then be replenishment of the subsurface hCG by diffusion from the bulk. A better
solution might be to add surfactant to the solution. The hCG-surfactant complexes
that result would be surface active (even if the hCG is not) and reside preferentially
at the air-liquid interface [1, 3]. In the reacting capillary, the beads would then see a
much-increased concentration of hCG near the surface and so the possibility of binding
and forming chains would be much higher. In both cases, the process would rely on
transporting the hCG near to the surface by convection, and then diffusion taking over
and being the rate-limiting step.

6 Discussion

We decomposed the workings of the proposed test for hCG into several parts. First we
looked at the flow down a capillary with triangular cross-section, and obtained a crude
(but accurate) model for capillary length as a function of time. This showed that the
controlling parameter was the ratio of the product of the surface tension of the air-liquid
interface and the width of the channel to the viscosity, and that the capillary length is
proportional to the square root of time.

We also looked at the effect of gravity on the operation of the device and showed
that a 5 cm height difference between the ends was all that is needed to retard the flow
significantly. This implies that the design may not be robust enough to work in the
home.

We considered the mass transfer and agglutination processes and noted that there
are considerably many more latex microspheres in solution than hCG molecules. A
consequence of this is that it is unlikely that anything other than dimers will form and,
in turn, no significant viscosity change can be observed.

We looked at how the apparatus could be redesigned to induce significant clogging.
One way to do this is to place a plug of porous medium into the capillary tube. We wrote
down a number of design specifications that need to be satisfied in order for this method
to work based on a porous medium with straight channels. We used these criteria to
demonstrate the feasibility of this approach and note that the same method could be
generalised to porous media with non-straight, tortous, pores.

Finally we looked at other mechanisms for retarding the flow and a totally new
approach for measuring hCG concentrations.
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Appendix: Polynomial viscous flow in a polyhedral

pipe

It is well-known that an equilateral triangle is the only polygonal pipe cross-section for
which there is a polynomial solution of the viscous flow equation. However, we do not
know of a proof of this fact in the literature, so we give one here for interest.

If the axial flow velocity is w(x, y), then after rescaling it obeys ∇2w = 1 in a
polygon P in the (x, y)-plane, with w = 0 on the boundary. We shall assume that w is a
polynomial and show that P must be an equilateral triangle. Each edge of the triangle
is a line segment on which w = 0. However since w is a polynomial it must vanish on the
whole continuation of that line segment, and must have the equation of that line as a
factor. Let l be the number of such factors. Also w− 1

2
x2 is a harmonic polynomial, and

is therefore the real part of a complex polynomial when expressed in terms of z = x+ iy,
so we have

w = 1
2
x2 + Re(anz

n + an−1z
n−1 + . . . + a0) (24)

with an �= 0 and n ≥ l ≥ 3. Let c be a corner of P and ζ1, ζ2 be unit complex numbers in
the directions of the two edges at c, so w vanishes at z = c+ rζi with r real. Considering
the coefficients of rn and rn−1 in w(c + rζi), we have

Re(anζ
n
i ) = 0 ; and, if n ≥ 4, Re((annc + an−1)ζ

n−1
i ) = 0. (25)

Since an �= 0 the first of these implies that ζn
1 /ζn

2 is real. If n ≥ 4 then choose a corner
c such that annc + an−1 �= 0 and the second would imply that ζn−1

1 /ζn−1
2 is also real.

However, these cannot both hold, as then ζ1/ζ2 would be real, contradicting the choice
of c as a corner. Hence in fact n = 3 and (ζ1/ζ2)

3 is real. Hence l = 3 and at each corner
the edges meet at π/3, so P is an equilateral triangle.
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