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Executive Summary

The problem posed by Winsland Consulting was concerned with finding
an efficient correlation between a 4D flight path (the civilian require-
ment) and a 4D volume of restricted airspace (due to weather or mili-
tary use). It further asked how this could be used to explore the best
shape of airspace reservations in respect of: sensitivity to civil demand
(daily and seasonal); best configuration (shape and time); and the best
times to release military sectors to civil traffic (network and local level).
The ESGI mathematicians developed a number of approaches that gave
confidence that an airspace optimisation tool is feasible.
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1 Problem statement

(1.0.1)

(1.0.2)

(1.0.3)

(1.0.4)

(1.0.5)

There are around 30,000 flights per day in European airspace. This flow of
traffic is controlled through 70 air traffic control centres and coordinated
by the Network Manager, part of Eurocontrol. Air traffic is controlled at
the level of a sector, which is a volume of airspace typically managed by
a team of two air traffic controllers. Coordination across Europe ensures
that the number of flights planned to fly through a sector at any one time
is limited to a safe level (typically 20 — 35 per hour).

Aircraft fly along pre-planned routes according to their flight plan, which
must be filed before the flight (typically 10 hours before). These routes
further define how air traffic flows through the network. Flight plans are
based on the fixed route structure and are used to calculate 4D trajectories:
latitude, longitude, flight level (height) and time. These trajectories are
used to predict where network problems may occur and the circumstances
can change minute by minute.

Usable airspace and the routes through it are limited by military areas,
known as reservations, and also by bad weather. There are mechanisms to
release the airspace for civil aviation when it is not used by the military,
under the concept of the flexible use of airspace. Winsland is interested in
exploring the value of non-available airspace and the mutual interactions
that change this picture. This has the potential to inform operational
planning, practices and airspace design that may improve the flexible use
of airspace. This is of interest in the context of future systems where,
for example, more direct flight routes will be possible. Currently there is
mostly a fixed route structure, with flight plans based on fixed waypoints
and optimised by Dijkstra’s algorithm, to minimise flight time or cost.

Our study question is whether there is an efficient way to correlate a
4D flight path (the civilian requirement) with a 4D volume of restricted
airspace (due to weather or military use). This could be used to explore
the network level impact of any particular airspace volume constraint. It
could help explore whether the best shape of airspace reservations is being
achieved, for example in respect of: sensitivity to civil demand (daily
and seasonal); best configuration (shape and time); and the best times to
release military sectors to civil traffic (network and local level).

Answers to these questions would feed into European efforts to improve
efficiency in the route network and airspace utilisation. If all parties under-
stand the impact of their operational decisions, then there is the potential
to finesse operations. Given the high number of flights per year, substan-
tial savings (107 — 108) could accrue to EU air operators even with small
improvements in flight efficiency.
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Figure 1: One of 30,000 aircraft per day flying in European airspace....

2 Introduction

(2.0.1)

(2.0.2)

(2.0.3)

Currently aircraft routing uses discrete waypoints, a fixed set of points
connected by path segments, along which aircraft routes are planned, much
like a road network. However in the future there may be a shift towards
free routing, where aircraft can take any path through the open airspace.

We will consider both the continuous and the discrete problem. The con-
tinuous problem approach works best when an approximation to the cheap-
est path is already known. Hence, the optimal method might be a com-
bination of discrete and continuous approaches, where an estimate of the
cheapest path found using a coarse discrete network is used as an initial
guess for the continuous optimization algorithm.

The main drawback with a purely discrete problem approach is that air-
craft are constrained to fly along the segments in the network rather than
taking the true cheapest paths. Adding more waypoints and segments to
the network allows for more direct routes to be flown but increases the com-
plexity of the system, both in terms of computational cost for path-finding
as well as more practical issues such as reading maps and communication
with ATC (Air Traffic Control) and hence a trade-off is necessary.
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3 Discrete problem optimisation methods

3.1 Civil flights path intersection with Military Airspace
(MA) analysis

(3.1.4) Currently military airspace has zones where civilian aircraft can’t fly at
certain times. We want to investigate the effect of military zones on flight
cost. Initially we use MATLAB to plot the great circle routes, for each
flight, between the departure and arrival airports and predict where the
plane will be along this route at any specified time.

(3.1.5)  We also made the following assumptions:

e Constant speed, determined by time of flight (difference between departure
times and arrival times) and the distance between the departure and arrival
airports.

e Constant height, determined by the flight level (FL).

(3.1.6) We plot the military zones in three dimensions as specified by the coordi-
nates of the military zone and the flight levels it is between. We want to
find the number of intersections between the flight paths and the military
airbases. For convenience, we split the day into 48 thirty minute periods,
and calculate the number of intersections in each period.

3.2 Program overview

(3.2.7)  The key stages of the program are:
e Plot great circle flight routes, assuming uniform speed and height,
e Plot paths of great circle for each 30 minute period,

e For each path, work out how many airbases it intersects in 3 dimensions (so
we include height of the airbase and height of the flight),

e Plot the data.

3.3 Input data

(3.3.8)  We use flight data provided for a single day, in the form shown in table
1. The first column is the name of the flight, and the second and third
columns are the codes for the departure and arrival airports. The fourth
and fifth columns are the departure and arrival times, and the sixth column
is the flight level of the flight. The seventh column is the actual distance
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flown by the plane. The 8th column is the type of aircraft. The next two
columns are the latitude and longitude of the departure airport, while the
last two columns are the latitude and longitude of the arrival airport.

AA32719391 EGGW LFLC 01:15:00 02:38:39 350 449.79 E145 51.87 -0.37 45.79 3.16
AA32725152 EGJJ EGBB 09:30:00 10:31:26 290 279.53 C56X 49.21 -2.20 52.45 -1.75
AA32726897 USSS EDDN 22:45:00 03:20:39 400 1853.61 F900 56.74 60.81 49.50 11.08
AA32727021 EGBB EGJJ 10:45:00 11:36:16 280 217.69 C56X 52.45 -1.75 49.21 -2.20
AA32727184 EGNV EGJJ 10:00:00 11:21:23 280 385.24 C510 54.51 -1.43 49.21 -2.20

AA32727510 EGJJ LEIB 13:25:00 15:18:31 410 703.71 F2TH 49.21 -2.20 38.87 1.37
AA32730029 ESOW EDHK 08:00:00 10:19:29 160 390.87 DA42 59.59 16.64 54.38 10.15
AA32732166 LIPZ EDDS 08:55:00 10:00:33 320 344.79 GLF5 45.51 12.35 48.69 9.22
AA32732265 EDDS ETAR 10:39:00 11:12:58 90 96.94 GLF5 48.69 9.22 49.43 7.60
AA32734378 EDDS EDDS 15:15:00 16:56:04 70 82.28 P28A 48.69 9.22 48.69 9.22
AA32748315 LIRA LIPZ 06:00:00 06:55:12 240 283.46 GLF4 41.80 12.60 45.51 12.35
AA32749220 LFBP LFKS 09:00:00 11:17:28 180 495.47 CN35 43.38 -0.42 41.93 9.41
AA32749478 LFMI LFPC 14:30:00 16:39:39 180 408.10 CN35 43.52 4.92 49.25 2.52
AA32755839 EGPD EBBR 11:30:00 12:56:14 410 519.71 F2TH 57.20 -2.20 50.90 4.48
AA32756082 EGGP LOAN 11:15:00 17:12:17 110 866.54 P68 53.33 -2.85 47.84 16.26

Table 1: Sample of flight data

(3.3.9) The military zone data is a sample of real world data. In practice there are
about 75,000 blocks of military airspace, each defined by its own coordi-
nates we only consider 38 bases. Each airbase is defined by a block name,
the flight levels the base is between and a list of latitude and longitude
coordinates of the vertices which specify the polygon shape of the airbase.
In Table 2 we give an example of data used to define airbases.

201LS 250 260 47.17 7.15 47.08 7.29 46.77 6.73 46.82 6.58 46.85 6.56 47.17 7.15
933LF 195 999 44.38 4.51 43.97 4.64 43.51 4.90 43.66 4.03 43.89 3.67 44.38 4.51
025LS 125 285 46.49 7.89 46.32 7.52 46.60 7.19 46.69 7.35 46.82 7.60 46.49 7.89
027LS 125 285 46.32 7.52 45.99 7.91 45.95 7.88 46.06 7.24 46.16 7.15 46.32 7.52
033LS 295 660 46.82 7.60 46.49 7.89 46.32 7.52 46.60 7.19 46.69 7.35 46.82 7.60

Table 2: Air base data format. First column is the block name, second and third
columns are the minimum and maximum flight level of the base, and all subsequent
columns are the latitude and longitude coordinates of the vertices.

3.4 Results of program

(3.4.10) Figure 2 shows the paths of each flight in a certain thirty minute period
and the military airbases we are considering.

(3.4.11) We consider block 930LF which is part of the French airbase near the
German border. We plot the number of flights going through this airbase
at different times during the day, as shown in Figure 3.

(3.4.12) We can see that the best time to close this airbase would be between 9am
- 11am and between 4pm - 6pm.

(3.4.13) We can also look at the other 38 air blocks and determine the number of
the intersections in each thirty minute period. The colour of each airbase
corresponds to the number of intersections, as shown in Figure 4. If an
airbase is yellow this corresponds to zero intersections; to the other end of
the scale red corresponds to the maximum amount of intersections.
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Figure 2: Plot of flights between 17.30 and 18.00 (blue) and 38 military airbases
(red). The corresponding video shows how the flights change throughout the day.
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Figure 3: Plot of intersections over time for military block 930LF.
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Figure 4: Colour scale representation of the number of flights crossing each airbase

3.4.1 Effect of moving a military airspace

(3.4.14)

(3.4.15)

(3.4.16)

(3.4.17)

(3.4.18)

We next consider the effect of moving a military airspace by a small amount
of latitude or longitude. We shift the airspace by half a degree of latitude
or longitude, which corresponds to moving military airspace by about 30
miles along the compass points. In Figure 5 we can see the effect of moving
this airspace.

We then consider how many intersections each shifted airspace has accrued
compared to the original. The idea would then be to shift the airspace in
the direction with fewest intersections.

In Figure 6 we can see a colour coded plot of the number of intersections
for the original base and the shifted version. We would want to shift the
airspace in the direction of most yellow in the figure, since this corresponds
to fewest intersections.

One small improvement that needs to be made is that currently if a 30
minute path lies entirely within a military airspace then this won’t count
as an intersection.

In the future some of the optimal path algorithms described later on could
be used, so that if a certain airspace is closed then a great circle route
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Figure 5: Moving an airbase by half a degree of latitude and longitude.

Figure 6: Number of intersections if the military airspace is shifted in different
directions. The centre square corresponds to the number of intersections in the
initial position.

should not be used but a new route around that airspace. We could then
calculate the number of intersections when we have a certain number of
military airspace reservations closed.
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3.5 Main approximations

(3.5.19)

(3.5.20)

(3.5.21)

(3.5.22)

In order to quantify how altering military airspace closures reduces costs
for civil aviation, we need to be able to calculate these costs for any given
airspace configuration. This involves predicting which route each aircraft
will take, i.e.calculating the cheapest route from point A to point B based
on the costs discussed in section 6. In this section, we investigate how to
calculate both the least-cost routes for aircraft and the reduction in costs
when military airspace is open for civil air traffic.

The purpose of our modelling is to understand how the cost varies with
different route choices. Asthe main aim is to quantify how varying military
airspace closures affect civil air traffic costs, we can allow approximations
which simplify the problem without having too large an impact on the end
result.

One such approximation is to ignore aspects which do not change ap-
preciably with the choice of route, such as the non-cruise phases of flight
(take-off, ascent, descent and landing), which typically add a constant cost
on top of the cruise phase costs. For our purposes, taking each flight to
be from the source airport to the destination airport at a constant speed
(and flight level) is thus a reasonable approximation.

As was discussed in section 6, the ATC zone cost paid by airlines is not pro-
portional to the actual distance flown, but rather the straight-line (great-
circle) distance between the planned entry and exit points of each zone.
For simplicity, we can use the following approximations:

e for short flights (between airports in the same ATC zone) we assume that the
flight does not leave the zone and hence the cost does not vary with the route
choice.

e for long flights (between airports in different zones) we assume that the path
through each zone is relatively direct, so that the great-circle distance can
be replaced by the actual route length in the formula for cost, yielding sim-
ply an additional cost proportional to the distance travelled, with different
proportionality constants in different zones.

(3.5.23)

(3.5.24)

For unpredictable issues, such as sudden weather events or delays on the
ground, we assume that they can be replaced by their average effect e.g.
adding a cost penalty for routes through regions which have unstable
weather and may require taking a detour.

A final, more crude approximation, is to ignore conflicts between aircraft
i.e. congestion issues due to network capacity constraints. This allows
us to treat each flight route independently from all the others, greatly
simplifying the problem in two ways: firstly, the problem requires less
computational power and secondly, the computation for different flights
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(3.5.25)

can be done in parallel on different processor cores.

Employing this last approximation means that we cannot investigate the
effects of bottleneck regions between nearby airspace closures, where large
savings could be made if more space were opened up so that aircraft would
not need to wait or choose a different path (figure 7(a)). However, the
model does capture approximately the savings of congested aircraft ob-
structed by single military zones (figure 7(b)).

With conflicts Ignoring conflicts

Figure 7: Effects of ignoring conflicts between aircraft. Due to capacity constraints,
flight 1 is preventing flight 2 from taking the most optimal route avoiding the
military closures (red), but treating each flight independently does not capture
this. The estimates for the benefit of opening up block X (resulting in the shorter
dashed routes) are incorrect in case (a), but decent in case (b).

3.6 Waypoint-based routing

(3.6.26)

Air traffic over Europe currently employs waypoint-based routing: a fixed
set of waypoints connected by path segments, along which aircraft routes
are planned, much like a road network. We can represent the network
mathematically as a graph, where the nodes are the waypoints and the
edges are the segments (see figure 8). In this section, we analyse how to
solve our problem in this framework.

3.6.1 Two-dimensional model

(3.6.27)

A full model would have to include the aspects of time and flight level, but a

9
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simplified two-dimensional model, which only takes latitude and longitude
into account, can nevertheless give useful insight into how military airspace
closures affect civil air traffic. A discussion of how to incorporate time and
flight level into this model is given in section 3.6.6.

(3.6.28) Throughout the rest of this section, we use the term “distance” to refer
to the costs of travelling along the network. This is just for convenience
of language, and should not be interpreted as a restriction of the analysis
to minimizing physical distances only. For the example results, due to
lack of better data, we have taken the costs to be the actual shortest-path
(great-circle) distances, but this again is not a restriction on the generality
of the analysis.

(3.6.29) Another simplification we have made is to assume that distances are sym-
metric.

3.6.2 Basic path-finding

H C D B F
4

10 10

Figure 8: Example network. (Costs are approximate distances with some adjust-
ment. )

(3.6.30) We are given a graph, like in figure 8, and wish to find the shortest (i.e.
cheapest) path from e.g. A to B (without using the segments passing
through the red military zones). The search can be accomplished efficiently
using the well-known Dijkstra’s algorithm®. The algorithm calculates the
shortest path from the starting node A to any node in the network by
processing each node in turn. At each step, the next node to process is
chosen to be the node closest to A which has not yet been processed. This
guarantees that every node needs to be processed at most once, and the
process can be terminated as soon as B has been processed.

(3.6.31) The resulting information obtained by the algorithm is shown in figure
9. Each node has been labelled by its shortest distance to the starting
node, as well as which direction the shortest path is in. For example, the

"http://en.wikipedia.org/wiki/Dijkstra’s_algorithm

10
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shortest path from A to B is found by following the arrows from B back
to A.

H, 15, 42 C, 10, 32. D, 20, 23

E, 30, 15 .F, 41, 10
10 h >

11

)
—_
)

10

1, 25, 40 B, 51, 0

Figure 9: Basic results for the example network. Each node is labelled with its
shortest distance to A, found by Dijkstra’s algorithm, and the heuristic (straight-
line distance to B) used by the A* algorithm. The arrows from each node indicate
which node precedes it in the shortest path from A.

(3.6.32) One drawback of Dijkstra’s algorithm is that it processes all nodes in
order of increasing distance from A until the goal node B is found (A, C,
H, D, I, E, G, F, B in the example). Thus, the algorithm processes all
nodes which are closer to A than B is before getting to B, including nodes
which are “obviously” in the wrong direction (H and I in the example).
Pictorially, Dijkstra’s algorithm processes nodes in an expanding circle
until B is reached.

(3.6.33) An improvement on Dijkstra’s algorithm is called the A* (A-star) algo-
rithm?, and makes use of an extra piece of information we know about
each node M: a lower bound on its distance to B. This information is
called a “heuristic”. If the “distances” used here are physical distances,
then a suitable heuristic would be the shortest-path (great-circle) distance
from M to B. For a more sophisticated model including costs and wind,
this heuristic could for example be the cost of flying the shortest path
from M to B, with the maximum tailwind and minimum ATC path costs
possible in the whole network.

(3.6.34) The A* algorithm works like Dijkstra’s algorithm, except that it processes
nodes M in order of increasing estimate of total route length (distance
from A to M plus heuristic for distance from M to B) rather than just
increasing distance from A to M. Using the heuristic values shown in figure
9, we obtain the same result as for Dijkstra’s algorithm, but the nodes
are processed in order of increasing distance plus heuristic (A(30), C(42),
D(43), E(45), F(50), B(50) in the example), and the search terminates
before H(57) or 1(65) are processed.

2http://en.wikipedia.org/wiki/A*_search_algorithm

11
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(3.6.35) Pictorially, the A* algorithm searches in a “beam” from A towards B. If
there are no obstacles, then the beam is very narrow and the search is
extremely efficient. If obstacles are encountered, the beam progressively
widens until a path is found around the obstacle. The beam is always
contained inside the circle searched by Dijkstra’s algorithm, so A* never
processes more nodes than Dijkstra.

3.6.3 Example results

(3.6.36) Here, we show results for flights in one day over Europe, using a real
dataset of 29,638 waypoints and 37,316 segments, of which 3,953 pass
through military airspace. The optimal paths are computed using Dijk-
stra’s algorithm.

Figure 10: Optimal flight routes using actual waypoints and segments for scheduled
flights departing from London Heathrow with all military airspace closed (blue) and
open (red).

(3.6.37) We first quantify the monetary value in our model of all of Europe’s mili-
tary airspace. To do this, we calculate the optimal routes avoiding military
airspace, and compare with the optimal routes passing through military
airspace if necessary. Assuming constant cruising speed and considering
fuel costs alone, this gives an approximate average cost saving of $36.05
per flight. We plot in Fig. 10 the different routes determined in the two
cases for all of the day’s flights departing from London Heathrow Airport,
illustrating how the opening of the military airspace can allow the civil
airlines to fly shorter routes.

12
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(3.6.38)

This approach can also be used to estimate the cost savings that could be
attained by opening separately any of the military airspaces. For example,
when the German airspaces 852-855ED are opened, this method shows
that 2,169 of the day’s flights can then be rerouted (the optimal routes of
the remaining 30, 358 flights are unchanged as they cannot be improved
by routing through the newly-opened airspace) at an average cost saving
of $22.22 per flight. Analogously, we could also obtain explicit estimates
for the cost savings due to opening particular combinations of segments
passing through military airspace. This could allow deductions to be made
about which conditional segments it would be most desirable to open,
giving indications of how the military airspaces might be reshaped so as
to yield maximum savings.

3.6.4 Quantifying savings from opening up military airspace

(3.6.39)

(3.6.40)

(3.6.41)

(3.6.42)

As for the question of how releasing parts of military airspace would
shorten a given route, a brute-force approach would be to consider ev-
ery release alternative and perform the path-finding calculation above on
each case. However, when considering the European network as a whole,
there are many alternatives to consider — there are several different reser-
vations, and one might be interested in options to release parts of them for
different parts of the day and at different flight levels. Hence, recalculating
the optimal path for each alternative individually would be a very costly
operation.

A first obvious optimization to make is to note during the first path-finding
for the route, which reservations were reached by the search algorithm.
Releasing any other reservations would have no benefit for the route in
question. Again, the A* algorithm does a more focused search than Dijk-
stra, and hence leaves fewer alternatives to consider here.

The second, and main optimization, is to perform two searches (avoiding
all reservations): One from A to B and one from B to A. This yields,
for every potentially interesting node, its shortest distance from A and
its shortest distance to B. After this information is obtained, we use the
following method to determine the savings from opening up any collection
of routes through military airspace:

We look at the subgraph containing only the segments that change from
closed to open. The task is to find the two nodes M and N which yield
the lowest value of

distance from distance from distance from
AtoM + M to N + N to B (1)
(pre-calculated) in subgraph (pre-calculated).

13
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(3.6.43) We do this by re-initializing a Dijkstra or A* search on the subgraph using
the pre-calculated distances from A. Each node in the subgraph is then
processed (in order of increasing distance or distance plus heuristic) and
once the least distances from A to nodes N in the subgraph have been
found (i.e. the first two terms in equation (1)) we add the pre-calculated
distances from N to B to obtain the overall distance. The minimum of
these is the least distance from A to B which makes use of the subgraph
at most once.

D, 20, 31 D, 20,31 E, 30, 21
16 16 15
23
20

A, 0, 51 A, 0, 51 G, 40, 31
(a) X: 0+ 16 + 31 = 47 (b) X, Y: 0423 +21 = 44

D, 20, 31 D, 20, 31 E, 30, 21

10
15 16 15
G, 40, 31 A, 0, 51 B, 51, 0

(¢) Y:20+0+ 31 =51 (d) X, Z:30+15+0=45# 16+ 10 + 15

Figure 11: Path-finding on subgraphs of opened segments. Each node is labelled
by the pre-calculated shortest distance from A and to B using the already open
segments. The algorithm finds the shortest path using the numbers in red.

(3.6.44) Some results for the example network from before are shown in figure 11.
The method correctly predicts the savings that can be made by cutting
the corner if (a) X or (b) both X and Y are opened up. Importantly,
it also detects that opening up (c¢) only Y has no benefit when X and
Z remain closed (whereas the naive method which only looks at shortest
paths ignoring closures would indicate that Y is obstructing the route from
A to B and imply that opening up Y would yield some saving). However,
if (d) X and Z are opened, then the new shortest path needs to pass
through the subgraph two separate times. The algorithm can not find
such paths, and hence it underestimates the savings for this option. This
can be remedied by using a more sophisticated algorithm that re-evaluates
not only the subgraph but also other nearby edges.

(3.6.45) To obtain the savings for multiple flights, e.g. all flights on a given day, we
would simply apply this algorithm on each flight and add up the savings

14
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for each alternative.

3.6.5 Example results

(3.6.46) Instead of using the actual military airspace shapes and waypoint loca-
tions, we divided the airspace into grid squares which can be either closed
or open for civil air traffic, and placed artificial waypoints on the mid-
point of each edge. The four waypoints around each grid square were then
joined by segments. This was done simply to avoid having to choose how
to divide the airspace, and is not exploited by the path-finding algorithms
in any way.

Figure 12: Results of shortest-path calculations with quantification of savings for a
sample of 1,000 flights. The blue regions are military airspace, with darker shading
indicating larger potential savings (up to 0.25% of the total cost of all flights in
the network) from opening up the airspace for civil traffic. The red shading in
non-military airspace indicates high density of flights (up to 125).

(3.6.47) An example result is shown in figure 12. The grid spacing is 0.5°, corre-
sponding to around 50 km vertically and slightly less horizontally. The
calculation for 1,000 flights on the grid with approximately 4,000 way-
points and 12,000 segments took 10 seconds to complete on an average
laptop.

15
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3.6.6 Effects of altitude and time

(3.6.48)

(3.6.49)

(3.6.50)

(3.6.51)

(3.6.52)

Introducing time in the model brings two implications: firstly, the route
conditions (e.g. wind field and airspace closures) may vary with time.
Secondly, we may want to know about potential savings from opening up
some airspace only part of the time.

For the first aspect, the simplest approach is to take the conditions at a
distance L from the airport to be the predicted conditions for the fixed
time L/v, (or perhaps slightly later) after the scheduled departure time,
regardless of when the aircraft actually arrives at that location. This
removes the time aspect of the problem, which can then be solved using
the algorithms above. The approximation is reasonable for aircraft taking
relatively direct paths in slowly changing conditions (so that the mismatch
between the actual conditions when the aircraft passes and the assumed
conditions is small). The approximation would fail e.g for cases when
an aircraft could fly slow on purpose in order to wait for a direct route
through military airspace to open up, but taking such cases into account
would come at a very large cost for not very much benefit.

To deal with the second aspect, the algorithms would be modified slightly
to also keep track of travel times (along the shortest paths found). The
Dijkstra or A* calculation then yields both the least distance from A to
each relevant node M and when the aircraft is scheduled to arrive at M.
When evaluating savings from opening up military airspace, we readily
obtain which times the airspace needs to be open for the aircraft to pass.

Finally, in order to deal with different altitudes, a full model would du-
plicate each waypoint into multiple waypoints representing different alti-
tudes. Segments would join neighbouring waypoints with similar altitudes
(limited by the maximum climb or descent rate) and have different costs
associated with them depending on whether they represent a climb or a
descent and also depending on the fuel efficiency at each altitude.

A simpler model would ignore maximum climb or descent rates so that
no duplication of waypoints is necessary. The segments connecting the
waypoints, however, remain duplicated, and represent flying at various
altitudes with various costs. Duplication of segments has a very small effect
on the path-finding algorithms, and they should execute in almost the same
time as for the case without duplication. In order to take into account
take-off and landing, high-altitude segments near the departure and arrival
airport can be removed from consideration. Good qualitative results can
be obtained from considering only two altitudes : “low” and “high”. Closing
low-altitude segments forces aircraft connecting to airports nearby to take
detours, while closing high-altitude segments forces aircraft passing by to
either take a detour or fly at the costlier lower altitude.
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3.6.7 Optimal choice of waypoint locations - visibility graph

(3.6.53)

(3.6.54)

(3.6.55)

When aircraft are constrained to follow a network of waypoints and seg-
ments, the locations of the waypoints has a large effect on how far the
aircraft must deviate from the cheapest possible route (ignoring the net-
work) and hence on the overall cost efficiency. Since the computational
cost of discrete path-finding algorithms increases with the number of way-
points, we would like waypoints to be located so that we obtain the best
results (i.e. the cheapest total cost for flights following the network) as
possible using as few waypoints in total as possible.

In the idealized case when the costs of flights are simply given by the
distance flown and all airspace is open, there would only need to be way-
points at every airport and all aircraft would fly directly from their depar-
ture waypoint to their arrival waypoint. With military airspace closures
(which are assumed to have polygonal shapes) the optimal waypoint and
segment distribution is given by the visibility graph in Fig. 13. Applying
the path-finding algorithms to this graph always yields the cheapest route
(even if not following the network).

Some open questions are: (a) If we wish to reduce the number of waypoints
further, which waypoints should be removed to yield the least impact on
the cost? (b) How should the waypoints be located if more effects are
taken into account, such as wind or opening up of military airspace?

3.6.8 Airspace congestion — linear programming approach

(3.6.56)

(3.6.57)

The shortest-path problem for a single aircraft can be expressed as a linear-
programming problem as follows:

Find z; ; > 0 which minimize Z Ci i j, (2)

]

subject to the constraint that for each waypoint 4:

1, if 7 is the departure airport,
Z Tijf—Tjif =< —1, if ¢ is the arrival airport, (3)
j 0,  otherwise.

Here, we interpret the airway network as a network of tubes, through which
a fluid (representing the aircraft) flows. The decision variable z;; is the
flux of fluid along the segment ¢ — 7, and C; ; is the cost per unit of fluid of
flowing along this segment (equal to the cost of flying along this segment
for the aircraft). The constraint (3) expresses that one unit of fluid is
pumped into the system at the departure airport and extracted at the
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Figure 13: An example of a visibility graph approach to path-finding. An aircraft
travelling from Edinburgh to Rome cannot go in a straight line (great circle) as
military bases are blocking the route. To find the optimal flight path we construct
a graph whose nodes are the origin and destination and corners of the military bases
and whose edges are all links that do not intersect any military base. After running
a path-finding algorithm (e.g. Dijkstra’s algorithm) on the graph we find that the
shortest path consists of piecewise straight lines avoiding the military bases at the
corners.

arrival airport, while, at any other waypoint, the amount of fluid flowing
in must equal the amount of fluid flowing out. Although the variables z; ;
are allowed to be real numbers, Ahuja et al.®> have shown that for (certain)
optimal solutions, each x;; is either 1 or 0, corresponding to whether the
optimal aircraft route runs along the segment 7 — j or not, respectively.

(3.6.58) The linear-programming formulation is equivalent to the shortest-path for-
mulation, and hence represents no improvement on its own. However, it
can be generalised to tackle the issue of capacity constraints when multiple
flights require use of the same segments:

Find ;,; > 0 which minimize »  Cyj iy, (4)
i7j7f

3Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin (1993). Network Flows: Theory,
Algorithms and Applications. Prentice Hall. ISBN 0-13-617549-X.
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(3.6.59)

(3.6.60)

subject to the constraint that for each waypoint ¢ and flight f:

1, if 7 is the departure airport of flight f,
Z Tijf— Tjif = § —1, if ¢ is the arrival airport of flight f, (5)
Y 0,  otherwise,

and for each segment 7 — j:

in,j,f < M,;. (6)
f

Here, M, ; is the maximum number of flights the segment ¢ — j can han-
dle. Capacity constraints on the total number of flights across a collection
of segments (e.g. all segments in a single ATC sector) can also be imple-
mented.

Constraint (4) then ensures that flights that arrive at node j from node i
must also leave that node unless that node presents an airport. If node 7
represents an arrival airport then flight f can only leave that node while
if node j is an arrival airport then flight f can only arrive at that node.

One crucial issue is that when modelling airspace congestion, the passage of
time can no longer be ignored — it is important to know whether the flights
passing through a sector in one day are spread out in time or if they intend
to all be in the same place at the same time. Time can be incorporated in
the model by, like in the case with altitudes, duplicating each waypoint into
multiple waypoints representing different instances in time. In the end,
the optimal solution may turn out to be very computationally expensive
to calculate.
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4 Continuous problem approach

4.1 Model

(4.1.1)

(4.1.2)

(4.1.3)

(4.1.4)

Suppose that we can represent a flight path in the form y = y(x) and aim
to find the path that minimises the cost functional

Cly] = /mB oz, y)v/1+y?dz. (7)

The cost function ¢ represents the cost per unit distance at the location
(z,y). If we are just interested in total distance as a cost metric, then
¢ = 1 in open airspace. Military airspace can be given an artificially high
¢, possibly continuously decreasing to 1 around the edges. The radial
functions including a piecewise-linear top-hat, a Gaussian and an error
function were tested. All functions used were adequate.

One approach is to minimise the cost functional using the Fuler-Lagrange

equation
oL d (0L
50 = ar () )

where L = ¢4/1 + y’? is the Lagrangian. The resulting ordinary differen-
tial equation (ODE) is

B 9
oy’ =(1+y?) (a—i — yb—i) (9)

with boundary conditions y(x4) = ya, y(xp) = ys.

A program (potentialRoute) was developed in MATLAB, incorporating
the bvp4c routine, to solve this equation for a given cost function ¢ and
endpoints x4 and xp.

As a small improvement to working in fixed Cartesian coordinates, the
coordinates y and x are defined as normal and parallel to the straight line
joining the start and end points of the flight. The potentialRoute normal
code rotates into and out of this frame for each flight path, returning a
solution path in fixed Cartesian space. Using the code we computed a few
illustrative examples.

4.2 Assumptions

(4.2.5)

Cartesian coordinates are used.

20



Flight efficiency in European airspace ESGI107

(4.2.6) The path is represented as a single-valued function. An improvement
would be to use a parametric form (z(t),y(t)). We then get the Euler-
Lagrange equations

oL_a(ony oL _a (oL o
or dt \oi )’ oy dt \ 9y )’

(4.2.7)  The problem is that the Euler-Lagrange equations will give a result that
if the problem is time-invariant, doesn’t depend on the parameterisation.
That is, we could let ¢t = t(s) and still have a solution.

(4.2.8) Time-independence: if we can parameterise the flight path using real time
(rather than use t as an arbitrary parameter) then it would be simple to
make the cost function ¢ time-dependent and modify the Euler-Lagrange
equations accordingly.

(4.2.9) Maximisation vs minimisation: the Euler-Lagrange equations don’t dis-
tinguish between maxima and minima. In the formulation given, this can
occasionally lead to finding a stationary point of the cost function which
is not a desired minimum (i.e. going right through military space). This
could be fixed by reformulating the problem to minimise travel time (suit-
ably penalised according to winds etc).
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4.3 Model includes wind

(4.3.10) A different approach considers the effect of wind. Suppose that we aim to
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minimise the flight time
/ ds / \/1+y’2 (11)
v(r,y,Y)
where v is the speed of the aircraft.

(4.3.11) If we assume, crudely, that the aircraft flies at fixed unit speed relative to
the wind, then we could write

wy + y'w
vz, y,y) =1+ ——=2, 12
where w(z,y) = (w,,w,) is the wind velocity scaled by the aircraft’s
cruising speed. The total time is then
B 1 /2
Tly = +y dz. (13)

V14+y? 4w, + y'w,

(4.3.12) This should be minimised with respect to y(x) satisfying the endpoint
conditions y(z4) = ya and y(zp) = yp.

(4.3.13) Obstacles (military zones) could be included in this formulation via mul-
tiplication by a penalty function ¢ as before. However, unless the cost
function represents obstacle edges as sharp steps, the functional will no
longer represent the true flight time.

4.3.1 Effects of wind during cruise

Velocity relative to air, v,

Wind velocity w

Velocity relative to ground, v,

Figure 14: The wind triangle.

(4.3.14) When an aircraft flies in a horizontal wind w, its ground velocity v, = x
and air velocity v, are related by the wind triangle (figure 14):

= \/v2 — 2vwcos 0 + w?,

Va
Vg =Vg+W =
9 a .
{vg = /v2 — w?sin? § + wcos d,

(4.3.15) Here 6 is the angle between the wind and the ground velocity, with 6 = 0
corresponding to a tailwind. We begin by investigating this expression

(14)
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for flight in a straight line with constant wind, to help us understand the
effects of the wind. Also, the straight path is the optimal path between
very nearby (infinitesimally close) points, so the results can be used for
our general analysis later.

4.3.2 Optimum air speed

(4.3.16)

(4.3.17)

(4.3.18)

(4.3.19)

Aircraft usually fly at a cruise speed v., which we presume is chosen to
minimise the cost of operating the aircraft (e.g. fuel costs and staff costs).
Here we investigate whether the presence of wind may change the optimal
flying speed.

We let the unknown function C'(v) denote the cost per unit time of flying
the aircraft at air speed v, = v. The cost per unit distance flown (without
wind) is thus C(v)/v, and the cruise speed v = v. minimises this expres-
sion. With wind, the cost per unit distance flown along the ground is then
C(vq) /vy (with v, related to v, by equation (14)), and we immediately
observe that this might attain a minimum at a value of v, different from
the cruise speed v..

To make more progress, we use a perturbation expansion in the limit of
small wind, w < v., with the aircraft flying at near-cruise speed. That is,
we let € = w/v. < 1 be a small parameter, and expand the air speed as
Vg = Ve[l + €0q1 + €042 + O(€®)]. This yields the ground speed

Vg = Ve [1 + €(0a1 + cos0) + € (0,2 — 1 sin*0) + O(€%)] . (15)

Since the cruise speed v, minimizes C'(v)/v, we can write down the Taylor
expansion

Cz(;U) = A1+ g(v —ve)” + O((v —ve)) | (16)
where
_ C(v) _ wC(v) _ 20.C(v)
A== I N R (A RRE (17)

are positive constants depending on the aircraft operating cost character-
istics. A is the cost per unit distance at cruise speed, and B measures how
sensitive the cost is to variations in speed. The cost per actual distance
flown is thus
C(v C(vg) v
Vg Vg Vg
= A[1—ecost+ € (BoZ + 01 cosd + 3 cos? 0+ 1)] . (19)
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(4.3.20)

(4.3.21)

(4.3.22)

(4.3.23)

We immediately observe that the leading-order effect of the wind (i.e. the
first two terms in equation (19)) is not affected by the choice of 0;:

%:A{l—ﬂcoswr()(w?)]. (20)

2
Vg Ve vz

For the purposes of calculating costs we can thus assume that all aircraft
are flying at cruise airspeed. We can understand these results intuitively
as follows: let’s first suppose that the aircraft flies exactly at cruise speed.
The presence of wind then alters the length of the path the aircraft has
to fly according to the wind triangle and this change in distance corre-
sponds directly to a change in travel costs (via the proportionality factor
C(ve)/ve). Changing the speed of the aircraft slightly has a small effect on
the proportionality factor C'(v)/v since its derivative is zero near v, and a
small effect on the length change and so a small effect on the overall cost.

For completeness, we can still minimize the third term in equation (18) to
find the optimal choice

cos 6 w cos b w?
Aa = — a: C_ - . 21
Va1 5B = Vg = 5B +O(UQ> (21)

[

Hence, it is very slightly cheaper to fly slightly slower than cruise speed in
tailwind, and slightly faster in headwind.

4.3.3 Cost for flying at cruise speed with wind

(4.3.24)

(4.3.25)

We have argued in the previous section that for wind speeds much slower
than v., the effect of wind is to alter the distance that the aircraft flies
relative to the moving air and this does not depend on whether the aircraft
is flying at the optimal speed or at cruise speed v.. Also, aircraft in reality
probably do not adjust their air speed greatly to take wind into account but
rather keep flying near cruise speed. Hence, for the rest of this report, we
will assume that the air speed of each aircraft is the (aircraft-dependent)
cruise speed v, (which converts to a ground speed via equation (14)).
The path of an aircraft in 4D spacetime is then determined by its 3D path
through space (together with its departure time) and the costs captured by
the function C(v) are given by the (aircraft-dependent) constant C'(v.) /v,
multiplied by the distance flown relative to the air.

For simplicity, we think of the cost as being given by the constant C(v,)
multiplied by the time taken (flying at cruise speed v.) instead. However,
it is important to remember that the cost does not decrease (as easily)
with a speed increase like the travel time does, as the cost is actually
determined by the distance flown through the air.
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(4.3.26)

(4.3.27)

(4.3.28)

(4.3.29)

(4.3.30)

(4.3.31)

From equation (14), we see that the time required to fly along a line
segment dx is

x| dx

w2 sin’ 6 + w cos

dt

2 (22)

Ug UC —

The time it takes to fly a path x(s), depending on an arbitrary parameter
s € [sg, s1], through space is then given by
|x'| ds

51
T_/ |
w0 VUR—|wPR+(w-X)?+w-X

(23)

where w may depend on x(s) and X' = x’/|x/| is the unit tangential vector.
If we again assume that the wind speed is small, i.e. w < v., then an

approximate result is

S1 / - 2|/
T:/ m_gw(&;l) ds. (24)
so Ve % Ve

c

Here we recognise the first term as yielding the total arc length L of the
curve (divided by v.).

In the particular case that the wind field is constant and uniform (and the
curvature of the Earth ignored), the second term in equation (24) yields a
constant contribution w-(x(s;)—x(s0))/v2. Thus the integral is minimized
when the arc-length is minimised, i.e. by a straight line and the time taken
is

_|Ax] w-Ax

Ve v?

T

, where  Ax = x(s1) — x(s0). (25)

For general wind fields minimization of the integrals in equations (23) and
(24) requires making use of the Euler-Lagrange equations, as discussed in
section 4.
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5 Queue optimisation algorithm for a network of
flights

5.1 Current procedure

(5.1.32) The pilot of a civil aircraft sends a (4D) route proposition to Eurocontrol
a minimum three hours ahead of the flight. This route is either accepted
or Eurocontrol proposes other one. The pilot can either accept it or repeat
the procedure.

5.2 Example

(5.2.33) Eurocontrol assigns routes to aircraft on first come first served’ basis there-
fore each pilot will propose an option which is optimal for them, but only
at that particular moment.

(5.2.34) Consider the situation where two pilots Py, P» would like to fly through a
corridor between two military areas, but only one of them is allowed due
to safety reasons. Since P is served first by Eurocontrol, they are offered
an optimal route P;g; which runs through this corridor and the other one
is left with the more expensive route Pjrs. If P, chooses Piri, the pilot
P, agrees on route Py which is less optimal for them than the one they
propose Psgri. This rule of assigning aircraft to routes turns out to be
non-effective, when the added cost of Pig; and Psps is strictly bigger than
of P1R2 and P2R1-

5.3 Problem

(5.3.35) Find an algorithm optimising total cost of routes for the whole network of
flight connections, with certain constraints.

5.4 Theoretical model

(5.4.36) Let us denote by V := {A;}ier - the set of considered civil airports in
Europe and the set of all used air corridors by { X} }rex (especially those
spaces between two military areas). Consider discretized model of flight
connections, i.e. symbolically identify each entrance and exit to/from cor-
ridor {X}} with two points {x;}, {z*} respectively (assume for example
that entrance point lies more to the north or east with respect to exit
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(5.4.37)

(5.4.38)

point). For every i € I let T; := (t!),en, be the sequence of times dur-
ing the day, for which there exist flight starting from airport A;. Define
T:=T.

For every 4,7 € I, if there is a flight connection 4; — A;, starting at ¢/,
then denote by zy(t!), (¢ ), the times when the corresponding aircraft
enters and exits corridor Xj,. Note that the aircraft can enter the corridor
through its exit point, and then exits through enter point. This is only to
be consistent with the notation - enter and exit points are fixed points on

the map of Europe. So it is possible that z () > z*(¢).

For each time interval [s,s 4+ hlsper, and corridor Xy, consider the set:
C;;Hh] ={(i,7,t) € I x I x T'| 3 flight A; — A; starting at time t € T;
so that xy(t) or 2%(t) € (s,s + h)}.

5.5 Solution

(5.5.39)

(5.5.40)

(5.5.41)

(5.5.42)

(5.5.43)

Assume that at time sy schedule for the flights starting, at any from consid-
ered aircraft, at times between s; < s, 1 > sg has to be created. For each
of these flights create a list of possible 4D paths, that is each of the path is
a sequence of points in 4-dimensional space - ((xy, zx(t%)), (2, 2% (t)r,
for only this k& that corridor X is visited. Moreover impose that the
sequence (maz(zg(t:), z(t))), has to be decreasing or increasing.

Now calculate the costs of each of the routes for every flight and set them
in pairs: (sequence of paths for all of the flights with ascending order with
respect to departure, summarized cost of all of these routes). Then sort
this sequence, in increasing order, of pairs only with respect to the second
term in pair, that is summarized cost of these routes.

Loop over this sorted sequence, each time checking condition C;;SM] <
critical value of aircraft in one corridor, due to safety reasons, for every
k € K and appropriate times s, s + h. Stop the loop when this condition
is satisfied for every k € K.

The wanted schedule is given by the sequence from the last loop. Note
that the stopping condition exists, since we can find routes like in the
algorithm used nowadays.

This procedure can be applied since we assume the knowledge of the routes
chosen before time sg.

5.6 Efficient algorithm

(5.6.44)

When looking for an efficient algorithm, or implementation of the above,
one has to take into account:
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e For each airport we can omit certain nodes defining non-relevant corridors,
e.g. when flying from Krakow to London, the route over Serbia’s territory can

be discarded.

e When choosing the relations between sg, s1, 53, we need to consider complexity
of the algorithm (number of flights and possible corridor nodes).

e Weather predictions are deterministic up to six hours ahead, so the difference
S9 — Sp cannot be too big comparing to the duration of the flights.
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6 ”Cost” metrics

(6.0.1)

(6.0.2)

(6.0.3)

(6.0.4)

(6.0.5)

In this section we look at some considerations in terms of the cost of travel
between two given airports A and B, assuming there are no obstacles
between them. Given a route v from A to B the cost of the flight through
this route is given by

C(y) = / F(weight of aircraft, type of aircraft, altitude,
vy

zones crossed, speed, etc. ) dy. (26)

The problem of finding the best possible route for a given aircraft is equiva-
lent to finding the curve v connecting A with B that minimizes C'(y). The
"cost function F” can be very complex and we do not write it here ex-
plicitly however, any model should consider the following parameters on
which C(v) depends

zone cost := max. weight x zone dist x zone charge, (27)

where max weight is the maximum weight of aircraft, fixed for a given
aircraft and zone dist is the distance through great circle from entry to
exit point in the zone.

The cost function must also consider the fuel consumption and delay costs.

fuel cost := fps x travelled distance x number of seats
delay cost := €50 x delay minutes. (28)

Here fps is an averaged measure of fuel usage per kilometer per seat of a
given type of aircraft.

For a numerical investigation we could begin with a simple model and
assume that we can divide the part of the route during which the aircraft
stays above some certain altitude, into small segments creating a sequence
of parts of the great circles. Moreover since above this critical altitude the
wind might be considered as a piece-wise smooth vector field, we could
assume that on each of these parts the wind is a constant vector. Hence
we can write:

travel duration = duration of ascent phase +
duration of being above the critical altitude (cruise flight) +
duration of descent phase. (29)
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(6.0.6)

(6.0.7)

Here the duration of being above the critical altitude can be written as the

sum  y % where Adist is the length of the path segment described

segments
above and Vj is the speed of aircraft with respect to the ground. These can

be computed using application E6B Flight Computer available at http:
//www.vandeenensupport.com/projects-en/rs/index.html

This model shows that when comparing costs between different routes
we should take into account not only the distance travelled but weather
conditions and zones visited as well.

7 Future ideas

(7.0.8)

All these investigations could be taken further, adding layers of complexity
and refinement to each model. For example one could modify the discrete
algorithm to find the path of several flights simultaneously. The model
could include sector capacity and scheduling constraints. These last two
options require the inclusion of time in the optimisation model. The whole
network efficiency optimisation algorithm could also be developed.

8 Program files

(8.0.9)

(8.0.10)

RunFile.m calculates the number of intersections of the paths with air-
bases. With 33,000 flights, 38 airbases and 48 time periods the program
took approximately 6 hours to run.

PlotMaps.m allows us to plot different types of data as seen in the results.
We can plot graphs of the intersection for each base, or colour coded maps

which can be turned into movies. This is much quicker than the previous
file.
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