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Abstract

A three-dimensional framework into which models of tree growth may be placed
is proposed and explained by considering surface evolution of anisotropic stem-
branch-obstacle systems. In order to accommodate as many different models as
possible, the surface evolution law considered is quite general in that it may be
dependent on time, the vector(s) describing the anisotropy, local curvatures or s’es,
concentrations of growth hormones; and may be different for the stem, branches,
etc. The motivation for this is to produce a framework allowing general mathe-
matical models of tree surface growth in three dimensions to be formulated and
numerically analysed. The robust, computationally stable and efficient framework
for describing the evolution is based upon the fast marching method. The basic
method is extended to situations where different surfaces (stem, branch, obstacle)
evolve according to different growth rules, and a method for tracking the evolution
of the vectors describing the anisotropy is detailed. This anisotropy (the wood’s
grain) is modelled using an incompressible fluid and explicit solutions are found for
the situation where the stem contains a dead branch, and for the region around a
live branch–stem junction.

The evolution of curves in two dimensions is also explored analytically to provide
insight into the more complicated 3D case. Explicit formulae valid for any evolution
law are given for the evolution of: distances along the curve; the local curvature; and
the average magnitude of the curvature. Two-dimensional analogues of tree growth
past obstacles with curvature- and hormone-driven growth are solved analytically
and display expected characteristic behaviours.

The results of the numerical simulations are visualised using MATLAB. Three
cases are tested: a stem with a cluster of 5 branches; the growth of a stem around
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an obstacle; and a combination of these two with different growth rates for the
stem and branches.

1. Introduction and Outline

1.1. General introduction

Ensis is a joint venture between Scion (New Zealand Forest Research
Institute) and Australia’s CSIRO Forestry and Forestry Products. Rapidly
producing trees containing timber with large sections of straight, uni-
form grain, uninterrupted by knots or branches, is one of a forester’s
main goals. This is aided by mathematical models of tree growth, which
range from macroscopic empirical models down to microscopic physiolog-
ical models (see [13] for an example). However, the Ensis representatives
realised that none of the mathematical models proposed have been set in
a three dimensional context, chiefly because of a lack of a known general
mathematical framework into which to place them.

The problem that the Ensis’ representatives presented was to de-
velop a robust framework for describing growing surfaces which may be
anisotropic. This framework should:

be numerically stable under any physically-reasonable local evolu-
tion law;

have the ability to track in time any vector(s) describing the local
anisotropy;

be applied in a few simple examples, for instance a stem with a
single branch;

be able to be applied to growth of a tree’s surface as well as cell-
wall thickening;

include a visualisation component.

Concurrently, the MISG team should consider the mathematical mod-
elling of growing trees and wood cells, bearing in mind the literature for
tree growth is enormous (some references are [6, 7, 9, 10, 13, 17, 18]).

It became apparent during the course of MISG2006 that, due to a lack
of experimental observations, it would be impossible to build a useful
model of cell expansion and cell-wall thickening, so the team concen-
trated on macroscopic tree growth. Only growth in the girth of stems
and branches was considered, since height/length growth was considered
beyond the scope of this project. Finally, the experimental observations
may be more relevant to pinus radiata than to other trees.
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1.2. Mathematical remarks

The problem may therefore be summarised as follows. Every point on
the tree’s surface, r (a 3-vector), is equipped with a unit normal n, and
a special tangent direction, g, which points along the direction of the
grain (n · g = 0). The evolution law in time (t) is

dr

dt
= vn , (1)

where the “velocity function”, v, may be dependent on t, g, the local
curvatures or stresses, whether the point in question is part of the stem
or a branch, concentrations of growth hormones, etc. This is shown in
Figure 1.

r

g

n

Figure 1. A stem with a single branch. The grain is shown as well as an example
normal (out of page in this case), n, and grain direction, g directions.

Equation (1) is deceptively simple. Although possible, it may be incon-
venient to parameterise the surface and embed into R3 using a function
r. Moreover, in many instances the surface evolution may be frustrated
by “shocks”, or regions where two surface patches are growing into each
other (such as the conflict between the stem and the upper surface of
an upwards-tilting branch), and the numerical implementation must be
able to handle this. The level set and fast marching methods [15] handle
both of these problems naturally.
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The evolution of g is discussed below in Sections 5 and 6.
Reiterating, the problem brought to MISG reduces to:

1 implement a numerically stable algorithm to evolve the surface
under equation (1) with any v, apply it for a few simple initial
configurations and visualise it;

2 investigate some mathematical models that yield realistic v.

1.3. Outline

A number of experimental observations were presented to the team by
the Ensis representatives. These are summarised in Section 2.

Section 3 contains general remarks about curvature-driven growth,
and analytic calculations concerning growth of “surfaces” in 2D, both
curvature-driven and driven by hormones. Explicit formulae valid for
any evolution law in 2D are given for the evolution of distances along
evolving curves, and also the evolution of curvature and “total varia-
tion” along such curves. These results and the examples worked through
should prove a useful guide for future studies involving modelling the
growth velocity.

Section 4 details a stable, efficient numerical method — the fast march-
ing method — for tracking the growth of an isotropic surface. This
method is also extended to the case where the stem and branches of the
tree are evolving according to different growth rules.

In Section 5 the problem of determining grain direction is considered.
The literature is quite sparse on this subject, but in one model [6, 8] the
grain is thought of as streamlines of an incompressible fluid running from
the leaves to the roots. This yields qualitatively realistic grain patterns.
Two examples are worked through: that of a dead branch attached to a
stem; and, a live branch attached to a stem.

Section 6 outlines a model for including grain direction in the fast
marching method, and hence tracking the evolution of an anisotropic
surface.

Finally, in section 7, the method of visualising the output of the nu-
merical methods is described and the results of simulating tree growth
in three dimensions are presented and discussed.

Appendix 8 contains a table of the mathematical notation.

2. Experimental observations of tree growth

The Ensis representatives requested that it should be possible to in-
clude the following experimental observations [2, 3, 4] concerning the
velocity, v, and grain direction, g, in the framework. A book that has
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general information regarding trees is [9]. Many of the following ex-
perimental observations may be seen in evidence in the cross-sectional
photograph in Figure 2

Figure 2. A cross-section of pinus radiata stem with one branch. The left-hand
edge is the core (pith) of the stem. This sample shows time-dependent growth, the
concave/convex patterns around junctions, the death of the branch, and the grain
running into the branch.

2.1. Growth with time

An isolated stem or branch appears to grow with v = v(t) in a manner
similar to the sketch of Figure 3. The functional form of v(t) may be
readily obtained from experiment.

2.2. Growth of young branches

A complicated pattern of convex and concave regions of wood sur-
rounds the branch-stem joint, as shown in Figure 4. The convex/concave
regions are roughly symmetric around the axis of the branch. After a
few years of growth they disappear.
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v

t
Figure 3. A sketch of the velocity, v, as a function of time, t, for an isolated stem
or branch.

2.3. Death of branches

Branches grow for a few years and then cease growing, often dying.
Conversely, the stem continues to grow. This means that

vstem 6= vbranch .

This may be seen in Figure 4.

2.4. Grain

Grain may be approximately straight in the direction of the stem/branch
axis, or it may be ‘spiral grain’ which follows a helix around the axis.
The pitch of spiral grain often varies from year to year. It is not un-
common for a left-handed helix to gradually change into a right-handed
version (or vice-versa) over the course of about 20 years. According to
the Ensis representatives, it is atypical for the grain to change chirality
more than once in the life of a tree.

Interestingly, recent research [2] contradicts the conventional wisdom [16]
concerning grain patterns around stem-branch junctions. The recent re-
search suggests that grain runs down the axis of a branch and then runs
down, not up the stem, and that grain appears to be contiguous to the
stem-grain only in a first few years of a branch’s life. After these first
years, and corresponding approximately with the death of the branch,
the grain in the stem runs around the branch, treating it like an obstacle.

2.5. Removal of branches and growth around
obstacles

Often dead branches are broken or pruned off the stem. This can
be beneficial for the tree for it effectively allows the branchless part of
the stem to be taller. The stem grows around the remaining branch-
stub and eventually completely encases it. Occasionally trees encounter
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Concave ring around
branch−stem junction

around junction
Convex ring (’bump’)

Figure 4. A cross-sectional sketch of the time sequence of the region around a
stem-branch junction. Blacker lines: early times. Whiter lines: late times. There
is a pronounced concave ring around the base of the branch, and further out on
the stem there is a circular swelling, called here the “bump”. At later times these
concave/convex regions disappear.

obstacles (such as fences) and grow around these obstacles in the same
way. A typical time sequence is shown in cross section in Figure 5, and
photographs can be found in [9].

3. Some analytic calculations

Curvature-driven and hormone-driven growth are discussed in this
section. Firstly, some general remarks are made concerning curvature-
driven growth and it is argued that it is likely to be irrelevant for tree
growth. Nevertheless, because it is so common in surface-growth prob-
lems, a summary of the mathematics of curvature is given. Explicit
formulae are derived for the evolution of a space curve in 2D; the evo-
lution of the distance (metric) along such a curve; the evolution for the
curvature of the curve; and the evolution of the average value of the
magnitude of its curvature in 2D: all for a completely general evolution
law. A problem that is analytically solvable is presented, because this
should provide insight into more realistic problems which are only solv-
able numerically. It is an attempt to model the “bump” occurring in
Figures 4 and 5. Finally, a hormone-driven growth problem is solved,
again not because it is perfectly realistic, but because it should provide
a feel for the types of behaviours manifested by this type of growth.
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Figure 5. Growth around an obstacle (shaded) — cross-section of tree. Blacker
lines: earlier times. Whiter lines: later times. A definite “bump” is seen, similar
to that of Figure 4, but experimental evidence was not detailed enough to determine
whether there is also a “concave region”. The stem grows over the obstacle, producing
knuckle-like surfaces before completely enclosing the obstacle.

3.1. Curvature-driven growth

In other areas involving the growth of surfaces, such as flame fronts
or crystal growth [15], it is common for the velocity to be dependent on
the local curvature, κ. For example, the velocity may be assumed to be
a linear function

v = a+ bκ . (2)

It is unclear whether this is pertinent for tree growth, since tree growth is
not a crystallization process, and dimensional arguments suggest v = a
is more likely. Let us speculate further.

One simple assumption is that a surface area, A, of tree produces
a volume of material vA∆t in time ∆t, where v is a proportionality
constant parameterising the speed of wood deposition. The units of
v are m/s, and it is evidently the velocity found in equation (1). The
simplest assumption is that v is constant (v = a) but in a more elaborate
treatment we would account for curvature effects by expanding around
the planar situation in a power series:

v = a(1 + b̃κ+O(κ2)) .

However, this means that b̃ has the dimensions of length, since κ has
dimension of 1/length. It is unclear what this parameter would be save
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for a microscopic parameter such as the typical diameter or length of a
wood cell, or even the length/diameter of a macromolecule in the cell.
These are all very small, so their product with κ in the term b̃κ would
lead to an insignificant correction to the simple law v = a for all but the
most severe curvatures.

The same arguments can be made concerning the curvature of the
grain: one proposition is that curved grain (such as spiral grain or grain
around a branch-stem joint) may result in different growth characteris-
tics than straight grain, viz., perhaps v = a+bκ, where κ is the curvature
of the grain. However, b should contain some length parameter, which
would probably be the cell diameter, or possibly the cell length, both of
which yield an insignificant bκ.

In contrast, flame propagation and crystalization have been modelled
using curvature-dependent growth. These are rather different phenom-
ena, however: flame propagation in a combustible mixture depends on
thermal and mass diffusion and the thickness of the flame front, which
all provide suitable length scales; while the rate of crystal growth into a
solution phase depends on the available sites for molecular attachment
which in turn depends on the length scales of defects in the crystal and
the molecular sizes. The existance of these natural length scales makes
curvature-dependent growth more plausable.

Of course, the arguments concerning tree growth are purely hypothet-
ical since it is likely that the rate of material deposition is not propor-
tional to the tree’s surface area. Moreover, it may also be true that the
length of fibres does correlate with the growth rate of trees, and it is
not uncommon in anatomy to find genetically determined length scales
that emerge after morphogenesis (an early paper is [19]). Finally, the
very fact that the cambium is fairly smooth and cylindrical indicates
that the growth tends to discourage any local increases in curvature, so
that v = a + bκ with a > 0 and b < 0 (but small) may be appropriate
in some microscopic models where curvatures on the scale of cells play
a role. Therefore, we summarise some results concerning the curvatures
of space curves and surfaces.

There are many online references describing curvatures of space curves
and surfaces, see for example [20, 21, 22], and Sections 3.1.2 and 3.1.3
contain a collection of the most useful formulae, without proof.

3.1.1 Qualitative curvature-driven growth. Curvature-driven
growth under v = a + bκ can either accentuate or dampen the effects
of high-curvature regions, as may be seen in Figure 6, depending on the
sign of b.
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final
original

Figure 6. Curvature driven growth from an original (lower) surface to final (upper)
surfaces under v = a + bκ. The solid final surface has a > 0 and b > 0. The dashed
final surface has a > 0 and b < 0.

3.1.2 Curvature and torsion of space curves. A space curve
is simply a 1-dimensional curve lying in 2 or 3 dimensional space. It may
be parameterised by ξ which increases monotonically along the curve,
and can be embedded in 2D or 3D using r(ξ). Its curvature, κ, and
torsion, τ , may be calculated through the relations

κ(ξ) =
|r′ × r′′|
|r′|3

and τ(ξ) =
|r′ · r′′ × r′′′|

|r′ · r′′|2
,

where the prime denotes differentiation with respect to ξ.

The curvature at a point is the reciprocal of the radius of curvature
of a circle which most closely matches the space curve at that point
(the so-called ‘osculating circle’).

The torsion determines how out-of-plane the curve is, and is zero
for a curve lying in a plane, positive for a right-handed helix, and
negative for a left-handed helix.

In principle, the velocity, v, could be a function of both curvature and
torsion of the grain.

The unit tangent vector is

T =
r′

|r′| .
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Derivatives of it can be expressed in terms of the unit normal and bi-
normal via the classical Frenet formulae [21]:

T′ = |r′|κN ,

N′ = −|r′|κT + |r′|τB ,

B′ = −|r′|τN .

If ξ is the arc-length then |r′| = 1 and these formulae simplify somewhat.

3.1.3 Curvatures of surfaces. There are a number of useful
measures of curvature at a point on a 2D surface embedded in 3D.

The principal curvatures are calculated by considering curves on the
surface going through a point. Denote the unit normal to the surface
by N, and let v be a unit tangent vector. Consider the curve produced
by the intersection of the surface with the plane defined by N and v.
It will have zero torsion, and by the second Frenet formula (above), the
curvature at the point is |∇vN| (with ∇v = v · ∇). The maximum and
minimum of these curvatures (choosing all possible v) are called the
principal curvatures, k1 and k2.

The Gaussian curvature at a point on a surface is the product of the
principal curvatures, k1k2 (or det∇vN). Imagine an ant tied to the
point with a short thread of length r. The ant runs around the point
while the thread is completely stretched and measures the length L(r)
of one complete trip. If the surface were flat, L(r) = 2πr. Using the
measured length, the Gaussian curvature can be calculated through the
formula

Gaussian curvature = lim
r→0

3(2πr − L(r))

πr3
.

The Gaussian curvature has units of length−2.
The mean curvature at a point on a surface is the mean of the principal

curvatures, (k1 + k2)/2 (or 1
2tr∇vN). It may also be calculated by

constructing the unit normal to the surface, N, and taking its divergence:

mean curvature = ∇ · N .

The mean curvature has units of length−1.

3.2. Curvature-driven growth in 2D

Let r(ξ, t) = (x(ξ, t), y(ξ, t)) denote the position vector in R2. We
consider a family of curves generated by an initial curve γ(0) described
by r(ξ, 0), ξ ∈ [ξ0, ξ1], under the condition that the evolution velocity
along the normals is a function of curvature. The situation is shown in
Figure 7.
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Figure 7. An initial curve (solid), γ(0), and a curve at a later time (dashed),
γ(t). The curves are parameterised by ξ (not necessarily arclength, but monotonically
increasing from ξ0 to ξ1), and embedded into R2 with r(ξ, t). Two unit normals are
depicted. We also introduce the standard Cartesian coordinates (x, y) as shown.

3.2.1 Equations in Cartesian coordinates. The family of
curves parametrized by t evolves according to the partial differential
equation (1):

rt(ξ, t) = v (κ(ξ, t)) n(ξ, t) .

The subscript notation is a shorthand for differentiation, for example,

rt ≡
∂r

∂t
and rξ ≡ ∂r

∂ξ
.

In Cartesian coordinates, the unit normal is

n(ξ, t) =
(yξ,−xξ)
√

y2
ξ + x2

ξ

,

and the above formulae give

κ(ξ, t) =
yξξxξ − xξξyξ
(

x2
ξ + y2

ξ

)3/2
.



TREE GROWTH AND WOOD FORMATION 165

Hence, equation (1) can thus be recast as the system

xt =
v(κ)yξ
√

x2
ξ + y2

ξ

,

yt =
−v(κ)xξ
√

x2
ξ + y2

ξ

,

valid in 2D.
Finally,

|rt| = |v(κ)| |n| = |v(κ)| ,
so that |v(κ)| is truly the “speed” of the curve evolution along the nor-
mal.

3.2.2 The curve metric. The family of curves γ(t) and the
family of curves β(ξ) defined by n(ξ, t), t ∈ [0, t1] can be regarded as an
orthogonal coordinate system for a portion of the plane,

The metric corresponding to this coordinate system is given by

ds2 = E dξ2 + 2F dξ dt+G dt2 , (3)

where

E = rξ · rξ ,

F = rξ · rt = 0 ,

G = rt · rt = v2(κ) .

We can call the function E the curve metric because the arclength, a,
along γ is given by

da =
√
Edξ .

Hence
√
E is related to measuring distances along the curve γ.

3.2.3 Evolution of the curve metric. It is of interest to derive
the evolution law for the curve metric since this gives a direct handle on
the evolution of distances between points on the curve. Now,

Et = 2rξ · rξt ,

and since rt · rξ = 0,

(rt · rξ)ξ = rξt · rξ + rt · rξξ = 0 ;

hence
Et = −2rt · rξξ .
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Substitution of equation (1) yields

Et = −2v(κ)n · rξξ ,

and since

n · rξξ =
xξξyξ − xξyξξ√

E
= −Eκ ,

we have
∂E

∂t
= 2v(κ)Eκ , (4)

which is the equation governing the evolution of distances, E, along the
space curve.

3.2.4 Evolution of the curvature. Similarly, an expression
for the evolution of the curvature may be derived.

The coordinate system lies in the plane and hence the Gaussian cur-
vature produced by the metric (3) must be zero. For orthogonal coordi-
nates, the Gaussian curvature K is given by

Gaussian curvature = − 1

2
√
EG

{

∂

∂t

(

Et√
EG

)

+
∂

∂ξ

(

Gξ√
EG

)}

,

and, since this is zero, we have

∂

∂t

(

Et√
EG

)

= − ∂

∂ξ

{

Gξ√
EG

}

.

In terms of E, v and κ, this becomes

∂

∂t

(

Et√
Ev

)

= − ∂

∂ξ

{

2vξ√
E

}

, (5)

while the evolution for the curve metric (4) implies

Et√
Ev

= 2
√
Eκ ;

consequently, equation (5) becomes

∂

∂t
(
√
Eκ) = − ∂

∂ξ

{

vξ√
E

}

.

Using the evolution law for the curve metric, this equation can be recast
as

∂κ

∂t
= − 1√

E

∂

∂ξ

{

vξ√
E

}

− vκ2. (6)
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Although derived differently, equations (4) and (6) are in agreement with
the equations (2.7) and (2.8) in Sethian’s paper [14]. These equations
form the “backbone” of much of his analysis.

Equation (6) can be simplified by a change in variable that corresponds
to replacing ξ with arclength along the curve. Arclength, a, is defined
above (da =

√
Edξ), with

∂

∂ξ
=

1√
E

∂

∂a
.

Equation (6) thus simplifies to

∂κ

∂t
= −∂

2v

∂a2
− vκ2. (7)

This is the most convenient form to analyse the evolution of the curva-
ture, κ = κ(ξ, t), under various evolution laws.

3.2.5 The total variation. A conspicuous quantity that is stud-
ied in the theory of evolving wavefronts is the total variation Λ(t) of a
curve γ(t). It is the average value of |κ| along the curve, multiplied by
the length of the curve. Mathematically:

Λ(t) =

∫ ξ1

ξ0

|κ|
√
E dξ ; (8)

it represents an “energy-like” quantity. Indeed, this is the quantity that
commands the attention of Sethian’s [14] analysis of wavefronts. The
p.d.e. (6) can be used to express the rate of change of Λ in terms of the
terminal curvatures and derivatives of γ(t).

In order to expedite the mathematics, assume κ ≥ 0; hence

dΛ

dt
=

∫ ξ1

ξ0

∂

∂t
κ
√
E dξ =

∫ ξ1

ξ0

(

κt

√
E +

κ

2
√
E
Et

)

dξ .

Equations (4) and (6) give

dΛ

dt
=

∫ ξ1

ξ0

(

− 1√
E

∂

∂ξ

{

vξ√
E

}

− vκ2

)√
E +

κ

2

√
E 2vκ

)

dξ

=

∫ ξ1

ξ0

− ∂

∂ξ

{

vξ√
E

}

dξ ,

so that
dΛ

dt
= −dv

dκ

κξ√
E

∣

∣

∣

∣

ξ1

ξ0

, (9)
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which is the evolution law for Λ.
It is immediately obvious that for closed curves

dΛ

dt
= 0 ,

irrespective of the evolution law, v, so the average value of |κ| is inversely
proportional to the length of the curve.

3.2.6 A final example. Consider the case where the curve lying
in 2D is parameterised by by y = y(x, t) (that is, consider the special
case x = ξ in the above). This is depicted in Figure 8. The slope angle,
φ, is given by

tanφ = ∂xy ,

where ∂x = ∂/∂x indicates a partial derivative. Using the formula given
above, the curvature is

κ =
∂2

xy

(1 + (∂xy)2)
3/2

.

At a point with slope angle φ, shifting the surface by a small displace-
ment in the normal direction, dN , induces a corresponding shift, dy, in
y. These shifts are clearly related by

dN = | cosφ|dy ,

as may be seen in Figure 8 (note that φ ∈ (−π/2, π/2)). Taking the
derivative with respect to t gives

∂N

∂t
= | cosφ|∂y

∂t
=

1
√

1 + tan2 φ

∂y

∂t
=

1
√

1 + (∂xy)2
∂y

∂t
.

Thus, the equation dN/dt = a+ bκ becomes

∂y

∂t

1
√

1 + (∂xy)2
= a+ b

∂2y

∂x2

1

(1 + (∂xy)2)
3/2

. (10)

It would be nice if this model could reproduce the “bump” shown in
Figures 4 and 5. A potential situation where this might occur is when
the surface is “pinned” by an obstacle at x = 0. Specifically, consider
the case where y = 0 at t = 0, that is, the surface is evolving from a
straight line. Then pin the point at x = 0, i.e., fix y = 0 at x = 0 for all
t and demand that y → at as x→ ∞. This kind of situation is drawn in
Figure 9 (the particular solutions graphed are for the model in the next
section).
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x

φ φdN

y

dy

Figure 8. An analogue of a surface is a function y = y(x), represented by the grey
curve. The angle φ is shown.

Equation (10) appears difficult to solve, however, 1 + (∂xy)
2 may be

replaced by (1 + ∂xy)
2 when |∂xy| is very small (both expressions are

unity), or very large (both expressions are (∂xy)
2). Then introduce

u(x, t) = y(x, t) + x, and the equation to be solved reads

∂tu = a|∂xu| + b∂2
xu/(∂xu)

2 .

An implicit solution may be found by considering x = x(u, t) to be the
dependent variable. Then using the identity

∂tx∂ut∂xu = −1 ,

(the RHS is negative), the equation for x reads

∂tx = −a+ b∂2
ux ,

when ∂xu > 0, i.e., ∂xy > −1. The boundary conditions become
x(u, 0) = u; x(0, t) = 0; and x→ u− at as u→ ∞.

The solution may be obtained through the use of standard but lengthy
manipulations involving Laplace transforms, and may be verified (via
substitution into the DE) to be

x = u− at+ a

∫ t

0
erfc

(

u

2
√
bt1

)

dt1 ,

where erfc is the complimentary error function:

erfc (z) = 1 − 2√
π

∫ z

0
e−z2

1dz1 .

This erfc function is exponentially close to zero for large positive argu-
ments, but erfc(0) = 1.
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The important conclusion is that when y is reintroduced via y = u−x,
the derivative ∂uy 6= 0 except for t = 0:

∂uy = − 2√
π

∫ t

0
e−u2/

√
4bt1 1

2
√
bt1

dt1 .

Thus there is no local maximum — there is no “bump”. This may
be due to the simplification 1 + (∂xy)

2 → (1 + ∂xy)
2, the particular

boundary conditions explored (trees may not display “bumps” in these
situations), or the model may not be elaborate enough. The numerical
solutions presented in later sections do display “bumps”, however,

A similar model, which prescribes the slope, ∂y/∂x, at the boundary
x = 0 is solved in [1].

3.3. Hormone-driven growth

A different kind of structure may be obtained from equation (10) by
introducing an additional growth term proportional to concentration,
C(x, t), of a growth hormone:

∂y

∂t

1
√

1 + (∂xy)2
= a+ kC(x, t) + b

∂2y

∂x2

1

(1 + (∂xy)2)
3/2

.

This is difficult to solve analytically, so instead a variant of it is studied:

∂ty = a+ kC(x, t) + b∂2
xy . (11)

As will be seen, ∂xy is small for x≫ 0, while for the other region, x ∼ 0,
the solution is constrained by the boundary conditions. Therefore, it is
hoped that this simpler equation displays similar behaviour to the more
complicated model.

The boundary conditions are those of the previous section where there
is an obstacle positioned at x ≤ 0 and the key simplifying assumption is
that wood cells are necrotic when compressed against this obstacle. So,
for y = y(x, t),

y(x, 0) = 0 and y(0, t) = 0 and lim
x→∞

y(x, t) = at .

For illustration purposes, assume that growth hormone is released in
the neighbourhood of x = 0 over a time which is short compared to the
response times for wood growth. The hormone then diffuses to x > 0,
and the concentration may be approximated by the solution to the linear
diffusion equation:

C(x, t) = q0t
−1/2 exp

(

− x2

4Dt

)

,
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where q0 is a proportionality constant and D is the diffusivity.
Equation (11) with this concentration may be solved using standard

but somewhat lengthy manipulations involving Laplace transforms. The
particular solution may be verified to be

ypartic =
kq0

√
π

1 − b/D
fpartic(D) with fpartic(D)

= 2

√

t

π
exp

(

− x2

4Dt

)

− x√
D

erfc

(

x

2
√
Dt

)

,

where erfc is the complementary error function. The solution which
obeys the boundary conditions is

y = at+
kq0

√
π

1 − b/D
(fpartic(D) − fpartic(b)) − a

∫ t

0
erfc

(

x

2
√
bt′

)

dt′ .

This displays the expected behaviour, as shown in Figure 9

2 4 6 8 10
x

0.25

0.5

0.75

1

1.25

1.5

1.75

z

Figure 9. The surface of a tree growing upwards in time (black t = 0.1, dark grey
t = 0.5, light grey t = 1.0) with the parameters kq0 = 1, a = 1, b = 2, D = 10.
Because the hormone is initially released at x = 0 and then diffuses to x > 0, a
‘bump’ appears as in Figures 4 and 5.

4. Fast marching method for an isotropic surface

Traditional numerical methods for solving surface evolution equations
of the form (1) often approximate the position of the surface at a given
point in time using a set of marker particles, and then move the particles
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(c)(a) (b)

Figure 10. Representation of a surface moving with constant velocity using marker
particles (a). A shock forms in the concave part of the surface (b), leading to formation
of a closed loop and breakdown of the numerical method (c).

according to the equations of motion. Such methods, known as marker
particle or nodal methods, have a number of major disadvantages. The
most significant of these is that, if two particles grow close to one another,
the discretised equations become highly sensitive to numerical errors
in their positions, leading to an unstable aggregation of small errors.
This necessitates some kind of smoothing of the particle positions, or
redistribution of particles evenly along arc length, neither of which is
desirable from a numerical point-of-view. Furthermore, nodal methods
will typically break down if a shock develops in the surface. This can
occur, for example, in a concave region of a surface evolving with a
velocity function of the form (2) with b ≥ 0 (see Figure 10). Particles
on either side of the shock cross paths, forming a closed loop in the
interface, which must be removed to maintain the correct position of
the surface (which may be viewed as a weak solution of the governing
equations). This “de-looping” may be achieved by deleting appropriate
particles as the surface moves, but this is extremely difficult to achieve
for a three-dimensional problem.

An alternative approach is to represent the surface implicitly, as the
level surface of some function. This may be done in one of two ways:
the surface at time t may be embedded as the zero level set of a function
φ (x, t); or as the level set T = t of a function T (x), which is the time of
arrival of the surface at the point x. The former approach leads to an
initial value problem for φ, whilst the latter results in a boundary value
problem for the arrival time function T . The main practical difference
between the two systems is that the latter can only describe surfaces
moving unidirectionally, since any point in space must have a unique
arrival time T . The former system does not have this restriction, but is
somewhat more demanding in terms of computational effort.
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This level set approach elegantly avoids the problems associated with
marker particle techniques described above. The resulting initial/boundary
value problems lend themselves to stable, computationally efficient nu-
merical implementations, which can naturally handle singularities, shocks,
weak solutions and even topological changes in the moving surface.

4.1. The basic fast marching method

Motivated largely by these ideas, which are due to Sethian [15], a
numerical algorithm for tracking the position of a surface was imple-
mented. Due to the unidirectional nature of tree growth, the condition
of a unique arrival time function T (x) was not viewed as restrictive, so
a boundary value formulation was adopted (see Figure 11). The ap-
propriate partial differential equation for T may be derived as follows.
Consider a point x(t) moving with the surface. Since T (x) is the arrival
time of the surface at x, it follows that

T (x(t)) = t .

Differentiating with respect to t and substituting for ẋ(t) using equation
(1) gives

vn · ∇T (x(t)) = 1 .

Since ∇T is normal to the level set of T , and hence parallel to the surface
outward unit normal n, we have

v |∇T | = 1, (12)

with the boundary condition that T = 0 on the initial location of the
surface.

This problem may be solved very efficiently using a fast marching
method. The method uses upwind finite differences to propagate infor-
mation in the appropriate directions. Specifically, the square of equation
(12) is discretised as follows:

∑

m={x,y,z}
max

(

D
(m)−
ijk T, −D(m)+

ijk T, 0
)2

= v−2
ijk , (13)

where the ijk subscripts indicate the position in the grid, and D(m) is
the one-sided finite difference operator in the m direction:

D
(x)±
ijk u = ± 1

∆x
(ui±1,j,k − ui,j,k) , (14)

(for any u) and similarly for D(y) and D(z).
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xT = 1 T = 2 T = 3

0.3 0.7 1.2 2.5 3.4

0.7 0.9 1.4 1.8 2.2 2.6 3.1 3.5

1.1 1.3 1.5 1.9 2.3 2.8 3.2 3.6

1.5 1.6 1.9 2.1 2.5 2.9 3.3 3.8

1.9 2.0 2.2 2.4 2.8 3.2 3.5 4.0

2.3 2.4 2.5 2.8 3.1 3.5 3.9 4.2

2.8 2.9 3.0 3.2 3.5 3.8 4.2 4.5

3.2 3.3 3.4 3.5 3.8 4.2 4.5 4.8

1.7 2.1 3.0

Figure 11. Representation of a moving interface using a level set method. T (x, y)
is the arrival time of the interface at (x, y) and the position of the interface at time t
is the level set T = t.

Equation (13) gives a system of quadratic equations for the unknowns
Tijk. The key to the efficiency of the fast marching method is the sur-
prising observation that, by using the causality relationship between
neighbouring grid points, this system may be solved by visiting each
grid point only once! Because information is always transferred from
grid points with smaller values of T to those with larger values, the
value of Tijk is only affected by neighbouring grid points with smaller
values of T . Hence, at any stage in the construction of the solution,
the grid point with the smallest value of T must be correct and may be
fixed. The algorithm for solving the problem thus proceeds as follows
(see Figure 12):

1 Approximate the initial surface using a set of grid points. Tag each
of these points as ‘trial’ with an approximation for the correct T
value. Tag all other points as ‘unknown’.

2 Let xm be the grid point with the smallest value of T of all ‘trial’
grid points.

3 Tag xm as ‘known’.

4 Using equation (13), compute values of T for all neighbouring
points of xm that are either ‘unknown’ or ‘trial’; tag any ‘un-
known’ neighbouring points as ‘trial’. Repeat steps 2-4 until all
grid points are tagged as ‘known’.

In practice, the simplest way to achieve step 1 is to set T = 0 at all
points within a specified region of space and then tag the boundary
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‘Known’

region

Next ‘trial’ point

to be fixed

Narrow band of

‘trial’ values

New ‘trial’

values

0.3 0.7 1.2

0.7 0.9 1.4 1.8 2.2

1.1 1.3 1.5 1.9 2.3

1.5 1.6 1.9 2.1

1.9 2.0 2.2 2.4

2.3 2.4

1.7 2.1 2.5

‘Unknown’ region

Figure 12. The fast marching method for calculating the arrival time function
T (x, y). Each grid point is tagged as ‘known’, ‘trial’ or ‘unknown’. At any given
stage in the construction of the solution, the ‘trial’ point with the smallest value of
T is fixed and transferred to the ‘known’ category; trial T values are then computed
for neighbouring ‘trial’ and ‘unknown’ points using upwind finite differences.

points of that region as ‘trial’ and the interior points as ‘known’. To
obtain a more accurate representation of the boundary data, it may
be necessary to construct the signed difference function from the initial
surface, setting T to be positive for grid points outside the initial surface,
and negative for points inside.

As a further bonus for the efficiency of the method, it is not necessary
to search for the grid point xm from scratch at each step in the loop.
Rather, by maintaining all ‘trial’ grid points in a heap structure, it is
possible to find xm in at worst O (lnM) time, where M is the number
of elements in the heap.

It is straightforward to specify the velocity function v as a function
of x and t. It is also possible to specify v as a function of curvature as
discussed in Section 3. For a two-dimensional problem, the curvature of
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the level set curve of T (x, y) may be written:

κ = ∇. ∇T|∇T | =
TxxT

2
y − 2TxTyTxy + TyyT

2
x

(

T 2
x + T 2

y

) 3
2

,

whilst the mean curvature of the level surface of T (x, y, z) is:

κ = ∇. ∇T|∇T |
=

(

(Tyy + Tzz)
2 T 2

x + (Txx + Tzz)
2 T 2

y + (Txx + Tyy)
2 T 2

z

−2TxTyTxy − 2TxTzTxz − 2TyTzTyz

)

(

T 2
x + T 2

y + T 2
z

)− 3
2 .

Hence κ may be calculated using appropriate upwind finite difference
approximations for the first and second order derivatives of T .

4.2. Multicompartment surfaces

What may be more relevant in the case of tree growth is to divide the
surface into several compartments (main stem, branch 1, branch 2, etc.),
each with its own velocity function.

One means to achieve this computationally is to treat each compart-
ment as a separate surface and evolve it according to the above al-
gorithm. Sethian [15] (§14.7) outlines a general method for evolving
multicompartment surfaces according to an “influence matrix”, which
prescribes the growth rate of each compartment into each other com-
partment. The situation for tree growth is simpler, since there is as-
sumed to be no growth of one compartment into another; compartments
may only grow into free space. A simplified version of Sethian’s method
may therefore be adopted as follows.

Each compartment i has its own sets of ‘known’, ‘trial’ and ‘unknown’
grid points, with values of the arrival time function T(i) calculated us-
ing that compartment’s velocity function. At each step in the iteration,
let the minimum trial value of T(i)(x) over all x and all i occur at grid
point xm and compartment k. Then xm is moved from the ‘trial’ to the
‘known’ set of compartment k, so that T(k)(xm) is fixed, and is simulta-
neously added to the ‘known’ sets of all other compartments i with a T
value of T(i)(xm) = ∞. This method also handles the special case of an
inert obstacle (such as a dead branch or external object) around which
the tree must grow, as this can be treated as a compartment with a zero
velocity function. Accordingly, grid points adjacent to such a compart-
ment will receive trial T values of ∞ and hence the compartment will
never grow.
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The results of implementing this method for the growth of a stem and
several branches are shown in Section 7.

5. Grain flow

The most advanced works in the literature concerning grain direction
are a series of papers by Kramer [6, 8], and a seminal paper is [11]. The
idea behind these papers is that growth hormone is transported from
the leaves to the roots and the grain attempts to align itself to the local
direction of hormone transport. The model produces qualitatively good
results, although quantitative comparisons are impossible due to the
unavailability of data. Because of this and because hormone transport
is beyond the scope of this report, a simplified version of Kramer’s model
is used. It also produces results that are qualitatively correct.

Assume that grain flows down branches and the stem like an incom-
pressible fluid. The fluid velocity, g, is therefore divergenceless:

∇ · g = 0 . (15)

Note that the magnitude of g is unimportant for our purposes: only its
direction is meaningful. The potential function, Φ (a scalar), is useful.
It is related to g by

g = ∇Φ .

There are two important examples: a stem containing a dead branch;
and, a stem containing a live branch. The details of these are now worked
through.

The stem is mapped to a rectangle on the complex plane by a map
which simply “unrolls” the stem’s surface, and then standard simple
solutions of Laplace’s equation on the plane are used. These standard
solutions do not respect the periodicity of the stem, so that when the
solutions are “rolled up” on to the stem again, there will be inaccuracies
at the join. However, provided the branch is small in comparison to the
stem, these inaccuracies are slight, as will be seen below. The reader
should keep in mind that equation (15) is only an approximation, so
that these small errors are admissible. It is assumed that the stem
and branch are both cylindrical. The generalisation to other shapes
will become apparent: a different map to the complex plane should be
used. Once again, given that the incompressible fluid approach is only
an approximation which produces qualitatively correct results, it may
not be necessary to construct a highly accurate map until such time as
experimental data become available.
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5.1. Stem containing dead branch

In this case the stem-grain does not enter the branch at all, and the
branch acts as a barrier to the ‘flow’ of the grain on the stem. The
branch-grain simply runs axially, or possibly helically from end to end,
so it is the stem’s grain that is nontrivial.

Coordinatise the stem’s surface (radius rs) with cylindrical polar coor-
dinates (φ, h). Here φ ∈ (−π, π). Because it is easy to solve equation (15)
on the complex plane, map the stem to the plane using

y = h and x = rsφ .

This map is shown in Figure 13.

φ

rs

rb

h

y

x
rb

y=h

x=rsφ

Figure 13. Map from stem of radius rs to the complex plane. The circle of radius
rb represents the base of a dead branch. The map is simply cutting open the stem’s
surface and laying it flat.

Introduce the complex quantity z:

z = x+ iy = reiθ .

Let the branch have radius rb. There must be no normal flow on the cir-
cle |z| = rb. It is well-known that the solution for the potential function
is [5]

Φ = i

(

z − r2b
z

)

.
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The velocity, g = (gx,gy), given by the formula gx − igy = dΦ/dz, is
therefore

gx =
r2b
r2

sin 2θ =
2xyr2b

(x2 + y2)2
(16)

and

gy = −1 − r2b
r2

cos 2θ = −1 − (x2 − y2)r2b
(x2 + y2)2

. (17)

This is plotted in Figure 14, where it can be seen that the grain flows
realistically around the dead branch.
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Figure 14. Grain pattern on the surface of the main stem around a dead branch for
rb = 1. No grain enters or leaves the branch.

Mapping back to the stem (with g = ghk̂ + gφφ̂ where k̂ is the unit

vector in the h direction and φ̂ is the unit vector in the φ direction) gives

gh = −1 +
(h2 − r2sφ

2)r2b
(h2 + r2sφ

2)2
and gφ =

2r2brshφ

(h2 + r2sφ
2)2

.

Alternatively, this can be expressed in a Cartesian frame (using g =

gX î+ gY ĵ + ghk̂ in the usual notation) with

gX = −gφ sinφ and gY = gφ cosφ .

It may be noticed that g(φ = −π) 6= g(φ = π). As mentioned above,
this is means that as the rectangular domain is “rolled up” onto the
cylindrical stem, there will be a discontinuity in the solution for the
grain vector at the join (φ = ±π). However, if rs ≫ rb, the solution
given is close to periodic and the discrepancy is small. If, in future, a
perfectly periodic solution is required, then Φ should be modified so that
it is periodic under x→ x+ 2πrs.
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5.2. Stem with live branch

A similar approach can be taken here, although the mapping is more
complicated. Again, coordinatise the stem’s surface with (φ, h). Simi-
larly, coordinatise the branch’s surface with (φb, hb), where φb = 0 on
the top of the branch and hb = 0 at its base. Then map to the complex
plane (z = x+ iy = reiθ) using

y = h , x = rsφ , r = rbe
−hb , θ = φb + π/2 ,

where the first two map the stem (the same as in the previous section)
and the final two map the branch. The map for the branch is shown in
Figure 15.

bφ hb

brBranch

S
te

m

y

x

rb

θ
r

r=r eb
−hb

θ=φ+π/2b

Figure 15. Map of a branch of radius rb, coordinatised by cylindrical polar coor-
dinates (φb, hb) to a disc on the complex plane. The map is simply squashing the
branch along its axis, with the circle at hb = ∞ being mapped to the origin.

The branch acts as a point source in a flow field which has gy = −1
asymptotically at r → ∞. The solution for the potential function is
again well known [5], and it is

Φ = iz + rb log z .

Differentiation yields

gx =
rb
r

cos θ =
rbx

x2 + y2
and gy = −1+

rb
r

sin θ = −1+
rby

x2 + y2
. (18)

The potential has been constructed so that there is no flow from the
stem down into the branch and there is no flow from the top of the
branch up into the stem.
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Figure 16. Grain pattern: (a) on the surface of the main stem around a live branch;
(b) on the branch (rb = 1). Grain ‘flows’ out of the branch and down the stem, but
no grain enters the branch from above.

This solution can be mapped back to the stem-branch system. On the
stem:

gh = −1 +
rbh

h2 + r2sφ
2

and gφ =
rsrbφ

h2 + r2sφ
2
.

On the branch (with g = ghb
k̂b + gφb

φ̂b, where k̂b is the unit vector

along the branch’s axis, and φ̂b is the unit vector in the angular direction
around the axis):

ghb
= −ehb + cosφb and gφb

= sinφb .

Recall that φb = 0 is at the top surface of the branch. As hb → ∞,
g/|g| → −k̂b, which means that, a long way from the stem–branch
junction, the grain flows parallel to the main axis of the branch, as
expected. These results may be expressed in a Cartesian frame using
the same formulae as the previous section. The solution is plotted in
Figure 16.
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6. Fast marching method for anisotropic,
multicompartment surfaces

In this section, a method is outlined for extending the fast marching
method described in Section 4 to anisotropic surface growth by incorpo-
rating the grain direction on the surface. To achieve this, some simple
assumptions are made:

1 The grain direction field g (Γ) on the initial surface Γ,

Γ =
{

r : T(i)(r) = 0 for some i
}

,

is known.

2 When a grid point rm enters the ‘known’ set of compartment i, its
grain direction is related to that of its parent point rp, defined as
the point with the lowest value of T(i) of all neighbouring points
in the ‘known’ set of compartment i.

3 The grain vector g(rm) is calculated according to the following
rules, which give three equations in three unknowns:

(a) The grain is tangent to the surface at rm, that is;
g(rm).∇T (rm) = 0.

(b) The grain vector has the same norm as that of its parent:
|g(rm)| = |g (rp)|.

(c) The scalar product of the grain vectors at rm and rp is max-
imal: g(rm).g (rp) = maxww.g (rp), where w is a vector sat-
isfying constraints (a) and (b).

In general, this will result in new grain vectors being very similar to
the parent vectors, with a slight readjustment if necessary to ensure that
the grain remains tangent to the surface.

It would be possible to modify this method to model spiral grain chang-
ing direction over time. This could be accomplished by specifying a rate
of rotation of the grain vector about the surface normal. This rate may
depend on the position on the tree surface and on time.

7. Visualisation

The output from the fast marching method is simply an array of arrival
times. These can be efficiently visualised using MATLAB’s isosurface
function, which plots the level set of a three-dimensional function. For
example, the surface at time t > 0 (i.e. the level set T (x, y, z) = t) may
be plotted using the command
>> isosurface(T,t).
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Figure 17. Growth of a stem and 5 branches: (a) t = 0.05; (b) t = 0.25; (c) contour
plot of T on a vertical cross section through the tree. The initial configuration is
given in Table 1; the velocity is constant, but main stem velocity is different to the
velocity of the branches.
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Figure 18. Growth of the tree with variable growth rates: (a) t = 0.05; (b) t = 0.20;
(c) contour plot of T on a vertical cross section through the tree. The growth rate is
different for each compartment (main stem and branches 1-5), as shown in Table 1.
The growth rate for all compartments is decreasing with time: v = v0e

−kt.
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Figure 19. Growth of the tree around an obstacle: (a) t = 0.05; (b) t = 0.25; (c)
contour plot of T on a vertical cross section through the tree. The obstacle is a cuboid
centred at x = 0.15, y = 0, z = 0.5. The velocity is constant as in Figure 17.
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Compartment h (mm) d (mm) θ (◦) φ (◦) v0

S 0 13.5 0 6.0
B1 500 5.0 0.0 60 1.0
B2 503 5.0 137.5 60 1.5
B3 506 5.0 275.0 60 2.0
B4 509 5.0 412.5 60 2.5
B5 512 5.0 550.0 60 3.0

Table 1. Initial configuration of the tree surface, consisting of 6 cylindrical compart-
ments: the main stem (S) and 5 branches (B). h is the height of the base of the
cylinder; d is the diameter of the cylinder; θ and φ are the angles of the main axis
of the cylinder with the horizontal (x) axis and the vertical (z) axis respectively; v0

parameterises the relative growth rate of the compartment. These values of θ can be
found in [12], and the other measurements are typical of pinus radiata.

A run of the fast marching method was made with parameters listed
in Table 1. This models a situation where five branches form a cluster
around a main stem, and all branches grow at the same rate. The results
are visualised in Figure 17.

Figure 18 shows the case where the growth rate is exponentially de-
creasing with time: v = v0e

−kt. Additionally, the initial growth rate
v0 is different for all compartments (the main stem and each of the five
branches), as shown in Table 1.

Figure 19 shows the growth of a stem around an obstacle. Here the
growth velocity is constant and independent of curvature (as in Fig-
ure 17). The “knuckles” seen in Figure 5 are evident.

8. Conclusions

Ensis brought a problem concerning tree growth to MISG2006: they
wanted participants to develop a robust framework for describing grow-
ing surfaces which may be anisotropic. During the course of MISG2006,
the fast marching method of Sethian [15] was identified as being suit-
able since it was numerically stable under any physically reasonable local
evolution law.

The Ensis representatives presented MISG2006 with data concerning
tree growth which loosely defined the range of evolution laws typical
for this type of problem. These data are discussed in Section 2. In
particular, the growth is time-dependent; branches often die and act as
obstacles to the stem’s growth; there are often concave regions around a
branch–stem junction; there are often ‘bumps’ of enhanced growth when
wood impinges on obstacles or branches; and grain runs from leaves to
roots rather like an incompressible fluid.



TREE GROWTH AND WOOD FORMATION 187

In the mathematical literature, growth of surfaces is often driven by
the local curvature. It was argued that this is possibly not relevant for
tree growth. However, analytical studies of curvature-driven growth were
made in Section 3. Explicit formulae for the curvature and torsion of a
space curve, and the curvatures of 2D surfaces were presented. Formulae
concerning the evolution of a curve in two dimensions with an arbitrary
evolution law were derived: the evolution of distances along the curve
(the ‘curve metric’); the evolution of the curvature; and the evolution of
the average value of the magnitude of curvature (the ‘total variation’),
were written. An example model of curvature-driven growth of a tree
impinging upon a barrier was solved explicitly, but it did not display a
‘bump’ of enhanced growth, possibly due to the simplifications in the
analysis. An example model of curvature- and hormone-driven growth
was also solved analytically, and this did display the ‘bump’ of enhanced
growth around the region of the obstacle, because the model assumed
that growth hormone was released in this region.

In Section 4 the fast marching method for an isotropic surface was
described. It was explained why this is superior to the classical marker-
tracking algorithms because of instabilities arising from marker particles
growing into one another. The fast marching method represents the sur-
face as a level set of a time-of-arrival function. The evolution law was
derived, and an efficient finite-differencing scheme was introduced (due
to Sethian [15]), which naturally leads to an algorithm for solving the
problem. The extension to ‘multicompartment surfaces’, which have
different growth rates ascribed to different regions (representing stem,
branches and obstacles, for instance) is due to Sethian too, but a sim-
plification is possible since in the case of tree growth the compartments
remain disjoint (stems do not grow in obstacles, etc). This simplified
algorithm was described.

Grain patterns were explored in Section 5. The work follows Kramer [6,
8], who proposes that grain patterns may be reproduced by modelling
the grain as flow lines of an incompressible fluid. Analytic results for in-
compressible fluid flow are available and it was shown how to map these
from the complex plane to the surface of a stem/branch for two model
cases: a stem containing a dead branch; and a stem with a live branch.

The fast marching method can be extended to include anisotropic
surfaces, once the evolution law concerning the vector(s) describing the
anisotropy (the grain evolution laws) are given. The framework was
described in Section 6. Since there were no data concerning the time
evolution of grain directions, an algorithm was given for the simplest
case, which was when the grain direction evolved minimally in that it
attempted to align itself with previously-formed grain.
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Finally, it was described, in Section 7, that the results may be effi-
ciently visualised using MATLAB. Some test situations were visualised:
a stem with a cluster of 5 branches; the growth around an obstacle with
constant growth velocity; and a combination of these two with various
different growth rates for the stem and branches.
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Appendix: Mathematical notation

a term in the growth velocity v independent of curvature (v = a + bκ)
a arclength along a space curve. Only in Sections 3.2.2 and 3.2.4
A the surface area of the tree
b coefficient of the linear term in the growth velocity v (i.e. v = a + bκ)

b̃ defined in v = a(1 + b̃κ)
B unit binormal vector to a space curve
B′ derivative of B with respect to ξ
β(ξ) a family of curves which follow the normals to γ(t)
C C = C(x, t) is the concentration of hormone at point x at time t.
d diameter of a cylindrical stem or branch
D diffusivity constant of hormone
Dm

ijk one-sided finite difference operators in direction m at point
(i, j, k) in 3-space. Defined in equation (14)

E measure of distance along a space curve (the “curve
metric”): see equation (3)

F A measure of distance along a space curve, see equation (3)
φ The slope angle of a space curve: see Figure 8. In Section 3
φ level set function in Section 4
φ angular coordinate in Section 5
φ angular coordinate of the branches in Section 7
φb angular coordinate on the branch in Section 5
Φ potential function for grain flow, defined by g = ∇Φ
g vector pointing along the direction of the grain
G A measure of temporal distance along a space curve, see equation (3)
γ(t) a family of space curves: γ(0) is the space curve at time 0, and so on
Γ the initial surface of a tree
h height coordinate along the stem in Section 5.1
h height of the branches along the stem in Section 7
hb height coordinate along the branch in Section 5.2

(i) (subscript (i)) labels the compartment i.
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k exponential decay parameter in the growth velocity v = v0e
−kt

k1 k2 principal curvatures of a surface
κ the curvature at a point on the tree’s surface

also, curvature of a space curve at a point
L length measured by an ant running on a surface
Λ The total variation of a curve γ(t), defined in equation (8)
n unit normal at a point on the tree’s surface
N unit normal vector to a space curve
N′ derivative of N with respect to ξ
∇ the derivative ∇ = (∂/∂x, ∂/∂y, ∂/∂z) in 3-space
q0 arbitrary proportionality constant in Gaussian approximation to C.
rb radius of a branch
rs radius of the stem

r radial coordinate on the complex plane: z = reiθ

r coordinates of a point on the tree’s surface
r′ r′′ derivatives of r with respect to ξ.
rm coordinates of a point on the tree’s surface with parent rp

rp coordinates of a point on the tree’s surface which has daughter rm

R3 3-dimensional space (Euclidean)
s arclength. Thus ds is arclength along an infinitesimally-long curve
t time. Also, dt is an infinitesimal increment of t

t (subscript t) indicates a derivative with respect to t. E.g. xt = ∂x/∂t
T time of arrival function T = T (x) in the fast marching method
Tijk time of arrival at point (i, j, k) in 3-space
T unit tangent vector to a space curve
T′ derivative of T with respect to ξ
τ torsion of a space curve at a point

θ angular coordinate on the complex plane: z = reiθ in Section 5
θ angular coordinate of the branches in Section 7
u u(x, t) = y(x, t) + x in Section 3.2.6
v velocity function controlling growth rate
vbranch velocity function controlling the growth rate of the branch
vstem velocity function controlling the growth rate of the stem
v an arbitrary unit tangent vector to a surface
x In 2D we can decompose r into Cartesian coordinates: r = (x, y)
x Cartesian coordinate in Section 5. Related to the complex

coordinate z by z = x + iy
x coordinate point in 3D in the fast marching method
xm ‘trial’ grid point with smallest value of T .

x (subscript x) denotes differentiation with respect to x.
except in equations (16), (17) and (18) where it denotes components of g
in the complex plane

ξ arbitrary parameter which varies monotonically along a space curve.
Although not necessary, ξ may be chosen to be arclength, in which
case various formulae simplify since |r′| = 1.
Also, dξ is an infinitesimal increment of ξ

ξ0 ξ1 label the beginning and end of a space curve

ξ (subscript ξ) indicates a derivative with respect to ξ. E.g. xt = ∂x/∂ξ
y In 2D we can decompose r into Cartesian coordinates: r = (x, y)
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y Cartesian coordinate in Section 5. Related to the complex
coordinate z by z = x + iy

y (subscript y) denotes differentiation with respect to y,
except in equations (16) and (17) and (18) where it denotes components of g
in the complex plane

z Complex coordinate
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