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Abstract

The problem of managing a storage dam subject to an irregular input and with
the possibility of using an alternative source is of considerable interest. It arises in
the provision of water for Queensland coal mines, where additional water is available
via a pipeline from a public supply, and also in cases where recycled or more
expensive water is used to supplement the normal supply. We investigated discrete
and continuous probability formulations, simulation methods, and the development
of possible control policies. It was determined that without some feedback control
of the net flows, the dam will eventually empty or overflow. A policy that uses the
additional supply to maintain a low probability of the dam going empty at future
times is recommended.

1. Introduction

In the operation of a coal mine, water is an important resource, with-
out which the mine cannot operate. Central Queensland coal mines
collect rain water in dams and also have access to a water pipeline. The
supply of rainwater varies with the season and from year to year. There
is also a considerable amount of evaporation from the storage dams. The
mines use both fresh water and recycled (used) water. The major uses
of the water are in eliminating impurities from the coal (coal washing),
in dust suppression particularly on the roads, and in underground work-
ings. Recycled water is used for coal washing and dust suppression, while
fresh water is needed for the underground workings. The coal washing
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plant separates waste rock from the coal, and returns a significant pro-
portion of its feed water to the used water dam. This return (used)
water has an increased salt content from the washing process.

There are two major problems related to maintaining a continuous
supply of water to the mine. These are what size of dam is needed, and
how should the use of pipeline water be scheduled so as to best avoid
running out of water, and overflow of water. An additional problem is
the amount and control of salt content in the used water dams.

While there may be several dams at a given mine this report considers
them as a total volume of stored water, or in the case of the simulation
of salt build up the dams are divided into a fresh-water dam and a
used-water dam.

Data was available on rainfall and evaporation on a monthly basis for
the past 40 years in the coal mining region of interest.

2. Literature

The problem of maintaining a dam level is similar to inventory prob-
lems and these have been studied extensively [1, 2]. There are also
studies of dam problems [2, 3, 4, 5, 6, 7, 8]. In both cases assumptions
about the variability of the inputs and or outputs assume a particu-
lar distribution. In the case being studied at the MISG the variability
of the rainfall does not follow the simple distributions assumed in the
literature.

Also, the literature on dam levels concentrates on the probability of
the dam becoming empty, where the mine dam problem also needs to
consider the case of the dam overflowing as the dam contents are often
not of sufficient purity for discharge into the environment.

An interesting result given by Kendall [4] is a calculation of the prob-
ability of an infinite dam eventually emptying, when the average input
I is only slightly greater than the usage U , the initial dam content is S,
and the standard deviation of the input is σ. This probability is:
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It is seen that this probability decreases when the initial content S in-
creases relative to U , the input I increases relative to U , and σ decreases
relative to the input flow I.

3. Rainfall and evaporation

The Central Queensland coal mines are in an area of variable rain-
fall and high evaporation. Data on rainfall and evaporation from 1961
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to 2002 was available, and a monthly estimate of the proportion of the
rainfall that would run to the dams. Rain in this region falls mainly
in the summer months (December to March) and is quite variable with
a standard deviation similar to the mean. Evaporation is more consis-
tent with a standard deviation about one tenth of the mean. Figure 1
gives the rainfall and Figure 2 shows the evaporation (both rainfall and
evaporation are conveniently expressed for this work as mm per month).
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Average monthly rainfall with standard deviation 1961−2002

Figure 1. Annual rainfall for typical Central Queensland coal mine.

Evaporation is higher than rainfall over most months. It determines
how much water runs into the dam and losses from the area of the dam.
During the dry months the catchment area is dry and there is very
little runoff into the dam. Monthly values for the fraction of rainfall in
the catchment area that can be expected to runoff into the dam were
supplied as given in Table 3.1

Jan Feb Mar Apr May Jun
0.195 0.245 0.136 0.044 0.03 0.023

Jul Aug Sep Oct Nov Dec
0.02 0.006 0.012 0.057 0.10 0.132
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Average monthly evaporation with standard deviation 1970−2004

Figure 2. Annual evaporation for typical Central Queensland coal mine.

Table 3.1: Fraction of rainfall reaching dam by the month

Table 3.1 shows a considerable variation in runoff fraction over the
year but are assumed constant for a given month. However, the factors
may be too simplistic as the amount of rain during a given month varies
by a large amount. A simple model of the amount of water in the
catchment area to get more reliable estimates of runoff into the dam
may be appropriate.

During the wet season months, the rainfall follows an approximately
log normal distribution (Figure 3), while the evaporation can be con-
sidered to follow a normal distribution truncated at the high end corre-
sponding to a maximum evaporation (Figure 4). These approximations
could be improved if found necessary in a more detailed examination of
the data. However, they are sufficient to demonstrate how the rainfall
data can be used in capacity calculations.

The lower rainfall and the very low runoff fraction figures given above
indicate that in the dry season April to November there is essentially no
runoff into the dam.
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Log normal probability plot of monthly rainfall Dec−Mar

Figure 3. Wet season rainfall on a log normal probability plot.

4. Order of magnitude estimates

To obtain a feeling for the scale of the water storage and usage at a
typical mine some order of magnitude estimates were attempted and are
shown in Table 4.1.

Consumption: ∼ 5 × 105 m3/month
Rainfall: <= 2 × consumption (σ = µ)
Evaporation: ∼ 0.2 × consumption (σ = 0.1µ)
Return to worked store: ∼ 0.1 × consumption
Storage capacity: ∼ 2 years
Pipeline supply: ∼ 0.25 × consumption
Seepage: ∼ 0.1 × consumption

Table 4.1: Order of magnitude estimates for storage flows.

As it proved difficult during the MISG to obtain consistent estimates
of areas of dams and the catchment areas, details of these were not
used, and instead the work concentrated on the generic effects of the
dam inputs and outputs.
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Normal probability plot of monthly evaporation Dec−Mar

Figure 4. Wet season evaporation on a normal probability plot.

The variation in the water balance at the dam is totally dominated by
the variation in rainfall, and thus evaporation and water usage can be
considered essentially constant.

5. Random walk and the need for feedback

The net input to the dam can be considered a random variable that is
being integrated to give the dam level. This results in a random walk,
possibly on top of a net trend due to the net input not being zero, that
gives the dam level. Even without a trend in the dam level, the water
level will always eventually reach either zero or its maximum as the
variance of a random walk increases with time until a limit is reached.

To ensure that the dam neither empties or overflows some control of
the inputs (or outputs) is required. As there is a major random variation
in the dam input the control can only reduce the probability of reaching
a limit to an acceptable level. Two possible controls exist. The first is
the amount of water taken from the pipeline to reduce the probability
of the dam running empty. The second prevents overflow by bypassing
rainfall around the dam, or dumping water from the dam.
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Where the net input without the pipeline is negative, increasing the
dam size reduces the probability of a dam overflow. Similarly a larger
dam, provided net long term input is sufficient, reduces the probability
of the dam becoming empty.

In times of excessively low dam level, measures to conserve water may
be implemented providing another means of control.

6. Probability based formulations

In this section both discrete and continuous formulations based on
probabilities are considered. It will be seen that both cases end up with
very similar expressions.

6.1. Discretised dam levels

The level in the dam can be formulated as a Markov chain as follows:
Assume that the dam level is divided into n discrete levels of width δx
so that the ith level is from height x = (i− 1)δx to x = iδx. Then pi,t is
the probability of being in level i at time t. The probability of moving
from level i− 1 to level i can be expressed in two parts:

The probability of moving between level i − 1 and level i due to the
mean flow is: δt fi−1/2 (pi−1,t +pi,t)/(2 δx) which is in the direction
of f the rate of rise of the dam level. The divisor δx is introduced
to make the factor f independent of the size of the discrete levels.

The probability of moving into and out of the ith section due to random
changes in level is: δt si−1 pi−1/(δx)

2 in the positive direction and
δt si pi/(δx)

2 in the reverse direction. s determines the amount of
random variation in the dam level. In this case a divisor of δx2 is
needed to make s independent of the size of the the discrete levels.

Hence for the change in probability for small time step δt:

pi,t+δt = pi,t + δt {fi−1/2
pi−1,t + pi,t

2
/(δx)

−fi+1/2
pi,t + pi+1,t

2
/(δx)

+si−1 pi−1,t/(δx)
2 − si pi,t/(δx)

2

−si pi,t/(δx)
2 + si+1 pi+1,t/(δx)

2} (2)

At the boundaries there is only the possibility of staying in the boundary
segment or moving away from the boundary giving the equations for the
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change in probability at the boundaries:

p1,t+δt = p1,t + δt(−f1+1/2
p1,t + p2,t

2
/(δx)− s1 p1,t/(δx)

2 + s2 p2,t/(δx)
2)

(3)

pn,t+δt = pn,t + δt(fn−1/2
pn−1,t + pn,t

2
/(δx) + sn−1 pn−1,t/(δx)

2

−sn pn,t/(δx)
2) (4)

These equations (1 - 3) can be written in matrix form:

pt+δt = pt + δtApt (5)

Where in the case of constant coefficients:

A =

















−S − F S − F 0 0 .. 0 0 0
S + F −2S S − F 0 .. 0 0 0

0 S + F −2S S − F .. 0 0 0
. .. .. .. .. .. ..
0 0 0 0 .. S + F −2S S − F
0 0 0 0 .. 0 S + F −S + F

















where
S = si,t and F = fi+1/2,t/2

It is easily verified that for steady state this has the solution:

pi = K

(

S + F

S − F

)i

(6)

where K is chosen so that Σpi = 1. For the case where fi or si is
not constant with respect to i, the steady state version of equation 5
is still easily solved for the probabilities pi as the required equation is
homogeneous and tridiagonal.

The equations 1 - 3 can also be rewritten as:

(pi,t+δt − pi,t)/δt = (fi−1/2
pi−1 + pi

2
− fi+1/2

pi + pi+1

2
)/(δx)

+{(si−1pi−1,t − sipi,t)/(δx)

−(sipi,t − si+1pi+1,t)/(δx)}/(δx) (7)

δx(p1,t+δt − p1,t)δt = −f1+1/2
p1 + p2

2
− (s1p1,t − s2p2,t)/(δx) (8)

δx(pn,t+δt−pn,t)/δt = fn−1/2
pn−1 + pn

2
+(sn−1pn−1,t−snpn,t)/(δx) (9)
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Taking the limit as both δx and δt go to zero and putting x = i δx and
xn = n δx (so pi,t = p(x, t)) gives:

∂p(x, t)

∂t
=

∂

∂x

(

−f(x) p(x, t) +
∂s(x)p(x, t)

∂x

)

(10)

0 = −f(0) p(0, t) +
∂s(0)p(0, t)

∂x
(11)

0 = f(xn) p(xn, t) −
∂s(xn)p(xn, t)

∂x
(12)

For the steady state ∂p(x, t)/∂t = 0 and constant coefficients f and s
the equation:

p(x) = K exp(xf/s) (13)

satisfies both the main equation (10) and the boundary conditions (11)
and (12). The value of K is such that this expression becomes a proba-
bility distribution i.e.:

K = 1/(

∫ xn

0
exp(xf/s)dx)

= f/{s(exp(xnf/s) − 1)} (14)

The conditions of empty and of overflowing, need for this formula-
tion to be defined as, say, the bottom and top 5% of the range, as the
probabilities of being exactly empty and full are given as zero. This
formulation has not included an adequate formulation of the behaviour
at the empty and full conditions, and has not allowed for the asymmetry
in the rainfall distribution.

6.2. Wiener processes and Fokker-Planck
equation

The stochastic differential form for a Wiener process [9] is:

dV = Fdt+ σdW (15)

where V is the volume in the dam, F is the rate of volume change due
to flow into the dam, σ is the standard deviation of F , and dW is the
stochastic derivative term. Introducing the probability of being at level
V at time t, p(V, t) this leads to the forward Fokker Planck equation:

∂p(V, t)

∂t
=

∂

∂V

{

−Fp(V, t) +
1

2

∂

∂V

{

σ2p(V, t)
}

}

(16)
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and the boundary conditions:

−Fp(0, t) +
1

2

∂

∂V

{

σ2p(0, t)
}

(17)

−Fp(Vmax, t) +
1

2

∂

∂V

{

σ2p(Vmax, t)
}

(18)

Similar to the previous subsection, these have an exponential solution
for steady state with constant F and σ:

p(V ) = K exp(V F/σ2) (19)

and thus have the same problems as noted above. To handle the ac-
tual rainfall properties and the boundary conditions a simulation based
formulation was investigated.

7. Simulation based formulation

An alternative approach is to run a Monte Carlo simulation of the
dam level. Similar to the discrete formulation above, the dam contents
are described by a number of discrete levels, and a probability of mov-
ing from one level to another is applied. As the simulation is run the
time spent in each of the discrete levels is recorded. For level i the
probabilities of moving to level i− 1 and to level i+ 1 are defined as:

For net flow in a small time interval as a probability of pf of moving
to the level above if net flow is positive, and to the level below if
net flow is negative.

For random variation in the net flow a probability of ps of moving to
the level above and also to the level below.

At the upper boundary it is assumed any excess water overflows, while
at the lower boundary no water can be withdrawn, so that the simulation
is limited to feasible dam levels.

The simulation is started by assuming an initial value for the dam
level. For each time step, a random number (0 < r < 1) is used to
determine if the level changes to the next level due to net flow (r < pf ),
and a second random number (0 < r < 1) is used to determine if a
drop to the level below occurs (r < ps), or an increase to the level above
occur (r > 1− ps). The levels generated by the simulation are recorded
to determine the distribution of occurrence of the dam levels.

Another approach to the stochastic simulation of dam levels is to use a
continuous level measurement and at each time step add the net change
in level and a continuous random variable to account for the random
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variation in the flow. This, however, creates a non-zero probability of
being at the zero level and the maximum level that decreases as the time
step decreases.

8. Determination of dam size

As noted above, the rainfall in central Queensland can be divided into
a wet season (December to March) and a dry season (April to November).
Advantage can be taken of this in creating a simulation that considers
only two parts each year.

Figure 5. Power spectrum of net dam input. The initial spike is the constant term,
and the two other spikes are one cycle per year and the smaller two cycles per year.

An examination of the rainfall during the wet season found it to closely
follow a log Normal distribution (Figure 3). The Fourier analysis (Figure
5) indicates very limited correlation between years. So it seems sufficient
to generate a sample wet season rainfall independently. The dry season
runoff is essentially zero. A balance between supply and consumption in
the long term is assumed.
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The time the dam is empty (and hence the proportion of time it is
empty) is calculated as the sum of the lengths of time during the dry
season that the dam is empty, calculated as for each dry season as:

T =

{

−h1/(h0 − h1) when h1 < 0
0 otherwise

(20)

where h0 is the initial dam level and h1 is the calculated final level or
deficiency in level. A similar formula is used for the time in overflow
condition in the wet season.

It is then possible to determine the time over which empty and overflow
conditions occur in a simulation run for a dam of a given size, and to
produce a plot of the probabilities of empty and full conditions. Figure
6 gives an example of such a plot.

Figure 6. Typical proportions of time for empty and overflow conditions as a func-
tion of dam size.

9. Bootstrap testing of control policies

The MISG group investigated several policies for the use of pipeline
water. It is not known what criteria should be used to evaluate the
different policies. In fact the criteria will certainly vary from one mine
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to another. The two main terms in the evaluation are the probabilities
of running empty and of overflowing.

A Pareto optimum graph [10] plots sample cases as points defined by
these two probabilities and is used to indicate which policies give good
results. The Pareto plot shows a frontier facing the axes that gives the
policies that are better than others in terms that there is no other policy
that improves both the probabilities. This frontier defines policies that
give the best compromises between the two criteria. It is then up to
the user to choose which case on the Pareto frontier is best suited to a
particular application.

To obtain sufficient accuracy in estimating the probabilities for the
Pareto plot it was considered that the 40 years of data available would
not be sufficient and thus it was desirable to generate additional typical
data to test policies for the use of pipeline water.

For demonstration purposes a period of a thousand years was cho-
sen. This allowed the different combinations of weather and storage
that might occur to have a reasonable probability of being in the simu-
lation sequence, and gave a sufficiently compact cloud of points on the
Pareto optimum plots (Figures 7 and 8) to distinguish between the dif-
ferent policies. As seen in Figure 5 there is very little serial correlation
between the rainfall in adjacent years. However the amount of water
kept from one year to the next is important in determining when the
dam will empty or overflow.

The effect and thus evaluation of the different control policies were
examined using simulation. A monthly cycle was chosen for this simu-
lation with the rainfall for the year determined by a random selection
of a year’s rainfall from the available records. In this manner it was
possible to simulate a thousand years of dam operation and estimate
the probabilities of the dam being either empty or overflowing.

Five different policies for the control of pipeline water were proposed
and tested. The policies use the proportion α of the available pipeline
water. The policies also use the current dam height h, the maximum
dam height hmax, and a desired dam height haim. The policies tested
were:

1 Take a constant proportion of the available pipeline water:

α = Constant (21)

2 Take pipeline water aiming to maintain about 70% full:

α =

{

(hmax − h)/(hmax − haim)/2 h > haim

(haim − h)/haim/2 h < haim
(22)
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3 Take maximum pipeline water during dry season and none during
wet season.

α =

{

0 Wet season (Dec Jan Feb)
1 Dry season

(23)

4 Take maximum pipeline water if dam below 30%, take no pipeline
water if dam above 70%, and a proportion of available pipeline
water corresponding to proportion of dam contents between 30%
and 70%

α =







0 h > 0.7hmax

(h− 0.3hmax)/(0.4hmax) 0.3hmax < h < 0.7hmax

1 h < 0.3hmax

(24)

5 An on/off policy: no pipeline water if contents above Vaim and
available pipeline water if below.

α =

{

0 h > haim

1 h < haim
(25)

The simulations to evaluate these policies were actually carried out in a
series of steps as indicated in the following subsections.

9.1. Determining good control parameters

The first step for each of the proposed policies was to determine good
parameter values. For instance, in policy 5 it is necessary to determine
the parameter for the storage volume Vaim that is used to trigger the
use of pipeline water. Each of the policies has one or two parameters or
constants that control the the way the policy operates.

For each policy multiple values of the parameters were selected for
testing. For each set of parameter values several simulation runs of 1000
years were made and the number of months in which the dam was empty
and full were recorded. These two values were plotted against each other
on the Pareto optimisation graph as a single point. Over many repeated
runs a cloud of points developed that showed the range of values typical
of that control policy with the given parameter values.

Examination of the Pareto optimisation graph for a range of different
parameter values in each of control policies allowed a choice to be made
of good parameters for the policy. These parameter values were then
used in the comparison of the different control policies.
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Figure 7. Effect of different parameter values for strategy #5 showing the number
of months the dam over flows, plotted against the number of months the dam empties
(under flows).

9.2. Determining a good control policy

The preceding section determined good control parameters for each of
the control policies being considered. The next step is to apply the same
method to determine which of the control policies give good performance.
Again this was done using the the Pareto optimisation technique.

Each control policy was simulated 100 times over the period of 1000
years to determine the range of typical behaviour for the policy. Plotting
these on the Pareto optimisation plot then determined which policies
gave good performance and then a user could choose the policy that best
suits the user’s needs. It can be seen in Figure 8 that the 100 points
plotted were sufficient to indicate the differences in performance of the
control policies, without putting an excess of points onto the graph.

Figure 8 is the Pareto optimisation graph showing the evaluation of the
of the five control policies. For operation with low risk of overflow policy
#4 is the best, while for low risk of an empty dam policy #5 appears
to be the best. Note that a different selection of parameter values can
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Figure 8. Comparison of control policies (Strategy #1 - Magenta, #2 - Black, #3
- Red, #4 - Blue, #5 - Green).

change the performance of the different strategies. In particular, a higher
value of haim in policy #5 gives performance similar to, but not quite
as good as, strategy #4. Strategies #1 and #3 give results significantly
worse than the others, while strategy #2 is not as good as the two best
strategies. Of the strategies considered, #5 is very simple and is either
the best or close to the best. It may be possible to develop a policy that
switches between aspects of strategies #4 and #5 that further reduces
both objectives.

It should be noted that this is a demonstration of a technique that
can be used to determine the best control policies. The MISG has con-
centrated on the method rather than the accuracy of the results. The
method can be repeated using more accurate data and details specific
to a particular mine site.

10. Further thoughts

There are three options that can be considered when determining a
policy for the use of pipeline water:
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The first case is when the pipeline can deliver sufficient water to satisfy
the mine needs. For this case the mine should use dam water when
it is available and use pipeline water otherwise.

The second case is when the rainfall can provide all the water the mine
needs. In this case the dam will overflow and if it is sufficiently
large there will be no need for pipeline water. If the dam is too
small or the initial level of the dam is too low an addition of pipeline
water will be needed, and this case becomes the same as the next
case.

The final case is when both rainfall and pipeline water are needed to
supply the mine. This is the case where control of the flow of
pipeline water is needed. In this case, pipeline water is limited
and not sufficient for the mine’s instantaneous requirements (the
first case covers when a limit is not relevant). Forward planning
of pipeline use is needed to ensure that sufficient pipeline water is
stored in the dam to cover the needs of the mine.

It is the last case that has interesting properties and these are examined
in the next subsection.

10.1. Case where both rainwater and pipeline
water are needed

There is significant variation in the rain, so a good policy for control of
dam levels needs to take this into account. The balance of expected (i.e.
mean) net usage can be determined to find the dam level (which can be
negative). Next a safety margin to allow for the possible variation in the
net water balance needs to be defined. Once these have been determined
the amount of pipeline water needed, to cover both the expected water
usage and the safety margin, can be calculated and the necessary time
needed to deliver this amount determined. This amount of water is for
the most pessimistic case.

The safety margin can be determined in different ways. An appropri-
ate method is to determine the amount needed to reduce the probability
of the dam going dry. As the more distant future is less certain the
safety margin needs to be larger for more distant future times.

Given the expected water usage and the safety margin, the amount of
pipeline water needed can be determined as follows:

1 Determine at each time that the water level drops below the safety
margin, the amount of water needed to return the dam level to the
safety margin value;
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Figure 9. Initial prediction of water requirements.

2 Determine if the required amount of water determined in (1) can
be obtained from the pipeline — if this amount of water cannot
be supplied, then take the maximum amount of water available;

3 Taking into account the maximum flow from the pipeline, deter-
mine the latest time that water can be obtained from the pipeline
to supply the amount determined in (1).

These steps determine the amounts of water needed to ensure the level
does not drop below the safety margin in the worst case, as determined
using an acceptably low probability for the low rainfall to occur. To
protect against the possibility of the worst case the amount of pipeline
water determined as needed during the next month should be obtained.
However, typically the next month will not be a worst case and when
the required pipeline water additions are recalculated at the end of the
month they will usually be less than calculated in the previous step.

The required amount of margin can be estimated using the distribution
of the variation in the net flows into the dam. This margin will increase
as the time ahead increases. Figure 9 shows the initial pipeline water
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Figure 10. Prediction of water requirements after a one month step.

calculation. The red curve shows the increasing margin, and the blue the
expected dam level without pipeline water, this goes negative indicating
a need for additional water. The green line gives the dam level after
water addition and the black line the pipeline water. Figure 10 gives
a typical condition after the first time step. The deficiency in water is
not as great as the worst case and the margins required for future times
now being closer, are less, resulting in the water being required being
less than previously estimated. Figure 11 shows a typical case of the
progress of dam levels and the corresponding pipeline water flows, and
Figure 12 show several alternative possible dam level trajectories. It can
be seen in Figure 12 that only one of the trajectories reaches zero.

11. Conclusions and recommendations

An examination of the available data showed the variation in the rain-
fall dominates the analysis of the of the dam levels. The amount of rain
in the wet season tends to follow a log Normal distribution and in the
dry season there is little runoff into the dam. The monthly figures for
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Figure 11. Typical progress in water consumption.

proportion of rainfall running into the dam seem a little simplistic and
might be improved by a simple model of soil absorption.

This report has examined continuous and discrete analytical analyses.
These use a distribution of the rainfall that does not closely match the
actual distribution and do not easily take account of the changed con-
ditions when the dam is empty. A simulation approach was found to be
more useful for more detailed predictions.

A simulation based on wet and dry seasons demonstrated how the
probabilities of the dam overflowing and of emptying can be estimated.

It was found that a feedback control that adjusts water inflow or out-
flow is needed to maintain an operation that has a low probability of
running empty or overflowing.

Several simple control schemes were proposed and tested. A Pareto
optimum plot avoids specifying a desired ratio of overflow time to empty
time. A policy where pipeline water is used when ever the dam drops
below a given level gave good results.

The case of most interest is where both rain water and pipeline water
are needed. For this case a suitable policy looks forward to determine the
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Figure 12. Alternative possible dam level sequences.

amount of water needed to reduce the probability of running empty to an
acceptable level, and starts supplying pipeline water at the latest time
that allows the required amount of water to be added. At regular time
intervals, the amount of pipeline water needed is re-evaluated. Generally,
when the situation is re-evaluated, it will be found that less water than
was originally calculated will be needed, as the extreme case originally
allowed for has not occured.
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