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1 Introduction

This problem deals with the scheduling of data packets for different users who share
a common wireless channel of limited capacity and who have different service time
requirements. From a system point of view it is important to maintain a high throughput,
that is, a high number of packets served per unit of time. However from a user point of
view it is important to minimise the service time. This poses a trade-off problem, which
is one of the goals we wish to analyse.

The wireless transmission channel alternates between good and bad states over time.
While the channel is in a bad state the transmission of a packet fails and the packet needs
to be retransmitted. When the state of the channel is good, packets are transmitted
successfully and do not require retransmission. The system transmission efficiency or
throughput might be defined as the number of data packets that can be transmitted
successfully in a given time.

The scheduler we wish to study is designed to consider both the wireless channel
conditions and the user’s quality of service requirements. For this purpose users are
assigned a credit every scheduling frame, which is a function of the wireless channel
conditions and the quality of service required, which depends on the traffic class.

The original problem statement given by Motorola (see Appendix A) was further refined
by discussion at the Study Group to yield the following agreed model, which is to be
considered as operating in successive time frames indexed by t = 1, 2, 3, . . .. The traffic
classes are indexed by j (running from 1 to J) and they are also referred to as users, and
we think of each user’s data packets as being sent over a different wireless channel. The
channel quality experienced by user j during time frame t is denoted by Rj(t) and we
shall think of this as the packet rate per unit power for user j. We consider the credit
function for user j

Cj(t) = uj

(
Ravg

j (t)
)α

(
Rj(t)

Ravg
j (t)

)β

, (1)

where uj is a traffic class weight, α and β are channel condition weights and Ravg
j (t) is

the average effective channel quality computed by

Ravg
j (t) = (1 − ψ)Ravg

j (t− 1) + ψRj(t) (2)

for some 0 < ψ < 1. (For a discussion of the motivation for this see Section 3.) To define
our model for the operation of the buffer we introduce notation illustrated in Figure 1:

Xj(t) = number of data packets for user j in the buffer

at the start of time frame t, (3)

Aj(t) = number of data packets offered by user j to the buffer

during time frame t, (4)

fj(t) = fraction of Aj(t) that is admitted to the buffer in time frame t, (5)

Dj(t) = number of data packets for user j transmitted during time frame t. (6)

The arrivals process is that packets arrive in batches according to a Poisson process with
arrival rate cjλ. The size of a batch is a random variable with range {0, . . . , K}, and we
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Figure 1: Schematic diagram of user, buffer, scheduler and wireless
link. In a given time frame, user j offers Aj data packets to the
buffer manager, of which a fraction fj are admitted. Together with
any packets already in the buffer, user j then has Xj packets in the
buffer of which Dj are transmitted in the time frame, as determined
by the scheduler.

can consider batch sizes to be independent. Thus the Aj are independent, with a certain
distribution that depends on j. The buffer operates as a separate queue for each user,
of capacity k packets, so in fact

fjAj = number of packets admitted = min(Aj, k −Xj). (7)

The update equation for the buffer content size then is

Xj(t+ 1) = Xj(t) −Dj(t) + fj(t)Aj(t). (8)

The averaged or smoothed throughput for user j is defined to be

Wj(t) = (1 − φ)Wj(t− 1) + φDj(t) (9)

for some 0 < φ < 1.

At time t the scheduler orders users in increasing value of the sorting metric Sj =
Wj(t− 1)/Cj(t− 1), which determines the order in which user packets are transmitted.
In detail, suppose

Si1 < Si2 < . . . (10)

so that user i1 is first in the queue, user i2 second etc. Then if a total power P is available
for the transmissions during the time frame, user i1 transmits using power

Pi1 = min

(
Xi1(t)

Ri1(t)
, P

)
, (11)

so he either uses all the available power, or just enough to transmit his data, whichever
is the least. The data transmitted by user i1 therefore is

Di1(t) = Ri1(t)Pi1 = min(Xi1(t), Ri1(t)P ). (12)

The remaining power P ′
i1

= P − Pi1 is offered to user i2, and he uses

Pi2 = min

(
Xi2(t)

Ri2(t)
, P ′

i1

)
, (13)
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and transmits
Di2 = min(Xi2 , Ri2P

′
i1
), (14)

and so on.

We note various points at which this description and notation clarifies, generalises or
supersedes the first statement of the problem by Motorola (as shown in Appendix A):

(1) our credit function (1) generalizes the original one by the inclusion of the factor
involving β, and we use uj rather than wj to denote the traffic class weights;

(2) we use 1 − ψ rather than φ to define Ravg
j ;

(3) our (9) swops φ↔ 1 − φ compared to the original;

(4) our (9) has just Dj as the driving term rather than Dj/Cj.

Because of the second and third points here, the limit Motorola originally asked about,
where φ and ψ are close to 1, becomes here the limit where φ and ψ are small.

We are interested in the analysis of the following performance measures:

(1) the distribution of system size (queue size including packets in service);

(2) the queueing time distribution for each traffic class;

(3) the packet loss distribution for each traffic class.

We are interested in general solutions that allow the study of these performance measures
as a function of:

• the traffic class weights uj (maximum of four traffic classes);

• the channel condition powers α and β;

• the buffer size k;

• the weights ψ and φ (as a starting point it is recommended to start the study with
these weights equal to 0).

2 Analysis of simple cases

The process of allocating the available power to the users by the scheduler can have
broadly speaking two kinds of outcome:

(1) If
∑

j(Xj/Rj) ≤ P then there is enough capacity available to transmit all the data
for all the users, so every Dj = Xj.
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(2) If
∑

j(Xj/Rj) > P then not all the data can be transmitted. In this case there
will be some index r such that

• the first r − 1 users in the queue, j = is for s = 1, 2, . . . , r − 1, have all their
data transmitted from the buffer, Dj = Xj;

• user r in the queue, j = ir, has only some of his data transmitted, Dj < Xj;

• users later in the queue, j = is for s > r, have no data transmitted, Dj = 0.

So in this case
∑

j(Dj/Rj) = P , and these are the situations where the scheduler
is having significant effects on the system. It may be that r = 1 in which case only
the first user in the queue (user i1) gets any service during the time frame.

2.1 Simple case with two users

We consider first the situation with just two users, and where the channel qualities Rj

are constant in time, but R1 may differ from R2. So the credits Cj are constant, and the
important variables are the data offered Aj and transmitted Dj. We shall also assume
that the buffer is effectively infinite, in other words that we are in a power-constrained
case rather than buffer-constrained. Suppose the average data offered in a single time
frame by user j is Aj, so that if

∑
j Aj/Rj ≤ P then there is enough capacity to serve

both users, but if this inequality fails then there will be a build-up in the buffer of one
or both users. Suppose that both users’ buffers fill up and that, in the long-term steady
state, user j wins the queue (i.e. comes first in the queue) a proportion pj of the time.
If one user, j, repeatedly received no service, then Wj would drop steadily, and so Sj

would drop steadily, and so eventually user j would win the queue once more. So the pj

will be strictly positive. When user j wins the queue, he obtains transmission of RjP of
the data from his buffer. Thus his long term average throughput is W j = pjRjP .

If φ is small, then the Wj do not vary much with time, and so since both users get a
share of the service, their long term average values of Sj must be approximately equal,
i.e. W 1/C1 = W 2/C2. This gives pj ∝ Cj/Rj, and so

p1 =
C1/R1

C1/R1 + C2/R2

, p2 =
C2/R2

C1/R1 + C2/R2

. (15)

In a case where Cj = ujR
α
j , this gives pj ∝ ujR

α−1
j . So if α > 1 and u1 = u2, the user

with the better channel quality is scheduled more of the capacity. These values of pj

give mean throughputs for the users of

W 1 =
PC1

C1/R1 + C2/R2

, W 2 =
PC2

C1/R1 + C2/R2

. (16)

If the actual data rate of user 1, A1, is below the limit W 1 then his buffer will in fact not
build up, and he will win the queue almost all the time. Conversely if A2 < W 2 then user
2 will win the queue all the time and his buffer will remain bounded. Thus we build up a
picture of the outcome of the system as shown in Figure 2. In the triangular region OPR
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of good service, for points below the diagonal line from (0, 0) to Q = (W 1,W 2) user 2
wins the queue and experiences lower average delays. In that region, as user 1’s demand
increases and the point moves towards the line QR, user 1 will experience increasing
delay. In fact if the queues are treated as conventional Poisson arrivals then the mean
delay experienced by user 2 is A2/R2/(P − A2/R2) while the mean delay experienced
by user 1 is A1/R1/(P − A1/R1 − A2/R2). When the line QR is crossed, the system
capacity is exceeded and user 1’s buffer will build up. Equally, in the upper part (OPQ)
of the “Good service” triangle user 1 wins the queue and the situation is reversed.

A1

A2

O W 1

W 2

Both Xj build up

User 2 wins the queue, X2 is bounded

X1 builds up
Good

service

User 1 wins

X2 builds up

User j wins the queue with probability ∝ Cj/Rj

P

Q

R

Figure 2: Long term operation of system with two users and φ
small.

Two illustrations of the behaviour are shown in Figure 3. Here we have taken R1 = 1,
R2 = 2 and Cj = Rα

j with α = 1.4. In the simulation shown in the upper set of diagrams,
there is enough capacity, both users experience good service, and user 2 eventually wins
the queue all the time. In the lower diagrams the users are sending more data, and
both buffers are building up. So here we expect from (15) the users to be winning the
queue with frequency proportional to Cj/Rj, i.e. in the proportions about 0.43 and 0.57,
i.e. user 2 winning the queue about 4 times out of 7. This is just as observed in the
simulator.

It is natural to ask how this picture changes when φ is not small, so that there are
significant variations in W and therefore S during the process. We again consider first
the case where both buffers build up, so each user always has data ready to transmit.
The effect of the scheduler then is that

(1) if W1/C1 < W2/C2 then user 1 wins the queue, D1 = R1P , and D2 = 0;

(2) if W2/C2 < W1/C1 then user 2 wins the queue, D2 = R2P , and D1 = 0.
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Figure 3: Simulation of two emerging behaviours. In the simulation
represented by the upper diagrams, user 2 (red [grey]) has better
channel quality than user 1 (blue [black]) but both users get
adequate service. In the lower diagrams, the system is overloaded
and user 2 wins the queue approximately 0.57 of the time (4 times
out of 7).

Since the transmissions obey
∑

j(Dj/Rj) = P , we see from (9) that
∑

j(Wj/Rj) will tend
to P as t→ ∞, and so if we ignore a starting transient we can assume

∑
j(Wj/Rj) = P ,

and we therefore write

xj(t) =
Wj(t)

RjP
, x1 + x2 = 1. (17)

Then x1 obeys the nonlinear recurrence equation

x1(t+ 1) = f(x1(t), a, φ) =

{
φ+ (1 − φ)x1 in x1 < a,
(1 − φ)x1 in x1 > a,

(18)

where the parameter a is equal to (C1/R1)/(C1/R1+C2/R2). This function f is piecewise
linear, with a discontinuity at x = a, as illustrated in Figure 4. After initial transients,
this process will lie in the region

(1 − φ)a < x1 < φ+ (1 − φ)a, (19)
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Figure 4: The graph of the discontinuous piecewise linear function
f(x1) is the solid lines.

and so for φ small x1 remains close to a. This is the situation discussed earlier, where
the users share the time frames proportionally to Cj/Rj. However, this model gives the
detailed behaviour when φ is larger. In fact, in simulations of the recurrence equation we
find that the system always settles to a periodic behaviour, but we do not know a proof
of this. However, since f ′ = 1 − φ < 1 at all points where f ′ is defined, the action of f
is measure-reducing, so certainly there is a set of measure zero to which all trajectories
converge. If φ is large, in fact if

φ > φ0 = 1 − min(C1/R1, C2/R2)

max(C1/R1, C2/R2)
, (20)

then the users win the queue alternately, and so in that case the long term proportions are
p1 = p2 = 1

2
. For values of φ that are less than φ0 there will be intermediate behaviour,

with the pj between the values given by (15) and 1
2
.

Illustrations of this using the simulator are shown in Figure 5. In the upper diagrams, φ is
small and the parameter values are as before and the users win the queue in proportions
roughly 0.43 and 0.57 as before, in accordance with (15). But in the lower diagrams, φ
is large, and the usage alternates between users 1 and 2 as described here.

2.2 More than two users

When there are more than two users, much of the discussion above will still apply. In the
case where all buffers contain data to transmit, we shall still have

∑
j(Wj/Rj) = P , and

we can set xj = Wj/(RjP ) so that
∑
xj = 1 as before. Then the time-update system is

xj(t+ 1) =

{
(1 − φ)xj(t) + φ if xj(t)/aj = mini(xi(t)/ai),
(1 − φ)xj(t) otherwise,

(21)
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Figure 5: Effects of varying φ. In the upper simulation, with φ
small, users 1 and 2 win the queue in proportion to Cj/Rj. But in
the lower simulation, with φ large, they win alternately.

where aj = Cj/Rj. (The first case is where user j wins the queue.) We can show that if φ
is small then the long-term behaviour is close to xj = aj/Σ where Σ =

∑
i ai. Certainly,

for some user(s) j it is the case that xj ≤ aj/Σ. The user with the least value of
xj

aj
wins

the queue, so if user j wins the queue then xj ≤ aj/Σ. So

lim sup
t→∞

(
xj(t)

) ≤ (1 − φ)aj

Σ
+ φ. (22)

Summing these over all other j and subtracting from 1 we see

lim inf
t→∞

(
xj(t)

) ≥ (1 − φ)aj

Σ
− (J − 2)φ. (23)

These are the generalizations to J users of the bounds in (19). For φ small, the right-hand
sides of (22) and (23) each tend to

pj =
aj

Σ
=

Cj/Rj∑
iCi/Ri

(24)
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and so the users win the queue in these proportions, exactly analogous to the case of 2
users. The behaviour for larger φ is governed by the recurrence (21) above, but we have
not studied it in detail.

3 Variable channel quality

When the channel quality Rj(t) varies with time, as it generally will in wireless
applications, an averaged quantity Ravg

j (t) is defined by (2), and channel quality by
(1). The idea of this is to allow user j to be able to take advantage of any short-term
improvements in his channel quality Rj. If Rj(t) varies with time as shown in Figure 6

t

Figure 6: Channel quality Rj(t) (solid curve) has occasional rises
above its averaged value Ravg

j (t) (dotted curve).

then Cj(t) has large values during the indicated intervals of good channel quality, and so
user j gets increased priority during those times. In order to achieve this, it is necessary
that ψ is small compared with 1/T where T is the typical length of the indicated intervals
of good quality. This is because the averaging process (2) has the effect that

Ravg
j (t) = ψRj(t)+ψ(1−ψ)Rj(t−1)+ψ(1−ψ)2Rj(t−2)+ψ(1−ψ)3Rj(t−3)+. . . , (25)

and so Ravg
j (t) is a weighted average of past values of Rj(t) looking back a mean distance

in the past which is
∞∑

k=0

ψ(1 − ψ)kk =
1 − ψ

ψ
. (26)

So for ψ small, Ravg
j (T ) is an average of past values of Rj(t) over times of order 1/ψ

in the past, and if we want Ravg
j (T ) not to rise significantly during an interval of good

channel quality of length T then we need ψ small compared to 1/T .

4 Conclusions

We have formulated a specific realisation of the scheduler that includes its important
features and we have analysed its behaviour in some regimes. When the smoothing
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parameter φ is small and all users have data to transmit, they share the capacity in
proportion to Cj/Rj = ujR

α−1
j . So for α > 1 the users with better channel quality Rj

are scheduled more of the capacity, and we can also see the influence of the traffic class
weights uj on how this capacity is shared. The detailed behaviour of the system when φ
is not small is governed by the deterministic discontinuous dynamical system (21) when
all users have data to transmit. When demand drops, there will be a transition to a
more conventional underloaded queuing system. In that regime, the users with lower
Aj/Rj will win the queue more often and experience lower delays.

In order for the β factor in the credit function to have the desired effect, Ravg
j must be

slowly varying compared with channel quality fluctuations, and this requires ψ to be
small compared with 1/T where T is the time scale of those fluctuations.

At a higher level, this scheduler may be one element in a coupled system where users
modify their transmission rates or burst sizes according to the delays and quality of
service they experience. This feedback would need to be the subject of a separate study:
the model and analysis here is treating the arrival process as given, independent of the
service or delay that the users experience. In a system with feedback, there could well
be the possibility of instability if users respond to the quality of service too severely or
on an inappropriate time scale.

A Full problem statement from Study Group

A SCHEDULER FOR A WIRELESS SYSTEM

This problem deals with the scheduling of data packets for different users that share a
common wireless channel and that demand different quality of service in terms of service
time.

Generally speaking the scheduling function is necessary because the capacity of the
wireless channel is limited and because each user demands different service times. From
a system point of view it is important to maintain a high throughput, that is, a high
number of packets served per unit of time. However from a user point of view it is
important to minimise the service time. This poses a trade-off problem, which is one of
the goals we wish to analyse in this problem.

The wireless transmission channel alternates between good and bad state over time.
While the channel is in bad state the transmission of a packet fails and the packet needs
to be retransmitted. When the state of the channel is good packets are transmitted
successfully and do not require retransmission. The system transmission efficiency or
throughput might be defined as the time it takes to transmit an arbitrary amount of
data packets successfully.

The scheduler we wish to study is designed to consider both the wireless channel
conditions and the user’s quality of service requirements. For this purpose users are
assigned a credit every scheduling frame, which is a function of the wireless channel
conditions and the quality of service (traffic class).
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We consider the following credit function for a user j:

Cj(t) = wj(R
avg
j (t))α

Where:

Ravg
j (t) = Average effective data rate

wj = traffic class weight. (27)

The average effective data rate is computed as follows:

Ravg
j (t+ 1) = ϕRavg

j (t) + (1 − ϕ)Rj(t)

Where:
Rj(t) = Effective data rate at time t.

We define the following normalised throughput for user j:

Wj(t+ 1) = φ.Wj(t+ 1) + (1 − φ).
Dj(t)

Cj(t)

Where Dj(t) is the amount of data to be sent for user j at time t.

At time t+ 1 the scheduler orders users in increasing value of
Wj

Cj
, which determines the

order in which user packets are transmitted.

We consider one queue for every traffic class. The maximum capacity of a queue is k
packets. Packets arrive in Poisson batches with mean arrival rate cjλ (j identifies the
traffic class). The size of the batches is a random variable with range {0, . . . , K}. We
consider that batch sizes are independent. We also consider an exponential service time
with mean 1/μ.

We are interested in the analysis of the following performance measures:

(1) The system size (queue size including packet in service) distribution.

(2) The queueing time distribution for each traffic class.

(3) The packet loss distribution for each traffic class.

We are interested in general solutions that allow the study of these performance measures
as a function of:

• the traffic class weights wj (maximum of four traffic classes),

• the channel condition weight α,

• the capacity of the system K

• the weights ψ and ϕ (as starting point it is recommended to start the study with
these weights equal to 1)
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