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1 Executive Summary

This report discusses the problem of the allocation of resources: how should an
organisation (such as MOD) invest bearing in mind the long term delay for the realization
of investment strategies, and how might this apply in times of increasing budgetary
constraints? After making certain simplifying assumptions, the Study Group constructed
a prototype model based on the method of Optimal Control. This allows the decision
maker to investigate the impact of particular investment strategies over a period of years,
the impact being measured in terms of “quality” or “capability”. Interventions can be
designed so that “quality” (Q) is maximized at a particular time, or so that the average
quality over a given time interval is maximized. Both of these approaches are explored.
This model shows reasonable behaviour when tested over a parameter set. It could be
used as part of a systems approach to the defence budget as a whole, but the method
itself is scalable to smaller (or larger) resourcing conundrums.

2 Introduction

In this report we detail several problems of “resource allocation”. The first concerns
high-level financial planning for the Ministry of Defence (MOD). Each year, the budget
for the Ministry is set by the Treasury and depends on current policy1. The Minister then
decides on the proportion of the budget that is spent on research and development into
new equipment and methods (which we will call “future equipment and research”), and
how much is given to each of the three services to pay for personnel, current equipment,
works and stores. The proportion given to each of the services, and to future equipment
and research is determined by the perceived quality of each of the services. Of course,
there is also a pressure on the Treasury from other government departments, which can
also impact on the allocation. A simplified schematic of the situation is shown in figure 1.

In this figure, we denote by £B the allocation of funds for the year, normalised by
inflation, given to the minister by the Treasury. The proportion of this allocation given
to each of the services and to future equipment and research are denoted by the λis.
Spending on future equipment and research incurs a delay between the spend and the
services receiving any benefit, and thus feeds into the future quality of the three services,
rather than affecting them instantaneously.

The concept of quality of each of the armed forces is difficult to quantify. It might be
thought of as “value for money” or “effectiveness”, in this context.

In this problem, the background financial situation is one of, at best, modest growth,
and is more likely to be a reduction in real terms, known as “managed decline”. Dstl
would like to have a model that describes how the decision maker allocates a limited set
of resources over time, subject to uncertainty about the level of resource in future years.

1Money for specific short-term military operations comes from a government contingency fund and
so doesn’t contribute to the standard allocation.
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Figure 1: Simplified schematic showing the big picture for resource
allocation for the MOD.

In particular, we would like to examine whether there is a way to alter the resources
allocated to keep the overall “quality” as high as possible, given a developing financial
situation.

The second problem of interest is that of allocation of air assets to tasks. In this problem,
a commander must decide how much effort to put into different tasks during an operation,
for example, reconnaissance, combat air patrols, media campaigns etc, given limited
information about what other players are doing, and perceived knowledge about the
importance of various actions.

3 Making the best of managed decline

We reduce the situation described above to the simplest one possible that still has the
same features, in which we lump the three services together into the “Armed Forces”,
and we look at the competition between “service” and “research”. In this case, the
normalised budget £B, is split so that £(1 − λ(t))B and £λ(t)B are the proportions of
the budget going to research and the service, respectively. A schematic of the reduced
problem is shown in figure 2. We take the simplistic, yet reasonable, view that the
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Figure 2: Schematic showing the simplified picture for resource
allocation for the MOD

research quality QR depends directly on its current level of funding, so that

QR = (1 − λ)B, (1)

although a more reasonable model might be to assume that the evolution is proportional
to the previous investment as well as the current quality.

We suppose that the quality of the service increases due to a combination of all the
previous investment in research (which depends on how long it takes for the research to
cause benefit to the service) and recruitment and retention of good quality staff. Note
that the perceived required quality of the service for a given budget affects recruitment;
if the quality is at its required level, no more recruiting is needed (all other things being
equal). Attrition (due to wars, redundancy etc) will decrease the quality. Thus we write
that

dQ

dt
=

[
c

∫ t

−∞
γ(t − s)(1 − λ(s))B(s)ds

]
Q + βQ

(
1 − Q

χλB

)
− dQ, (2)

where c is the effectiveness rate for the previous investment, γ(t− s) is a measure of the
impact at time t of the research quality QR(s) that occurred in the past at time s < t.
(This is normalised so that

∫ ∞
0

γ(τ)dτ = 1.) Also β is the recruitment rate, χ relates
the spend to the perceived required quality for that spend, and d is the attrition rate.
In the first term on the right, we have written the integral extending to −∞ in order to
represent the cumulative influence of all work in the past: in practice one might have
γ(τ) = 0 for τ > τ0 and then the integral in (2) would just be from t − τ0 to t. Also
it should be noted that the first term on the right of (2) involves the product of B and
Q. This is intended to capture the fact that the quality of the service is governed by a
product of the manpower involved in the service and the technology available to each
man. A more sophisticated model might attempt to disentangle these rather better, with
research funding affecting the quality via a measure of the technology per man, but for
the moment we proceed with the model as stated in (2). We note that Middleton et al.
[2] make the same point in the words:

if R&D shows you how to make a better tank, then you derive more financial
return from that R&D if you make 1000 tanks than if you only make 10.
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Note that we can combine the last two terms in the RHS of (2) to give

β0Q

(
1 − Q

χ0λB

)
, (3)

where β0 = β − d is the excess of recruitment over attrition and χ0 is such that χ0B is
the quality arising out of pouring all the money into the service.

Finally, we have to pick an appropriate form for the budget. We set

B = eμt, (4)

where μ is a small constant (because the Treasury doesn’t like to alter budgets by much)
that can be of either sign.

Assuming that the budget B and the allocation λ are constant, the steady state of (2)
is given by

Qss = ((β − d) + c(1 − λ)B)
χλB

β
. (5)

We can easily see that direct funding to the service causes a linear increase in quality,
but the research funding has a quadratic effect. The maximum value of Qss is achieved
when

λ =
1

2
+

β − d

2Bc
, if Bc ≥ β − d ≥ −Bc, (6)

λ = 1 if β − d ≥ Bc and λ = 0 if β − d ≤ −Bc. Thus if the budget is small, research
ineffective or recruitment buoyant, the best strategy is to put all the money into the
service and none into research. Above the critical threshold, the best strategy is to split
the budget between the two, with the best strategy being to spend half on research and
half on the service if the budget becomes huge. Finally, if the attrition rate exceeds the
sum of the recruitment rate and the research effectiveness rate (d > β + Bc), the steady
state is such that there is no service left however the budget is allocated.

The solution to (2) gives us the quality of the armed service at a particular time. We
have then, to determine our measure of “overall quality”. There are two obvious choices
(i) what matters is the end point of some spending rounds, in which case we would be
interested in maximising Q(T ); (ii) what matters is the total quality across the spending

rounds, in which case we would be interested in maximising
∫ T

0
Q.

There are then two ways to proceed. One is to pick a constant, or piecewise constant, λ,
find Q(T ) or

∫ T

0
Qdt and then iterate to find the λ that gives the biggest Q. The second

approach is to use the calculus of variations to formulate the appropriate Euler-Lagrange
equations and then determine the λ(t) that maximises

∫
Q. In the remainder of section

3 we will adopt the former approach, while in section 4 we will adopt the latter.

3.1 A simple form for γ

We can make progress with the problem when we assume that the previous research has
an effect only at a time τ later. We set γ(z) = δ(z − τ) and, in this case, (2) reduces to

dQ

dt
= c (1 − λ(t − τ)) B(t − τ)Q + βQ

(
1 − Q

χλB

)
− dQ. (7)

G-5



It is clear that we must couple this equation with an initial value for Q, and that in
order to solve the forward problem, we must also specify the level of research investment
prior to the period under investigation.

3.1.1 Maximise Q(T )

We look at the two simplest cases, namely (i) we spend an equal amount on the service
as we do on the research (and take λ = 1/2 ∀t) and (ii) that we spent an equal amount
in the past, and now we choose to spend everything on the service in the future. We
set the funding level to be the same for all time, and we show these two scenarios in
figure 3. We see that, initially, the quality of the service increases more rapidly when
no money is being spent on research (recruiting increases, and there’s still the benefit of
previous investment in research). Then when the previous research has all kicked in, the
quality declines. The long term behaviour results in scenario with equal spend giving
higher quality. Of course, if we are interested in a final time which is shorter than the
“incubation” time for the research, the best strategy is to put all the resources into the
service.

5 10 15 20

1.5

2

2.5

3

3.5

t

Q

Figure 3: Graph showing two possible scenarios: equal spend on
the service and research (dashed) and no further expenditure on
research (solid). Parameters: c = 1, β = 0.5, χ = 2, d = 0.1, τ = 5,
μ = 0, T = 20, Q(0) = 1.

As a further example, suppose we are allowed to change the value of λ now and again
after T/2 years, setting λ = λ1 at the start (t = 0) and λ = λ2 at the end of the period.
(As before, we assume λ = 1/2 historically.) To illustrate this we show two possible
options in figure 4, λ1 = 0.1 for the first 10 years, and then λ2 = 0.9 for the final 10
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years (dashed) and vice versa (solid). We note that, with this choice of parameters,
Q has almost achieved its steady state at the end of the second cycle. This has the
consequence that, in fact, the choice of λ1 barely matters; Q(T ) ≈ Qss where Qss is the
steady state solution of (7) with λ = λ2.

5 10 15 20

2

3

4

Q

t

Figure 4: Graph showing two possible scenarios λ1 = 0.1, λ2 = 0.9
(dashed) and λ1 = 0.9, λ2 = 0.1 (solid). The other parameters used
were c = 1, β = 0.5, χ = 2, d = 0.1, τ = 5.

We illustrate a case where the value of Q at t = T is significantly altered by both λ1 and
λ2 in figure 5. We find that for the parameters chosen, the final quality is maximised by
picking λ1 = 0.181 and λ2 = 0.617.

Note that the parameters used in this section have been chosen arbitrarily to aide
exposition. Determining appropriate values for the parameters would be a considerable
research exercise in itself.

3.1.2 Maximise
∫ T

0
Qdt

We consider again the case where, in the past, an equal amount has been spent on the
service as on research, and that we have λ1 for the first T/2 years and λ2 for the second

T/2 years. We show the value of
∫ T

0
Qdt in figure 6, using the same parameters as used

to generate figure 5.

We find that the maximum is now achieved by picking λ1 = 0.355 and λ2 = 1.

Of course, these are only illustrative examples of the behaviour, and, indeed, we wish
to change λ much more often. In the limit in which the time over which we wish to
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Figure 5: Graph showing how the final quality of the service varies as a function of λ1

and λ2. The higher the value, the lighter the colour. The other parameters used were
c = 0.5, β = 0.1, χ = 2, d = 0.1, τ = 5.

consider the quality is much greater than the time after which we are allowed to alter
the allocation, we can allow λ to vary continuously with time, and find the optimal λ
from the calculus of variations. We show this approach in the next section.
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Figure 6: Graph showing how the overall quality of the service varies as a function of λ1

and λ2. The higher the value, the lighter the colour. The other parameters used were
c = 0.5, β = 0.1, χ = 2, d = 0.1, τ = 5.

4 Optimal control and managed decline

4.1 Resource allocation and optimal control

We continue to examine the problem

max
0≤λ≤1

∫ T

0

Q(t)dt (8)

subject to the constraints
QR = (1 − λ)B, (9)

dQ

dt
=

[
c

∫ t

−∞
γ(t − s)QR(s)ds

]
Q + βQ

(
1 − Q

Qw

)
− dQ, (10)

0 ≤ λ ≤ 1, (11)

where we use Qw as shorthand for χλB. Our final piece of information is that QR is
known for the past. This is an optimal control problem and the only nonstandard feature
of the problem is that the dynamics of Q is governed by a differential-integral equation.

4.2 Optimal control under a special kernel function λ

In this section, we assume a simple expression

γ(t) = te−t, (12)
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which suggests that there is a delay (t = 2 years “on average”) when the quality of R&D
makes an impact.

The paper by Middleton et al [2] does time-dependent correlation between spending on
defence R&D of 10 nations since 1951 and military equipment quality during 1971–2005,
and finds an average effective delay of 10–25 years.

4.2.1 Alternative formulation for the dynamics

For a given budget constraint B(t) and a fixed allocation λ, the quality of the research
and of service follow a system of two equations given in (9) and (10). Without the loss
of generality, we can set the initial value of Q to be one. For the simple kernel function
given in (12), we can introduce two new variables

Q3 =

∫ t

−∞
γ(t − τ)Q1(τ)dτ and Q4 =

∫ t

−∞
Q1(τ)dτ.

And it is straight forward to verify that (9) is equivalent to the following system of three
ODEs

dQ

dt
= −dQ + βQ

(
1 − Q

Qw(λB)

)
+ cQQ3, (13a)

dQ3

dt
= Q4 − Q3, (13b)

dQ4

dt
= QR − Q4 (13c)

with initial conditions

Q(0) = 1, Q3(0) =

∫ 0

−∞
QR(t)γ(−t)dt, Q4(0) =

∫ 0

−∞
QR(t)etdt. (14)

We can rewrite the model into a more concise form as

Q̇ = F(t, u,Q) (15)

where u = λ and

Q =

⎛
⎝ Q

Q3

Q4

⎞
⎠ , F =

⎛
⎜⎝ −dQ + βQ

(
1 − Q

Qw(uB)

)
+ cQQ3

Q4 − Q3

QR − Q4

⎞
⎟⎠ .

4.2.2 Optimal control

The problem we need to solve is

max
0≤u≤1

∫ T

0

Q(t)dt (16)
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subject to (15), which is a standard optimal control problem. It can be solved by
introducing the Hamiltonian H = Q+ ρ ·F and the optimal solution can be obtained by
solving the following system [1]

max
0≤u≤1

H, ρ̇ = −∂H
∂Q

, Q̇ =
∂H
∂ρ

(17)

with initial and terminal conditions

Q(0) = Q0, ρ(T ) = 0. (18)

The last set of equations required to close the problem is simply the set given earlier 15).
The second set of equations is for the Lagrangian multiplier ρ = [ρ2, ρ3, ρ4]

T ,

ρ̇2 = −1 − ρ2

[
−d + β

(
1 − 2Q

Qw(uB)

)
+ cQ3

]
, (19a)

ρ̇3 = −cQρ2 + ρ3, (19b)

ρ̇4 = −ρ3 + ρ4. (19c)

Finally, to find the maximal of the Hamiltonian, we apply the following conditions

0 =
∂H
∂u

= −ρ4Q
′
1B +

βρ2Q
2Q′

wB

Q2
w

, (20a)

or u = 0, or u = 1. (20b)

4.3 Generalization

Suppose that we wish to optimise more than just the quality of the armed forces. If
we were also interested in optimising the quality of the supporting military research
itself then the problem statement in section 4.1 would be too simplistic. Our framework
discussed in previous sections can be generalized to the optimal control in the following
form

max
0≤u≤1

∫ T

0

J(t, u, QR, Q)dt (21)

subject to a more general form of dynamic evolution

Q̇R = G1(t, u1, u2, QR, Q), (22a)

Q̇ = G2

(
t, u1, u2, QR, Q,

∫ t

−∞
γ(t − τ)QR(τ)dτ

)
, (22b)

where u1 is the allocation to research and u2 is the allocation to the service. If a special
kernel (12) is used for γ, we can again convert the model with delay into a standard form

Q̇ = G(t, u,Q) (23)

where u = u2 and

Q =

⎛
⎜⎜⎝

QR

Q
Q3

Q4

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

G1(t, u, QR, Q)
G2(t, u, QR, Q, Q3)
Q4 − Q3

QR − Q4

⎞
⎟⎟⎠ .
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Note that this is possible for any γ whose Laplace transform is a rational function, i.e.
γ(t) is a linear combination of powers of t times exponentials.

Let Hamiltonian H = J + ρ ·F and the optimal solution can be obtained by solving the
following system

max
0≤u≤1

H, ρ̇ = −∂H
∂Q

, Q̇ =
∂H
∂ρ

(24)

with initial and terminal conditions

Q(0) = Q0, ρ(T ) = 0. (25)

Here the Lagrangian multiplier has four components ρ = [ρ1, ρ2, ρ3, ρ4]
T .

4.4 Results and discussion

We now present numerical results for the simple case with Qw(B2) = 0.5B2 = 0.5uB as
the capacity for the service quality. The values for other parameters are d = 0.1, β =
1, c = 1. Using QR = (1 − u)B, from (20a) and (20b) we obtain

u = min

{
1,

√
2βρ2Q2

ρ4B2

}
. (26)

To find the optimal solution we solve the coupled systems (13a)-(13c) and (19a)-(19c)
with the initial and terminal conditions (18), iteratively. We start by providing an initial
guess for μ, solve (13a)-(13c) with initial condition (18), using control (26). We then
solve (19a)-(19c), using the terminal condition (18). We repeat the steps above until a
pre-set convergence criterion is satisfied. The initial conditions used in the computations
are Q(0) = 0.2, Q3(0) = Q4(0) = 0.5. The total time period is T = 20 years.

4.4.1 Time-independent resource level

In Figure 7, we have plotted the time history of Q, u, and other auxiliary values when the
available resource remains as a constant B = 1. For comparison purposes we have also
plotted the solution of a fixed allocation (u = 1). The total value of the service quality∫ T

0
Qdt is 9.73 and 8.28 for the optimal and fixed allocation strategies, respectively.

Therefore, it is beneficial to go through the optimization exercise.

4.4.2 Declining resource level

In Figure 8, we have plotted the time history of Q, u, and other auxiliary values when the
available resource is assumed to decline with small μ such that we can linearise B = eμt

to get B = 1−0.5t/T . Again, for comparison purposes we have also plotted the solution

of a fixed allocation (u = 0.5). The total value of the service quality
∫ T

0
Qdt is 7.20 and

6.02 for the optimal and fixed allocation strategies, respectively. Once again, the overall
service quality is improved by investing in R&D strategically.
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Figure 7: Solution for time-independent budget (resource). (a) Q
and u where the solid line is the optimal solution and the dashed
line is for a fixed allocation strategy u = 1; (b) Q and auxiliary
variables for the optimal allocation case.
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Figure 8: Solution for a declining budget (resource). (a) Q and u
where the solid line is the optimal solution and the dashed line is for
a fixed allocation strategy u = 0.5; (b) Q and auxiliary variables.
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5 Allocation of Air Assets

We also considered several problems about the allocation of air assets. In each of these
cases, we merely state the problem and give a mathematical formulation, but we have
not attempted to solve these problems.

5.1 Mission strategy

Firstly, we look at the problem of allocating resources to two different missions: a
search and rescue mission and a troop deployment mission. The former mission requires
intelligence gathering from a high level aircraft and then extraction using a helicopter.
The latter also requires the intelligence gathering and then deployment using a helicopter.
The success of each mission depends on whether the enemy intervenes.

We supposed that the surveillance aircraft detects enemy forces with a certain probability,
μ1 say, and is shot down/forced away by enemy fighters with probability sp per minute
of flight. Intelligence becomes inaccurate at the rate χ per minute.

The helicopter has a probability of being shot down of sh,1, unless they’ve been told that
there are enemy forces in the area, in which case they fly more stealthily and have a
probability sh,2 < sh,1 of being shot down.

We also need to have a model for how the enemy forces react to the presence of our
forces. We suppose that the enemy are in a given area with probability r and if our
forces get detected then this probability goes up with time as r + (1− r)t/(φ + t) where
φ is a measure of the time it takes for enemy forces to mobilise.

Given positions xr,d of the rescue and drop off points respectively, the velocities va,h

of the aircraft and helicopter respectively, and the initial positions ya,h of the aircraft
and helicopter respectively, our question is to determine what the best strategy is for
ensuring that both missions are a success.

5.2 Assignment problem

The second problem concerns the assignment of multiple assets to missions. We suppose
that missions Mi need hi helicopters and pi planes to succeed. (Failure is deemed certain
if insufficient aircraft arrive at the scene of the mission.) The air commander has a good
feel for how long each mission will last. For helicopters and planes respectively, this
time is th,p

i , drawn from normal distributions with (commander dependent) mean T h,p
i

and standard deviation Σh,p
i . Given a total number of helicopters H and planes P, and

missions arriving randomly but with priorities (on some scale), the question is how to
minimise the risk and get all the missions completed successfully, if we allocate Hi ≥ hi

helicopters and Pi ≥ pi planes. With probabilities of being shot down sh and sp per
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minute, the failure probability (and hence the risk) for mission i is

R = 1−
[

Hi−hi∑
k=0

Hi! (1 − sh)
t(Hi−k) (1 − (1 − sh)

t)
k

k!(Hi − k)!

] [
Pi−pi∑
k=0

Pi! (1 − sp)
t(Pi−k) (1 − (1 − sp)

t)
k

k!(Pi − k)!

]
.

(27)
As an example, suppose we say that an acceptable risk level is 0.05, that we need 10
helicopters, no planes, the mission is to last 10 minutes and the probability of being shot
down is 0.01. We show a plot of the risk for various allocations of helicopters in figure
9. We can see that in this example the commander should assign 13 helicopters to get

10 11 12 13 14 15

0.2

0.4

0.6

0.8

1
R

Hi

Figure 9: Graph showing the risk level against allocation of
helicopters

his risk below the threshold required.

For multiple missions with the constraints on the aircraft as above, we have to consider
an appropriate programming problem, using the building blocks described above.

6 Conclusions and recommendations

This report has explored the problem of resource allocation, outlining how, in this
simplified case, an optimal control model can be used to assess the balance between
immediate direct investment in the armed services and the longer term research
investment required to maintain sufficient quality in the future. We showed two
approaches: a direct calculation and iteration approach, and one using optimal control.
We showed that strategic investment into research produced a service with a higher
quality. Further work on the optimal control problem has been carried out in Pitcher
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[3]. Of course, we have picked the simplest forms for all of the terms in our model. The
proper forms could be chosen by fitting with data, using studies such as [2]. The final
goal of this work should be to couple the allocation B by the Treasury into the problem
by making it depend on Q. Various strategies could be considered (eg increasing spend
to failing parts of the armed forces, shutting down a service if it repeatedly has low
quality2). The allocation that will be given to the Minister in the future is uncertain,
and so the models would also need to be extended to stochastic versions.

We have also laid out the groundwork for studies of allocation of air assets to various
missions. Simulations would be required in order to take these models forward.

Scientifically, this problem has inspired work in an area of optimal control where the
extant literature has little to say.
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