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1 The Dstl aggregation problem

Dstl examines battle simulations based on stochastic evolution codes. One such code,
known as SIMBAT (SIMple BATtle program) models the evolution of the battle as a
sequence of turns in which the two sets of combating units move in a landscape. The
units have objectives and act accordingly, they can acquire enemy units if lines-of-sight
in the landscape permit this, and they can fire upon and disable enemy units with a
certain probability. Based on the setting of a large number of parameters, and also on
the outcome of pseudo-random decisions and engagements made in the course of the
action, a final outcome of the battle is achieved. Figure 1 shows a SIMBAT screenshot.

Figure 1: Screenshot from a SIMBAT battle. The setting is that of
a ‘standard’ battle (see below).

The problem posed to the Study Group is the following: Is it possible to analyse and
subsequently calculate a battle in terms of smaller subunits which can then be aggregated
into the whole in a systematic fashion? This could potentially speed up the processing
of a large number of simulations.

2 The concept of effective zones

Asked for a specific test example, Dstl pointed to what will be referred here to as a
‘standard battle’. Two sets of units are to move and engage on an otherwise featureless
rectangle as in Figure 2. The objective for the Blue units is to reach the point marked
X. The objective for the Red units is to prevent this from taking place.
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X

Figure 2: A ‘standard’ battle: Blue vs Red. The objective for Blue
is to reach the point marked X. The objective for Red is to prevent
that.

The tactic for Blue is to first initiate a diversion along one side of the rectangle (say the
bottom side), followed then by a main charge along the opposite side, against the now
(presumed) displaced defensive force of Red, as in Figure 3.

X

2:Charge

1:Fix

Figure 3: Tactics for the ‘standard’ battle.

In the spirit of reducing complicated statistical mechanics problems using mean-field
theories, the Study Group introduced a concept of aggregation units as effective zones,
as in Figure 4. Each zone is a part of the battle (not necessarily topologically connected,
or in other words, not geographically continuous) in which one can identify a behaviour
simple enough to be modelled by a set of (ordinary, deterministic) differential equations.
For the standard battle, it suffices to consider 4 zones: Zone 1 which describes the
‘charge’ effort, Zone 2 which describes the ‘fix’ effort, Zone 3 which describes the defence
against the ‘fix’ effort and Zone 4 which describes the defence against the ‘charge’ effort.

A small number of continuous variables describe the essential properties of each
aggregation unit, and coupled differential equations describe the dynamics taking place
between the zones. For example, the variable MB1 describes the ‘mass’ of Blue forces in
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Figure 4: Effective Zones: the entire combat region is partitioned
into a small number of zones each of which contains well defined
activity by all groups. The ‘standard’ battle contains four such
zones.

Zone 1, and the evolution of this variable is coupled to the variable MR4 describing the
mass of Red forces in Zone 4. The simplest type of equation gives the rate change (loss)
of MB1 as proportional to the product of MB1 and MR4:

ṀB1 = −k41PR4B1MR4MB1 (1)

where k41 is a positive constant describing ‘combat efficiency’ and PR4B1 is an auxiliary
dynamical variable describing the ‘perceived strength’, i.e. the strength of the Red forces
in Zone 4 as perceived by the Blue forces in Zone 1. Equation (1) is different from the
standard Lanchester equations, but this is because Blue wants to get mass out of Zone 1
and into Zone 4. More general equations can be devised to incorporate alternative tactics
or to illuminate particular issues of interest.

The combined system of ODEs describing MB1, MB2, MR3 and MR4, as well as PB1R4,
PR4B1, PB2R3 and PR3B2, is now:

ṀB1 = −K41(PR4B1,MR4,MB1) (2)

ṀB2 = −K23(PR3B2,MR3,MB2) (3)

ṀR3 = −K32(PB2R3,MR3,MB2)

−T34(MR3,MR4)MR3 + T43(MR3,MR4)MR4 (4)

ṀR4 = −K41(PB1R4,MR4,MB1)

+T34(MR3,MR4)MR3 − T43(MR3,MR4)MR4 (5)

ṖB1R4 = c11(1 − PB1R4) − r11Θ(PB1R4MR4 − MB1) (6)

ṖB2R3 = c22(1 − PB2R3) (7)

PR4B1 = PB1R4 (8)

PR3B2 = PB2R3. (9)

Here T34(MR3,MR4) = Θ(MR3 − 2MR4)e34 and T43(MR3,MR4) = Θ(2MR4 − MR3)e43

involve the Heaviside function Θ and reflect the instantaneous troop ‘masses’ in zones 3
and 4. The function Kab is taken to be simply Kab(Pab,Ma,Mb) = kabPabMaMb.
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The parameter cab measures the rate of approach of troops in line-of-sight (related to
troop movement), the parameter eij measures the rate of troop exchange between zones i
and j, and the parameter rij denotes the rate of withdrawal of the troops in line-of-sight
from zone i to zone j.

3 Dynamics of aggregation variables

The model (2-9) was implemented as a MATLAB routine and the solution curves examined.
Figure 5 shows the output of two distinct simulations. In one, the parameters are set
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Figure 5: Evolution of troop ‘masses’ according to system (2–9)
and parameters such that Red wins (above) or Blue wins (below).

so that Red wins, in the the other the parameters are set so that Blue wins. It is even
possible to set parameters so that no one wins (i.e. both mass functions go to zero) as
in Figure 6.
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Figure 6: Parameters set to values so that no one wins: both masses
go to zero.

4 Adding logistic units

To see how well this concept permits an increased level of detail, we added to the simple
battle the further structure that a part of the blue force in, say, Zone 1 acts as a ‘logistic’
unit, in the sense of supply troops which will increase the combat effectiveness of friendly
troops (through supplies) but do not actively partake in battle.

This logistic unit is described by a new dependent variable MB1L, and the ODE system
is augmented accordingly:

ṀB1 = −K41(PR4B1,MR4,MB1) (10)

ṀB1L = −K41L(PR4B1L,MR4,MB1,MB1L) (11)

ṀB2 = −K23(PR3B2,MR3,MB2) (12)

ṀR3 = −K32(PB2R3,MR3,MB2)

−T34(MR3,MR4)MR3 + T43(MR3,MR4)MR4 (13)

ṀR4 = −K41(PB1R4,MR4,MB1,MB1L)

+T34(MR3,MR4)MR3 − T43(MR3,MR4)MR4 (14)

ṖB1R4 = c11(1 − PB1R4) − r11Θ(PB1R4MR4 − MB1) (15)

ṖB1LR4 = c11L(cL − PB1R4) − r11LΘ(PB1R4MR4 − MB1) (16)

ṖB2R3 = c22(1 − PB2R3) (17)

PR4B1 = PB1R4 (18)

PR4B1L = PB1R4L (19)

PR3B2 = PB2R3. (20)

The mass of the logistic Blue unit in Zone 1 has a rate change which is a function of the
perceived strength of opposing forces (we could assume that a large perceived strength
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will act to increase the mass of logistic troops), and also a function of relevant troop
masses.

Also, a variable PB1LR4 is introduced — the perceived strength of the logistic Blue units
in Zone 1 as perceived by the opposing Red forces in Zone 4. The change of this variable
is related to the perceived strength of regular B1 troops. Notice that a sufficiently large
value of the MR4 variable will act through the Θ-function to decrease the PB1LR4 variable.

5 Stochastic generation of combat effectiveness

In the initial model we made an extremely simple assumption for the Combat
Effectiveness (CE) functions Kab(Ma,Mb, Pab, Pba): that they were linear in all variables.
Fortunately Kab can be calculated from the average of quick ab initio stochastic
simulations of skirmishes involving Ma troops on one side and Mb on the other. Here we
take the most simple approach assuming that each troop on each side gets one shot at
all enemy troops with a probability p = p0Pab. If we average the difference of the initial
troop numbers and those left standing after one round of shooting we end up with a CE
function which can be parameterised in Ma,Mb,Pab and Pba.

A test of such a system with p0 = 0.3, Pab = Pba and Ma and Mb ranging from 1 to 6
gives a fitted CE function

Kab(Ma,Mb, Pab) = (2 − Pab)(0.90 + 0.17Ma)(0.40 − 0.04Mb)PabMaMb (21)

which can be substituted into the ODEs.

In general, care needs to be taken with time-scales and general behaviour. We could take
the time-scales into account by a simple premultiplying factor which can be adjusted to
simulate different levels of combat strength for these basic runs. However, this should
not be taken as a viable technique for real simulations.

6 Can the model deal with complex sensitivities?

When we run focussed stochastic analysis to assess the combat effectiveness function on
parameters Ma and Mb, we discover a region of high gradient within the CE function.
We would need to produce more fine-grained runs around the sharper areas to produce
appropriate (nonsmooth) representations of Kab. An example of what such a CE function
might look like is shown in Figure 7.

7 Making a stochastic calculation

It seems reasonable to assume that the greatest effect of randomness will be in the
outcome of battle situations. Particularly in cases where Kab is highly sensitive to

F-7



1
2

3
4

5
6

1

2

3

4

5

6
0

0.2

0.4

0.6

0.8

1

M1

Highly sensitive CE function

M2

Figure 7: Example of a sensitive Combat Effectiveness function.

variations in Ma or Mb in some region, the global effects can vary strongly on minor
variations.

One possible way to model this is through the use of stochastic effective Ma, Mb and Pab

in the function itself. As an example we would apply

Ṁa = −Kab(M̃a, M̃b, P̃ab) (22)

where

M̃a = Ma(1 + vMaξMa) (23)

M̃b = Ma(1 + vMaξMb
) (24)

P̃ab = Pab(1 + vPab
ξPab

) (25)

and where the ξs are random values taken from a normal distribution. We have tested
this case for our simulations and found good robustness in the evolution of the variables.

8 Summary

We have developed a method for building a combat simulation from elements that can
be aggregated into larger simulations. The central idea is to define units of the battle
(‘effective zones’) whose state can be specified through a collection of variables. These
variables, which can be continuous or discrete, and can correspond both to physical
quantities like number of troops or to nonphysical quantities like combat effectiveness,
then evolve governed by a system of coupled (typically nonlinear) ordinary differential
equations.
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Thus, instead of performing a real time ‘turn-by-turn’ simulation, a coarse-grain model
is set to evolve much like a chemical reaction. An obvious disadvantage is the loss
of detailed information about the evolution of small-scale parts of the battle. On the
other hand, a coarse-grained simulation of effective zones will evolve exponentially fast
to steady-state outcomes.

In this report we have tested the concept of effective zones on a ‘standard’ battle scenario,
and demonstrated both that realistic features emerge from the model and that the
simulation is rapid. We have further demonstrated that models of this nature can
be aggregated into larger units, or be made more detailed by including and coupling
additional variables. Finally we have shown than one can mix elements of stochastic
behaviour into the model to make it more realistic.

Modelling combat situations with aggregation via differential equations offers a number
of advantages. It is quick and can be shown to fit results from simulation models. By
isolating the parameters of interest, it is possible to arrive at a better understanding of the
parameter space. A good modelling strategy would use simulation models alongside more
mathematical models discussed here since this plays to the strengths of both approaches.
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