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1 Introduction

The adhesive interactions between adhesive soft solids covered with viscoelastic film are
crucial for a number of problems related to biological systems like cell adhesion and
mucoadhesion. The mucoadhesive interactions are of particular interest to Unilever
since most Unilever products interact with mucosa substrates in some way. Foods
and beverages interact with oral mucosa including salivary films; this interaction
influences taste, mouthfeel and flavour release. Further down the gastrointestinal tract
mucoadhesive interactions condition nutrition uptake and to a certain extent enable
food digestion. In oral care products mucoadhesion is an important aspect of products’
functionality.

Generally mucoadhesion can be described as an interaction of solid or semisolid particles
or even liquid droplets with a mucosa substrate that can be defined as a “thick”
(about 0.1–200 µm) proteinaceous film. Such adhesive interaction is different from the
interaction with solid surfaces, even soft ones. The complexity stems form the fact that
several contributions can be identified within the adhesive contact or during rupture of
such an adhesive contact, including

(1) the adhesive force;

(2) the extension of the viscoelastic film that leads to the formation of one or several
filaments and their subsequent necking failure;

(3) interfacial tension effects (usually small due to low interfacial energy between two
water-based phases, e.g. bound and unbound layers) that lead to a capillary effect;

(4) the viscoelastic deformation of the substrates and soft bodies.

1.1 Motivation for theoretical analysis

In many instances it is required to perform an in-vitro assessment of the mucoadhesive
properties of materials that are subject to a screening assay. One of the screening
methods is a pull-off test using the AFM. The result of the test is a graph of force against
indentation and separation. In the experiment one can vary the speeds of approach and
retraction, applied load, dwell time, geometry of interacting surfaces, solvent etc.

The graph of force against separation combines all the effects listed above and does not
allow the direct extraction of the parameters of interest, e.g. the extensional viscosity
of the proteinaceous mucosa layer or the thickness of this layer. Even the adhesive
energy between the mucosa itself and the probe is not measured directly. Since pull-
off measurements are dynamic, the whole process can be described using differential
equations, some of which are non-linear.

Therefore from Unilever’s point of view the main purpose of the theoretical analysis is to
establish a method for extracting the parameters of interest from fitting and modelling of
an experimental force-separation curve, provided that the theoretical model is adequate
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for the given experimental conditions. In addition, the theoretical model could provide
some physical insights into which contributions are dominating the interaction.

Unilever hopes that the theoretical analysis of a force curve should provide following
information:

• adhesive energy (for each of the interfaces — substrate1/film1, film1/film2,
film2/substrate2);

• elastic parameters of the viscoelastic substrate;

• viscoelastic parameters of a thin polymer or proteinaceous film adjacent to a
viscoelastic substrate;

• thickness of this thin polymer or proteinaceous film.

Unilever’s overall aim is to develop a single assay test for mucoadhesive interaction,
without needing separate experiments to disentangle the various contributions.

1.2 Definition of the problem and experiment

Consider two cases; (i) a viscoelastic solid sphere interacting with a flat mucosa substrate;
and (ii) an elastic solid sphere coated with a viscoelastic polymer layer of thickness d
interacting with a mucosa substrate. Both cases are illustrated in Figure 1.

 Figure 1: (i) a sphere interacting with a flat mucosa substrate; (ii) a sphere coated with
a viscoelastic polymer of thickness d interacting with mucosa substrate.

The experiments conducted by Unilever suggest that the rupture of the adhesive coating
happens in two stages. The first stage is hypothesised to be a rupture of a true
adhesive contact, followed by a second stage that is due to the stretching of the polymer
or proteinaceous filament. One has to consider also a number of physicochemical
phenomena such as hydrodynamic drag, time-dependent adhesion, nonlinear load-
dependent adhesion as well as capillary adhesion aggravated by elasto-capillary balance
and necking failure. A schematic illustration of rupture, together with a corresponding
force curve are presented in Figure 2.

The time-dependent contact adhesion effects are related to the dynamics of the polymer
chains in the gap between the surfaces. The nonlinear load effects stem from the fact
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Figure 2: Force-separation curves during approach and retraction.

that the contact adhesive interaction can vary across the contact area following the non-
uniform stress distribution; in this way polymer properties that are highly susceptible
to the pressure or stress lead to a radial distribution in adhesive energy as well as a
dependency on applied load. The elasto-capillary force arises from the extension of the
viscoelastic polymer bridge that has been formed during the contact.

2 Outline description of experiment and model

The pull-off experiment is illustrated in Figure 3. The nominal separation between the
base of the sphere and the substrate is

S = X −∆− 2R, (1)

where X is the controlled distance of the substrate below the equilibrium position of the
cantilever tip, ∆ is the deflection of the cantilever tip, and 2R is the diameter of the
sphere. The actual minimum separation h0 between the bottom of the sphere and the
substrate will be altered from the nominal separation S by the amount of any elastic
compression of the sphere and substrate,

h0 = S + ∆sph + ∆sub. (2)

The cantilever is assumed linear so the upwards force exerted by the cantilever on the
sphere is F = k∆. We shall mostly be considering the retraction phase, during which
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Figure 3: Schematic diagram of pull-off experiment.

∆ > 0 and F > 0 so that the mucus layer is in tension. Note though that the force
plotted by Unilever has the opposite sign to our F , so it is positive during the approach
phase and negative during retraction. Although Unilever’s question is about the inverse
problem (given the force-separation curve, what are the material properties) we start
with the forward problem of determining the curve if we knew the material parameters.

Figure 4 shows how the force-separation curve arises from the basic regimes of the
experiment. During the approach phase, there is initially no force, until the sphere
enters the mucus layer. Once it enters, the force is non-zero, and as the substrate is
raised the cantilever deflects and the force increases. Then during the retraction phase,
the sphere pulls some mucus off the substrate. There is initially a thin layer of mucus
between the sphere and substrate, and a lubrication flow of mucus to fill the opening
gap. Then as that gap opens wider, one or more filaments of mucus will link the sphere
to the substrate. As the gap opens further still, those filaments will break and the force
then returns to zero.

3 Mathematical models and assumptions

The forces acting on the sphere will arise from six causes, as illustrated in Figure 5:

(1) viscous drag on the sphere in the surrounding water,
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Figure 4: The different stages experiment corresponding to the different parts of the
force-separation curve, in the case of no adhesion.

(2) the elastic force from the deflected cantilever,

(3) the viscoelastic squeeze film in the thin gap between the sphere and the base (which
may perhaps be subject to cavitation),

(4) adhesion between the sphere and the base by electrostatic and van der Waals forces,

(5) elastic deformation of the sphere and base,

(6) the viscoelastic filament or filaments of material that are formed when the gap
opens up.

The first of these, viscous drag in the water, turns out to be negligible when we estimate
the Stokes drag 6πµRU , and so it will be dropped from now on. The elastic force
we model by a simple linearly elastic beam F = k∆. The viscoelastic squeeze film is
discussed in Section 4. The adhesion forces were not analysed in detail but we comment
on them in Section 7. The elastic forces give displacements ∆sph and ∆sub that are
estimated to be small, so these were neglected. The viscoelastic filament is studied in
Section 5.

When there is no adhesion, one natural lumped parameter model is to think of the
force between the sphere and the base as the sum of one term from a lubrication layer
and one from a filament. Modelling a lubrication layer with a nonlinear viscoelastic
material leads to difficulties that are addressed in Appendix A but which have not been
pushed through to a predictive equation yet. However, we do present the analysis for
a Newtonian lubrication layer in Section 4.1, and for a linearly viscoelastic material in
Section 4.2. Modelling a nonlinear viscoelastic filament is possible with the FENE-
P model of nonlinear viscoelasticity, which is believed by Unilever to be a realistic
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Figure 5: Forces on the sphere

representation of the properties of the mucus. This analysis is given in Section 5. The
combination of these then gives results that are presented in Section 6. Finally, our
conclusions and various issues where we made initial explorations but have not completed
the analysis are summarized in Section 7.

4 Lubrication layer

The squeeze film can be modelled most simply by treating the fluid as Newtonian, and
this is carried out in Section 4.1. Alternatively a viscoelastic model can be used and this
is treated in Section 4.2.

4.1 Newtonian

We here calculate the force exerted when a rigid sphere of radius R is pulled off a rigid
plane base covered with a layer of thickness d (d � R) of Newtonian fluid of viscosity µ.
We shall let h0(t) denote the separation of the sphere from the plane, so that when h0 is
small we have the situation illustrated in Figure 6. When the sphere is initially pushed
into the fluid film of thickness d, the radius of the wetted area of the sphere is of order
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Figure 6: Viscous squeeze film before separation.

a =
√

2dR and so the corresponding volume of fluid in the film is

V = πa2d = 2πd2R. (3)

Part (about half) of this fluid is still contained in the gap between the sphere and the
plane and the rest is pushed up into a collar around the contact roughly as illustrated.
In the initial phase of separation illustrated on the left of Figure 7 when h0 � d, the
main forces come from a region with radius of order

√
2h0R and so the sphere can be

approximated by a paraboloid and the squeeze film thickness at radius r from the vertical
axis of symmetry is h = h0 + r2/2R. This approximation leads to the force required to
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Figure 7: The spherical and planar regimes of the inverse squeeze film during separation.

separate the sphere from the plane being (in the lubrication approximation)

Fl =
6πµḣ0R

2

h0

. (4)

Later in the separation, we enter the planar regime illustrated on the right of Figure 7
where we assume that the volume V of fluid forms an approximately cylindrical region.
Applying the lubrication approximation again we obtain the force in the form

Fl =
6πµḣ0d

4R2

4h5
0

. (5)

Combining (4) and (5) into a single equation that takes these forms when h0 � d and
h0 � d respectively, we approximate the force by

Fl =
6πµḣ0R

2

h0

(
d4

4h4
0 + d4

)
. (6)
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4.2 Viscoelastic squeeze film

Figure 8: Circular cylinder pulled out of a viscoelastic squeeze film.

When the fluid is treated as a linear viscoelastic Maxwell fluid, rather than Newtonian,
the force can be calculated for a circular cylinder pulled out of a fluid layer, to obtain
the differential equation for gap width h(t) corresponding to a given applied force F (t).
The situation is illustrated in Figure 8. The fluid model takes the form

σ + De σ̇ = γ̇, (7)

where De is the Deborah number (defined in detail later). For De � 1, one can do a
perturbation analysis leading to a differential equation for film height h(t), for the given
pulling force F (t):

F (t) =
aḣ

h3
−De

(
ḧ

h3
− 33ḣ2

10h4

)
+ O(De2). (8)

For a constant force F , the separation h tends to infinity in finite time.

5 Nonlinear viscoelastic filament

We now derive the equations for a slender viscoelastic filament when the constitutive
law for the material is the FENE-P model (finite extension nonlinear elasticity, with
Peterlin’s closure assumption). The governing equations are

• Conservation of mass:
∇ · u = 0. (9)

• Force balance (for slow flow):

−∇p +∇ · τ tot = 0. (10)

• FENE-P constitutive equations for the stress tensor:

τ tot = τ s + τ , (11)

τ s = ηsγ̇, (12)

Fτ + λ
O
τ − D

Dt

(
ln (F )

)(
λτ +

b

b + 2
ηpI

)
=

b

b + 2
ηpγ̇, (13)

F = 1 +
3

b

(
1 +

λ

3ηp

Tr(τ )

)
, (14)

γ̇ = ∇u + (∇u)T . (15)
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In these equations, the four parameters are taken to have values given by Unilever:

ηp = 0.68 Pa s, ηs = 1.5× 10−3 Pa s, λ = 252 s, b = 50. (16)

We now wish to nondimensionalize these for extensional flow of a slender filament, so we
let L be the filament length, εL its radius, and scale the quantities accordingly:

z = Lẑ, r = εLr̂, u = (ur, uθ, uz) = U(εû, 0, ŵ), t = L
U t̂, (17)

(p, τzz, τrr, τθθ, τrz) =
ηpU
L (p̂, τ̂zz, τ̂rr, τ̂θθ, ετ̂rz). (18)

At leading order (and dropping theˆs) we then have conservation of mass in the form

∂u

∂r
+

u

r
+

∂w

∂z
= 0. (19)

and the force balance

∂p

∂r
=

∂τrr

∂r
+

τrr − τθθ

r
+ β

(
1

r

∂

∂r

(
r
∂u

∂r

)
− u

r2

)
, (20)

0 =
β

r

∂

∂r

(
r
∂w

∂r

)
, (21)

and the constitutive equations

Fτrr + De

(
Dτrr

Dt
− 2τrr

∂u

∂r

)
=

(
De τrr + α

) D

Dt
(ln(F )) + 2α

∂u

∂r
, (22)

Fτzz + De

(
Dτzz

Dt
− 2τrz

∂w

∂r
− 2τzz

∂w

∂z

)
=

(
De τzz + α

) D

Dt
(ln(F )) + 2α

∂w

∂z
, (23)

Fτθθ + De

(
D

Dt
τθθ − 2τθθ

u

r

)
=

(
De τθθ + α

) D

Dt

(
ln(F )

)
+ 2α

u

r
, (24)

(De τrr + α)
∂w

∂r
= 0, (25)

where

F = 1 +
3

b

(
1 +

De

3
(2τrr + τzz)

)
. (26)

In these equations, the Deborah number De and the two other dimensionless parameters
are

De =
λU

L
, β =

ηs

ηp

, α =
b

b + 2
. (27)

The usual kinematic and zero traction boundary conditions then give

∂w

∂r
= 0, u = −r

2

∂w

∂z
, τrr = τθθ = p. (28)
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Conservation of mass and force balance reduce to

(R2)t + (R2w)z = 0, (29)

R2(τzz − τrr) + 3βR2∂w

∂z
+ ΓR = T (t), (30)

where T (t) is the tension in the filament (as in the Trouton model).

The constitutive laws become

Fτzz + De

(
Dτzz

Dt
− 2τzz

∂w

∂z

)
= (De τzz + α)

D

Dt
(ln(F )) + 2α

∂w

∂z
, (31)

Fτrr + De

(
Dτrr

Dt
+ τrr

∂w

∂z

)
= (De τrr + α)

D

Dt
(ln(F ))− α

∂w

∂z
. (32)

It is now convenient to transform to Lagrangian coordinates, so we let

ζ =

∫ Z(ζ,t)

0

R2(z, t) dz, R(Z(ζ, t), t) = R̃(ζ, t), etc. (33)

When we drop the s̃ we obtain

∂w

∂ζ
=

∂

∂t

(
1

R2

)
, (34)

T (t) = R2

(
τzz − τrr + 3βR2∂w

∂ζ

))
, (35)

Fτzz + De

(
∂τzz

∂t
− 2R2τzz

∂w

∂ζ

)
= (De τzz + α)

∂

∂t
(ln(F )) + 2αR2∂w

∂ζ
, (36)

Fτrr + De

(
∂τrr

∂t
+ R2τrr

∂w

∂ζ

)
= (De τrr + α)

∂

∂t
(ln(F ))− αR2∂w

∂ζ
, (37)

with

l(t) = w(1, t) =

∫ 1

0

dζ

R(ζ, t)2
. (38)

Note that ∂Z/∂t = w.

Assuming now a uniform filament thickness R = R(t), l(t) = 1/R(t)2, we have

T (t) = R2

(
τzz − τrr + 3βR2 d

dt

(
1

R2

))
, (39)

Fτzz + De

(
dτzz

dt
− 2R2τzz

d

dt

(
1

R2

))
= (De τzz + α)

d

dt
(ln(F )) + 2αR2 d

dt

(
1

R2

)
,(40)

Fτrr + De

(
dτrr

dt
+ R2τrr

d

dt

(
1

R2

))
= (De τrr + α)

d

dt
(ln(F ))− α

d

dt

(
1

R2

)
, (41)

where

F = 1 +
3

b

(
1 +

De

3
(2τrr + τzz)

)
. (42)
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Some numerical results from this model have been obtained by taking

b = 50, β =
0.0015

0.68
, De = 80. (43)

The total tension during an extension, and the contributions of polymer and solvent to
that total are shown in Figure 9. The behaviour of τrr and τzz during the extension are
shown in Figure 10.

In summary, this analysis of a FENE-P extensional filament is intended to model the
later stages of the experiment when the sphere is connected to the substrate by a slender
viscoelastic filament. However, we find that the force is only of correct order of magnitude
if the thread volume is more than is suggested by the simple volume calculation (3). This
suggests that the process by which the squeeze film sucks additional fluid into the contact
region is important. Further important open questions include stability and pinch off.
The early stages of the pull-off are perhaps better dealt with using the theory of the
Maxwell viscoelastic inverse squeeze film.

6 Lumped parameter model

When we put together the lubrication force Fl from (6) and the filament force Ff = T
from (39) and impose a steadily increasing applied separation V t we have

k∆ = k(V t + h0(0)− h0) = F = Fl + Ff . (44)

Letting
ĥ0 = h0/h0(0), t̂ = V t/h0(0), (45)

and then immediately dropping the ,̂ we may write

c(t + 1− h0) =
ḣ0

h0

d4

h4
0 + 1

4
d4

+
2ε2

3πβ

1

h0

(
τzz +

3β

h0

ḣ0

)
, (46)

where

c ≡ 2kε2

3πµsV
, ε ≡ h0(0)

R
(47)

and all other parameters are as defined in Section 5. In the one-dimensional
approximation used here, the viscoelastic model of Section 5 (equation (40)) shows that
τzz evolves according to

Fτzz + De

(
τ̇zz −

2

h0

ḣ0τzz

)
=

(
Deτzz +

b

b + 2

)
Ḟ

F
+

2b

b + 2

ḣ0

h0

, (48)

where F is given in (42). The coupled ordinary differential equations (46) and (48) can
easily be solved numerically to give h0 and τzz as functions of time. These yield force-
separation curves, an example of which is shown in Figure 11 using the representative
data given in Appendix B and c = 0.5, d = 20 and ε = 0.047. There was considerable
uncertainty and confusion during the Study Group as to what the real values of these
last three parameters were for the available experimental data. If Unilever could have
provided a checked data table, that would have been a great help.
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Figure 9: Nonlinear viscoelastic extension of a FENE-P filament. Contributions of
polymer and solvent to the tension (top left and right). Total tension plotted against
separation on linear (bottom left) and logarithmic (bottom right) scales.
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7 Conclusions and further work

The modelling here has put together a linear model for the squeeze film and a fully
nonlinear (FENE-P) model for the filament to produce a lumped parameter model for
the AFM that has response curves agreeing with measurements. The more difficult
nonlinear model of the squeeze film has been opened up by the analysis in Appendix A
and is ready to be taken further.

The elastic and adhesive forces were not studied in much detail, but there is some
information available that could be used to work on these.

The standard (Hertz) theory of elastic contact implies that the elastic deflections of a
glass sphere and substrate would be small compared to the other deflections involved.
However, for a softer substrate that will obviously change considerably and should be
analysed again.

The electrostatic data supplied is listed in Appendix B. For the adhesive case, the
resulting electrostatic force between a rigid sphere coated with chitosan and plane
substrate coated with polyelectrolyte can then be calculated. It does not appear to
be as great as the apparent adhesive force observed in some of the experiments. This is
presumably due to the fact that the elasticity of the materials enables close contact to
be achieved over a larger effective area than for rigid bodies.

A Nonlinear squeeze film analysis

As mentioned earlier the analysis of a fully nonlinear squeeze film has been begun but
not carried through to its final conclusions. We present in this section what has been
done. The main message is that the stress field is dominated by a slowly relaxing elastic
model, in which the strains may be approximated using the thinness of the layer. It is
not clear how to take the analysis here much further analytically, but numerical studies
with realistic parameter values could be illuminating.

A.1 Introduction

In each of the squeezing, retraction and final filament extension phases of the process,
motions may be treated as axisymmetric (although stability may be an issue during
retraction and inward radial flow). Unilever are trying to determine parameters within
a FENE-P model with parameter λ (a relaxation time) ≈ 250 secs. Moreover, it appears
that during much of the deformation process, (visco-)elastic stresses predominate over
viscous stresses in determining the deformation and flow field. Even with dimensions
suggesting a squeeze-film analysis, familiar parabolic distributions of velocity are
inappropriate. The following treatment is offered as a step towards developing a thin
film analysis.
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A.2 The FENE-P model

The constitutive equation for the Cauchy stress σ̄ is taken as

σ̄ = τ tot ≡ −p̄δ + ηs[∇u + (∇u)T ] + τ̄ , (49)

where u is the velocity, δ is the unit tensor, T denotes a transpose, p is a hydrostatic
pressure and ηs a viscosity (bars distinguish physical dimensional quantities from non-
dimensional quantities used later). The contribution τ̄ to the stress evolves with time
according to

F τ̄ + λ

[
τ̄ (1) −

1

F

DF

Dt̄
τ̄

]
=

b

b + 2
ηp

[
∇u + (∇u)T +

1

F

DF

Dt̄
δ

]
, (50)

where b = 50, D/Dt̄ denotes the material (or advective) derivative ∂/∂t̄ + u ·∇ and (1)

denotes the Jaumann derivative defined by

τ̄ (1) ≡
Dτ̄

Dt̄
−
[
(∇u) · τ̄ + τ̄ · (∇u)T

]
. (51)

Both σ̄ and τ̄ are symmetric and the scalar F is given by

F ≡ 1 + b−1[3 + (λ/ηp) Tr τ̄ ] . (52)

We observe that since δ(1) = −[∇u + (∇u)T ], a balance between the bracketed terms
on the left- and right-hand sides of (50) (perhaps relevant on time scales short compared
to λ) is provided by τ̄ = −(αηp/λ)δ, where α ≡ b/(b + 2) ≈ 0.96.

However, equation (50) may be analysed in greater generality by using Lagrangian
coordinates as follows in section A.3.

A.3 Time-evolution of τ̄

Let x̄i (i = 1, 2, 3) denote Eulerian coordinates and X̄J (J = 1, 2, 3) denote Lagrangian
coordinates, so that a deformation X̄→ x̄(X̄, t̄) has velocity u and deformation-gradient
tensor F with components ui ≡ ∂x̄i/∂t̄ and FiJ ≡ ∂x̄i/∂X̄J , respectively. Then,

ḞiJ ≡
∂

∂t̄

(
∂x̄i

∂X̄J

)
=

∂ui

∂X̄J

=
∂ui

∂x̄k

∂x̄k

∂X̄J

, (53)

or

Ḟ = (∇u) · F , so that ḞT = FT · (∇u)T , where ˙≡ D

Dt̄
. (54)

Now, write τ̄ ≡ F · T̄ · FT , so that T̄ = F−1 · τ̄ · (FT )−1 is the second Piola stress and
is symmetric. This gives

Dτ̄

Dt̄
= Ḟ ·F−1 · τ̄ +F ·DT̄

Dt̄
·FT + τ̄ ·(FT )−1 ·ḞT = (∇u) · τ̄ + τ̄ ·(∇u)T +F ·DT̄

Dt̄
·FT (55)
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so that
DT̄

Dt̄
= F−1 · τ̄ (1) · (FT )−1 . (56)

Using the observation at the end of section A.2, it is readily confirmed that

D

Dt̄
[F−1 · (FT )−1] = −F−1 · Ḟ(FTF)−1 − (FTF)−1 · ḞT · (FT )−1 (57)

= −F−1 · [∇u + (∇u)T ] · (FT )−1 . (58)

Hence, equation (50) may be rearranged as

λ

(
DT̄

Dt̄
− 1

F

DF

Dt̄
T̄

)
+ F T̄ = −αηp

(
D

Dt̄
[G−1]− 1

F

DF

Dt̄
G−1

)
, (59)

where G ≡ FT · F is the Cauchy-Green strain, or as

λ
D

Dt̄
(T̄/F ) + αηp

D

Dt̄
[G−1/F ] + T̄ = 0 . (60)

Equation (60) is then an evolution equation for the symmetric stress T̄ at each material
point X̄ = constant, in terms of the history of the (symmetric) Cauchy-Green strain and
of the scalar F . Although F evolves along with T̄ (since equation (52) gives F in terms
of TrF · T̄ · FT ), if the size of b makes F ≈ 1 then equation (60) is much simplified as

DT̄

Dt̄
+ γ

D

Dt̄
G−1 + λ−1T̄ = 0 , (61)

for which the solution may be written as

T̄(X̄, t̄) = γ[δ −G−1(X̄, t̄)]e−t̄/λ +
γ

λ

∫ t̄

0

[G−1(X̄, s)−G−1(X̄, t̄)]e(s−t̄)/λds , (62)

where γ ≡ αηp/λ. However, the JM component of G−1 is ∇X̄J ·∇X̄M , so that, after
defining g ≡ F · FT , this solution (62) may be rearranged for τ̄ in the form

(τ̄ )ij = γe−t̄/λ

{
gij(X̄, t̄)− δij + λ−1

∫ t̄

0

es/λ

[
∂x̄i(t)

∂x̄k(s)

∂x̄j(t)

∂x̄k(s)
− δij

]
ds

}
, (63)

with all positions x̄ evaluated at a fixed particle X̄ = constant. This emphasises that the
current values of the stress components depend upon the history of strain relative to all
earlier configurations (it has been assumed that the material was static and unstressed
for t̄ < 0). Only when the configuration changes on a time scale long compared to λ
can τ̄ be approximated as a function of the current strain rate. Indeed, for changes of
configuration taking place over times � λ, then T̄ ≈ γ(δ −G−1)e−t̄/λ so that the stress
τ̄ is approximated by γ(g−δ)e−t̄/λ, which may itself be approximated for times � λ by
the nonlinear elastic response τ̄ = γ(g − δ). Accordingly, a squeeze film analysis must
involve analysis of displacement gradients as well as of strain rates.
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A.4 Axially-symmetric thin layer deformation

In terms of (physical) cylindrical polar coordinates (r̄, θ, z̄), their Lagrangian equivalents
(R̄, θ, Z̄) and time t̄, the deformation gradient F and Cauchy stress σ̄ for axial symmetry
are (commas denoting partial differentiation)

F = H ·

 r̄,R̄ 0 r̄,Z̄

0 r̄/R̄ 0
z̄,R̄ 0 z̄,Z̄

 ·HT ≡ H ·P ·HT ; (64)

σ̄ = H ·

 σ̄rr 0 σ̄rz

0 σ̄θθ 0
σ̄zr 0 σ̄zz

 ·HT ≡ H · σ̂ ·HT , (65)

where σ̄zr = σ̄rz (i.e. σ̂T = σ̂) and

H ≡

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 with H ·HT = δ . (66)

Then ∇u = H · Ṗ ·P−1 ·HT ,

P−1 =
r̄

R̄

 z̄,Z̄ 0 −r̄,Z̄

0 (R̄/r̄)2 0
−z̄,R̄ 0 r̄,R̄

 (67)

and (r̄,R̄z̄,Z̄ − r̄,Z̄ z̄,R̄)r̄/R̄ = detP = +1.

In the Eulerian formulation, R̄ and Z̄ are treated as functions of r̄, z̄ and t̄ and the
components ū and w̄ of velocity u = ūer + w̄ez are given by

ū = (R̄/r̄)(R̄,z̄Z̄,t̄ − Z̄,z̄R̄,t̄) , w̄ = (R̄/r̄)(R̄,t̄Z̄,r̄ − Z̄,t̄R̄,r̄) , (68)

while, since r̄,R̄ = (R̄/r̄)Z̄,z̄, r̄,Z̄ = −(R̄/r̄)R̄,z̄, z̄,R̄ = −(R̄/r̄)Z̄,r̄ and z̄,Z̄ = (R̄/r̄)R̄,r̄, the
matrices P and P−1 become

P =
R̄

r̄

 Z̄,z̄ 0 −R̄,z̄

0 (r̄/R̄)2 0
−Z̄,r̄ 0 R̄,r̄

 and P−1 =

 R̄,r̄ 0 R̄,z̄

0 R̄/r̄ 0
Z̄,r̄ 0 Z̄,z̄

 . (69)

Writing the (physical) cylindrical polar components of Cauchy stress σ̂ as

σ̂ ≡

 σ̄rr 0 σ̄rz

0 σ̄θθ 0
σ̄zr 0 σ̄zz

 = HT · σ̄ ·H = −p̄δ + ηs[Ṗ ·P−1 + (Ṗ ·P−1)T ] + τ̂ (70)

where τ̄ T = τ̄ with

τ̂ ≡

 τ̄rr 0 τ̄rz

0 τ̄θθ 0
τ̄zr 0 τ̄zz

 = HT · τ̄ ·H so that τ̄ = H · τ̂ ·HT (71)
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satisfies

HT · τ̄ (1) ·H =
Dτ̂

Dt̄
− [Ṗ ·P−1 · τ̂ + τ̂ · (PT )−1 · (Ṗ)T ] . (72)

Just as equation (50) may be interpreted more simply as an equation for T̄ ≡ F−1 ·
τ̄ · (FT )−1, the evolution of cylindrical polar components is best written in terms of
T̂ ≡ P−1 · τ̂ · (PT )−1 = T̂T (such that τ̂ = P · T̂ ·PT ) as

D

Dt̄

(
T̂

F
+ γ(PT ·P)−1

)
+ λ−1T̂ = 0 , (73)

with γ ≡ αηp/λ as before and with F = 1 + 3b−1 + γ−1(τ̄rr + τ̄θθ + τ̄zz)/(b + 2).

A.5 Scalings

For a sphere of radius a squeezing a mucous film of initial radius h (� a), define
h/a = ε2 so that the contact zone has radius comparable with

√
ha = εa = ε−1h ≡ L.

Dimensionless variables are introduced by writing

r̄ = Lr , z̄ = hz = εLz ; R̄ = LR , Z̄ = hZ = εLZ ; t̄ = LU−1t (74)

where U is a typical speed, so that ū = Uu, w̄ = εUw. This rescaling gives

P =

 cZ,z 0 −ε−1cR,z

0 c−1 0
−εcZ,r 0 cR,r

 ; P−1 =

 R,r 0 ε−1R,z

0 c 0
εZ,r 0 Z,z

 , (75)

u = c(R,zZ,t −R,tZ,z) , w = c(Z,rR,t −R,rZ,t) , (76)

where c ≡ R/r = c(r, z, t). These expressions for u and w automatically satisfy the
continuity equation r−1(ru),r + w,z = 0 since incompressibility gives R∂(R,Z)/∂(r, z) =
r.

A.6 Euler equations

Neglect of inertial and body forces yields the equilibrium equations

∂σ̄rr

∂r
+

σ̄rr − σ̄θθ

r
+ ε−1∂σ̄rz

∂z
= 0 (77)

1

r

∂

∂r
(rσ̄rz) + ε−1∂σ̄zz

∂z
= 0 . (78)

Since

Ṗ ·P−1 = HT ·∇u ·H =

 ū,r̄ 0 ū,z̄

0 ū/r̄ 0
w̄,r̄ 0 w̄,z̄

 =
U

L

 u,r 0 ε−1u,z

0 u/r 0
εw,r 0 w,z

 , (79)
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the stress components given by (70) are

σ̄rr = −p̄ + 2
ηsU

L
u,r + τ̄rr , σ̄rz = σ̄zr =

ηsU

L
(ε−1u,z + εw,r) + τ̄rz , (80)

σ̄θθ = −p̄ + 2
ηsU

L

u

r
+ τ̄θθ , σ̄zz = −p̄ + 2

ηsU

L
w,z + τ̄zz . (81)

Then, using the definitions ηs/ηp ≡ β ≈ 2× 10−3 (i.e. small), De = λU/L, p̄ = ηpp/λ,

(τ̄rr, τ̄rz, τ̄θθ, τ̄zz) = (ηp/λ)(τrr, τrz, τθθ, τzz) and T̂ = (ηp/λ)T yields the equilibrium
equations

∂

∂z
[τrz + ν(ε−1u,z + εw,r)] + ε

∂

∂r
(τrr − p) + ε

τrr − τθθ

r
+ 2εν

∂

∂r

(
1

r

∂(ru)

∂r

)
= 0 , (82)

∂

∂z
(τzz − p + 2νw,z) +

ν

r

∂

∂r
(ru,z + ε2rw,r) +

ε

r

∂

∂r
(rτrz) = 0 , (83)

where ν ≡ βDe. Also, the stress evolution equation (73) becomes

D

Dt

(
T

F
+ α(PT ·P)−1

)
+

1

De
T = 0 . (84)

Motivated by the approximation τ̂ ≈ γe−t/De(P ·PT − δ) (following from (63)) so that

τrr ≈ αe−t/De{c2[(Z,z)
2 + ε−2(R,z)

2]− 1} , τrz ≈ −αe−t/Dec2(ε−1R,rR,z + εZ,rZ,z) ,
(85)

τθθ ≈ αe−t/De(c−2 − 1) , τzz ≈ αe−t/De{c2[(R,r)
2 + ε2(Z,r)

2]− 1} (86)

and the fact that R,r = O(1), these motivate the fact that τrr = O(ε−2) and τrz = O(ε−1)
— the shear strain makes large contributions not only to the shear stress, but also to
the radial stress. This can be seen as a consequence of material rotation, whereby
short material elements initially normal to the layer are substantially lengthened as they
become aligned almost parallel to the layer.

Thus, writing τrr = ε−2srr, τrz = ε−1srz, Trr = ε−2Srr and Trz = ε−1Srz yields the
leading order equilibrium equations

∂srr

∂r
+

∂

∂z

(
srz + ν

∂u

∂z

)
= O(ε) ,

∂

∂z
(τzz − p) +

1

r

∂

∂r
(rsrz) = O(ν, ε) . (87)

The scaled components of second Piola stress evolve according to

D

Dt

(
Srr

F
+ α[(R,z)

2 + ε2(R,r)
2]

)
+

1

De
Srr = 0 , (88)

D

Dt

(
Srz

F
+ α(Z,zR,z + ε2R,rZ,z)

)
+

1

De
Srz = 0 , (89)

D

Dt

(
Tθθ

F
+ αc2

)
+

1

De
Tθθ = 0 , (90)

D

Dt

(
Tzz

F
+ α[(Z,z)

2 + ε2(Z,r)
2]

)
+

1

De
Tzz = 0 , (91)

A-21



while F depends essentially only upon srr, being given by F ≈ 1 + 3b−1 + (ε2α)−1srr.
The connection between srr, srz, τθθ, τzz and Srr, Srz, Tθθ, Tzz is given by(

srr srz

srz τzz

)
= c2

(
Z,z −R,z

−Z,r R,r

)(
Srr Srz

Srz Tzz

)(
Z,z −Z,r

−R,z R,r

)
, τθθ = c−2Tθθ .

(92)
With the approximations Srr ≈ −αF (R,z)

2, Srz ≈ −αFZ,zR,z, Tθθ ≈ αF (e−µ − c2)
and Tzz ≈ αF [e−µ − (Z,z)

2] in which the integrating factor µ for (84) is defined by
Dµ/Dt = F/De, all the contributions srr, srz, τθθ and τzz may be approximated by

srr ≈ αF (RR,z/r)
2e−µ , (93)

srz ≈ −αFR,z(2Z,z + e−µRR,r/r)R/r , τθθ ≈ αF (r2e−µ/R2 − 1) , (94)

τzz ≈ αF{(RR,r/r)
2e−µ − 1} . (95)

Inserting these into equation (87)1, together with expression (76) for u, yields together
with the relation R(R,rZz −R,zZ,r) = r a pair of equations for R(r, z, t) and Z(r, z, t) to
be solved with suitable boundary conditions, such as R = r and Z = 0 at a rigid plane
Z = 0. It is clear that the history of deformations is dominated (at least for times such
that t = O(De)) by a slowly relaxing form of elasticity, rather than by Newtonian viscous
flow. The thin layer approximation yields some simplification to the stress analysis, but
it is as yet unclear that the resulting system may be analysed much further analytically.

However, since β = 2×10−3 the parameter ν = βDe is small for De � 50, which reduces
(87)1 to an equilibrium equation (slightly modified by the time-relaxation e−µ, which
depends upon material coordinates R,Z as well as upon t.).

B Data values used

Some of the values initially given by Unilever for these quantities were changed
substantially during the Study Group week: the values listed here should probably not
be regarded as definitive without further checks. Note also that some of the experiments
presented by Unilever were not for the AFM but for a different piece of equipment, the
“texture analyser”, which does the same sort of thing and produces the same sort of
force-separation curves, but has quite different parameter values.

Mechanical parameters:
R radius of sphere, 10µm
k spring constant of cantilever, 0.7N/m
V retraction velocity in experiment, 360 nm/s
Rheological parameters in FENE-P model of saliva:
b 50
ηs 1.5× 10−3 Pa s
ηp 0.68Pa s
λ 252 s
Electrostatic data supplied:
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potential of bare glass, −40mV
potential of glass coated with polyelectrolyte, −7mV
potential of glass coated with chitosan, +15mV
thickness of adsorbed layer on substrate, 4 nm
thickness of adsorbed layer on sphere, 50 nm
concentration of coating solution, 250 g/l
mass deposited, 10−4 mg/cm2
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