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1 Introduction

There exist a large number of industrial applications which involve the extrusion of
aerated composite materials through an orifice, e.g. styrofoam, insulation, confectionery.
Often such delicate structures change due to shear and pressure fields experienced on
extrusion. In this work we investigate the influence of these shear and pressure fields on
the structure of aerated composite materials, particularly the degree of aeration retained.

1.1 Material description

We consider our aerated composite to be a material comprising dispersed particles and
air in a continuous fluid phase (particle free).

1.2 Model extruder

The extrusion is modelled as flow through a pipe of circular cross section followed by flow
through an orifice of say 10 mm diameter. It is typically observed that, for a material of
the kind described in the previous paragraph, the degree of aeration following passage
through the orifice is significantly reduced.

2 Comparison of the flows for pipe and orifice

Neglecting separation of the various phases, the material behaves like a power law fluid
with constitutive relation

τ = µγ̇1+λ , (2.1)

where τ is the deviatoric stress and γ̇ is the strain rate (see section 5). The shear-
thinning exponent used here is λ = −0.42. The “dynamic viscosity” µ has dimensions
[M][L]−1[T]λ−1 and the value chosen here is 200 kg m−1 s−1.42 in SI units.

We assumed the flow could be crudely modelled as a cylindrical Poiseuille-type flow
merging into a spherical sink flow near the lower aperture. In Poiseuille-type flow of a
power law fluid the pressure drop per unit length is given by (see section 5)

dp

dz
∼ µ

Q1+λ

R4+3λ
, (2.2)

where Q is the volume flux, and R the cylinder’s outer radius. For the values used here
this evaluates to 1.3 bar m−1.

Near the aperture we assumed a spherical sink flow, in which

u ∼ Q

a2
, so γ̇ ∼ Q

a3
, and τ ∼ ρν

(
Q

a3

)1+λ

, (2.3)

where a is the radius of the aperture. Comparing these two estimates, we obtain a ratio

∆ppipe

∆psink

∼ L

R

(
a3

R3

)1+λ≈0.58

∼ 0.15 � 1, (2.4)
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where ∆ppipe is the pressure drop along the length L of the cylinder, and ∆psink the
pressure drop in the vicinity of the aperture. We concluded that flow resistance occurs
close to the aperture in the base of the cylinder. Also, the total pressure drop, 1.3 bar m−1

for 0.07 m along the cylinder, plus 1/0.15 ≈ 6.7 times that across the aperture, is close
to one bar. These crude estimates are refined in section 5, which studies self-similar
solutions for spherically symmetric slow viscous inflow of a power law fluid in a cone.
Note that the dimensionless group given by (2.4) is very sensitive to changes in the shear
thinning exponent λ.

These estimates, and the more refined calculations in section 5, are based on the
inertialess slow flow equation ∇ · σ = 0. In fact, from the volume flux Q and the
“kinematic viscosity” ν = µ/ρ we may form a lengthscale

L =
(
νQλ−1

)1/(3λ−1)
. (2.5)

In spherically symmetric inflow L marks the radius below which the fluid velocity
becomes large enough that inertial effects are significant. However, there is no such
lengthscale L for the special case of a shear-thickening fluid with λ = 1/3. Thus a self-
similar solution may be sought for the fully inertial equations ρDu/Dt = ∇ · σ. This
represents the true axisymmetric analogue of Jeffery–Hamel flow of a Newtonian fluid
in planar geometry, where a self-similar form exists for the full Navier-Stokes equations.
Analysis of these self-similar solutions suggests that the slow flow approximation remains
quantitatively accurate even when the nominal ratio of inertial to viscous terms is
somewhat larger than unity.

3 Material composite modelling

We took several approaches to the modelling of the material, which we will describe in
detail in the following sections. First we consider the material to be made up of two
phases, particles and “particle-free”, for simplicity. Then we will discuss the analogous
model where we have air and “not air”. Finally, we will consider a non-Newtonian model
for the flow of the composite as a single phase.

3.1 Two-phase model for particles and particle-free

We write φ as the volume fraction of particles, and then our conservation of mass
equations (treating each phase as incompressible) read

∂φ

∂t
+ ∇. (u1φ) = 0, (3.6)

∂(1 − φ)

∂t
+ ∇. (u2(1 − φ)) = 0, (3.7)

where u1 and u2 are the velocities of the particles and particle-free phases respectively.
We then write down a balance of forces for each of the phases, noting that the Reynolds
number for any macroscopic flow is small:

−φ∇P1 = D(φ) (u1 − u2) , (3.8)
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−(1 − φ)∇P2 = −D(φ) (u1 − u2) , (3.9)

where P1 and P2 are the pressures in the two phases (assuming that each phase is
connected). Note that we have assumed for simplicity that the stress in each phase is
“inviscid” and that the only effect of the viscosity is in the drag term. We may find
appropriate forms for the drag coefficient, D(φ), by looking in, for example, [4]. In order
to close our model we must impose a constitutive law which relates the pressures in the
two phases. We pose the general form

P1 − P2 = f(φ), (3.10)

where f represents the excess pressure, which we might set to be

f = Ke−φ/(1−φ), (3.11)

in line with expressions used in soil mechanics.
In order to see whether this model might predict particle blockage, we looked at the

one-dimensional version of the governing equations:

∂φ

∂t
+

∂

∂x
(u1φ)x = 0, (3.12)

−∂φ

∂t
+

∂

∂x
(u2(1 − φ))x = 0, (3.13)

−∂P1

∂x
+ (1 − φ)

∂f

∂φ

∂φ

∂x
= 0, (3.14)

−φ
∂P1

∂x
= D(φ)(u1 − u2). (3.15)

Note that we have added (3.8) and (3.9) together to yield (3.14). In this configuration,
we consider sliding along a tube. We impose the velocity with which we move the piston,
and we specify the pressure at the open end of the tube,

u1 = u2 = U at x = Ut, (3.16)

P1 = Patm at x = L, (3.17)

and we assume initially that the material has a constant composition, so that

φ = φ0 at t = 0. (3.18)

We add (3.12) and (3.13), integrate, and apply the boundary conditions to find that

φu1 + (1 − φ)u2 = U. (3.19)

We seek a travelling wave solution and thus, noting that the wave speed must be U in
order to satisfy the boundary conditions, we set ξ = x − Ut, to find that

((u1 − U)φ)ξ = 0, (3.20)
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−∂P1

∂ξ
+ (1 − φ)

∂f

∂φ

∂φ

∂ξ
= 0, (3.21)

φ
∂P1

∂ξ
= D(φ)(u1 − u2). (3.22)

Integrating (3.20), we find that

(u1 − U)φ = constant = 0, (3.23)

when we apply the boundary conditions. We conclude that u1 = U . Substituting this
into (3.19), we find that u2 = U . Equation (3.22) reveals that the pressure is constant;
(3.21) then has the solution φ is constant.

We conclude that the composite material merely translates to the right with no
change of composition. Clearly our one-dimensional two-phase model is too gross a
simplification to capture any particle separation.

4 Squeezing out the air bubbles

4.1 A mathematical model

In an attempt to model the preferential squeezing out of the air bubbles we formulated
a two-phase model for the composite material consisting of air bubbles (phase 1) and
“not-air”, i.e. everything else (phase 2). Evidently this model will have some similarities
to (but be essentially different from) the two-phase particle and “particle-free” model
described in section 2. Phase 1 is assumed to be “inviscid” (as in section 2) but phase
2 is assumed to be “viscous” with viscosity µ2. Let us assume that the material is
being driven out of the extruder by a piston. Unlike in section 2 we assume that, since
the typical squeezing pressures are greatly in excess of typical pressures due to surface
tension, the pressures in the two phases are equal, i.e. p1 = p2 = p. Furthermore, we
assume that the pressures are so large that phase 1 (but not the much denser phase 2) is
compressible with non-uniform density ρ and adopt the simple isothermal gas law p = kρ
(since the mass of the dense phase is so much greater than of the air, it will act like a
heat buffer). Using subscripts 1 and 2 to denote quantities in the two phases and φ to
denote the volume fraction of air then (assuming that inertial effects are negligible in
both phases) the statements of conservation of mass of air, mass of not-air, momentum
of air and momentum of not-air take the forms

(ρφ)t + ∇ · (ρφu1) = 0, (4.24)

(1 − φ)t + ∇ · [(1 − φ)u2] = 0, (4.25)

−kφ∇ρ = D(φ)(u1 − u2), (4.26)

−k(1 − φ)∇ρ + µ2∇ · [(1 − φ)∇u2] = −D(φ)(u1 − u2). (4.27)

4.2 Solution procedure

In order to make analytical progress we consider flow in a slowly varying channel, in
which case the appropriately scaled and non-dimensionalised leading order version of
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equations (4.24)–(4.27) are

(ρφ)t + (ρφu1)x + (ρφv1)y = 0, (4.28)

(1 − φ)t + [(1 − φ)u2]x + [(1 − φ)v2]y = 0, (4.29)

−kφρx = d(φ)(u1 − u2), (4.30)

−k(1 − φ)ρx + [(1 − φ)u2y]y = −d(φ)(u1 − u2), (4.31)

where ρ = ρ(x, t), φ = φ(x, t) and d is the nondimensional form of D.
Adding (4.30) and (4.31) yields

−kρx + [(1 − φ)u2y]y = 0, (4.32)

which can be integrated twice with respect to y to yield

u2 =
kρx(y

2 − hy)

2(1 − φ)
(4.33)

satisfying the no-slip boundary conditions u2(0) = u2(h) = 0, and so from (4.30)

u1 = kρx

[
y2 − hy

2(1 − φ)
− φ

d(φ)

]
. (4.34)

If the channel is bounded by solid walls at y = 0 and y = h(x) then averaging
equations (4.28) and (4.29) across the channel yields

(hρφ)t + (hρφū1)x = 0, (4.35)

[h(1 − φ)]t + [h(1 − φ)ū2]x = 0, (4.36)

where ū1 and ū2 are average values of u1 and u2 defined by

ū1 =
1

h

∫ h

0

u1 dy = −kρx

[
h2

12(1 − φ)
+

φ

d(φ)

]
, ū2 =

1

h

∫ h

0

u2 dy = − kρxh
2

12(1 − φ)
.

(4.37)
Thus in steady flow (4.36) implies that the pressure gradient px = kρx satisfies the
Reynolds equation

px = −12Q2

h3
, (4.38)

where the value of the constant Q2 is determined by imposing the boundary conditions
p(0) = 1 + ∆P and p(1) = 1 on (4.38), that is

p = 1 + ∆P − 12Q2

∫ x

0

1

h3
dx, Q2 = +

∆P

12

∫ 1

0

1

h3
dx

. (4.39)

On the other hand (4.35) implies that φ satisfies the algebraic equation

−hφppx

k

[
h2

12(1 − φ)
+

φ

d(φ)

]
= Q1, (4.40)
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where Q1 is a constant. Hereafter we will take d(φ) ≡ 1 for simplicity, but more
complicated functions could be treated in the same way. At atmospheric pressure, we
assume here that the volume fraction of the air content is 1/2. When we increase
the pressure at the piston to 1 + ∆P , the air contracts while the volume of the “not-
air” remains constant. The resulting volume fraction which will serve as our boundary
condition at the piston is then given by φ(0) = 1/(2+∆P ). We use this condition along
with h(0) = 1 and p(0) = 1 + ∆P to yield

Q1 =
Q2

k

(
1 +

12(1 + ∆P )

(2 + ∆P )2

)
(4.41)

and hence (4.40) becomes

φp

[
1

12(1 − φ)
+

φ

h2

]
=

1

12
+

1 + ∆P

(2 + ∆P )2
= g(∆P ). (4.42)

In particular, equation (4.42) yields a cubic equation for φ(1) = φ1 in terms of ∆P and
h(1) = h1:

φ3
1 − φ2

1 − φ1h
2
1

(
g +

1

12

)
+ h2

1g = 0. (4.43)

4.3 Solution for a uniform channel

In the simplest case of a uniform channel, h = 1, then from (4.39) we have

p = 1 + ∆P − 12Q2x, Q2 = +
∆P

12
, (4.44)

and so
p = 1 + ∆P (1 − x), (4.45)

and hence from (4.42) φ satisfies

φ(1 + ∆P (1 − x))

[
1

12(1 − φ)
+ φ

]
= g(∆P ). (4.46)

Figure 1 shows φ plotted as a function of x for a range of values of ∆P , and figure 2
shows φ(1) plotted as a function of ∆P . Figures 1 and 2 show us that φ monotonically
increases as x increases, indicating that the air close to the piston contracts. We also
see that φ decreases everywhere as ∆P increases. We see that φ(1) < 1/2 always,
representing the fact that the air is preferentially squeezed out.

4.4 Solution for a sloped channel

In the case of a channel with a sloped wall, h = 1 − αx (α ≤ 1), then from (4.39) we
have

p = 1 − 6Q2 [1 − (1 − αx)2]

α(1 − αx)2
, Q2 =

∆Pα(1 − α)2

6 [1 − (1 − α)2]
, (4.47)
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x

φ

Increasing ∆P

Figure 1: Numerically calculated values of φ plotted as a function of x for ∆P = 0
(highest curve), 0.1, 0.5, 1, 2 and 10 (lowest curve) for a uniform channel, h = 1.

2 4 6 8 10

0.35

0.375

0.425

0.45

0.475

0.5

φ1

∆P

Figure 2: Numerically calculated values of φ1 plotted as a function of ∆P for a uniform
channel, h = 1.

and so

p = 1 + ∆P − ∆P

(
1 − α

1 − αx

)2
1 − (1 − αx)2

1 − (1 − α)2
, (4.48)

and hence from (4.42) φ satisfies

φ

[
1 + ∆P − ∆P

(
1 − α

1 − αx

)2
1 − (1 − αx)2

1 − (1 − α)2

] [
1

12(1 − φ)
+

φ

(1 − αx)2

]
= g(∆P ).

(4.49)
Figure 3 shows φ plotted as a function of x for a range of values of α when (a)

∆P = 0.1, (b) ∆P = 1, and (c) ∆P = 10, and figure 3(d) shows φ(1) = φ1 plotted as a
function of ∆P for a range of values of α. Figures 3 and 4 show that varying α can have
a dramatic effect on the preferential squeezing out of the air. In particular, figure 3(d)
shows that increasing α always has the effect of decreasing φ(1).
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0.2 0.4 0.6 0.8 1
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0.075
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0.15
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0.2

x

φ
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0.2

0.3

0.4

0.5
φ1

∆P

Increasing α

(c) (d)

Figure 3: (a) Graph showing how φ varies with x, when ∆P = 0.1. (b) Graph showing
how φ varies with x, when ∆P = 1. (c) Graph showing how φ varies with x, when
∆P = 10. (d) Graph showing how φ(1) = φ1 varies with ∆P . In each case, we have
used α = 0, 0.25, 0.5, and 0.75.

4.5 Conclusions

In this section we have developed a two-phase model for the air and “not-air” which
make up a composite material capable of capturing the preferential squeezing out of the
air often observed in practice. Analysing the model suggests that altering the shape of
the channel can have a dramatic effect on the squeezing out of the air. We note that it
should be possible to engineer the channel so as to achieve a desired volume fraction of
air at the exit. It would be very interesting to test the predictions of the present model
against experimental observations.

5 Jeffery-Hamel-style flow of a power-law fluid in a

cone

Realistic calculations of the flow of a composite material through an extruder can only
be made using numerical methods beyond the scope of this report. We can, however, get
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some insight into the flow by considering the following scenario in which the composite
material is placed in a cone, of semi-vertical angle β, and forced out through a small
orifice close to the apex of the cone (see figure 4). Our aim is to calculate the power
required to sustain such flow (and compare with a similar flow in a cylinder) since this
gives a guide to the feasibility of extruding a composite material from its container. We
expect the flow to be approximately spherically symmetric away from the orifice and the
forced surface. Since the flow is divergence free and satisfies no slip boundary conditions
on the edge of the cone, this implies that the flow velocity takes the form

u =
f(θ)

r2
er, (5.50)

where (r, θ, φ) are the standard spherical polar coordinates. This is a Jeffery-Hamel flow
(Jeffery-Hamel flow in a wedge for a power law fluid is considered in [2]). We model
the material as a single phase shear thinning power-law fluid. The stress tensor σ hence
takes the form

σij = −pδij + τij,

where the deviatoric part of the stress tensor has the form

τij = 2µ0(γ̇)λeij. (5.51)

Here eij is the the strain tensor,

γ̇ = |2eijeij|1/2

and λ is the power law exponent. Note that λ = 0 corresponds to a Newtonian fluid,
λ < 0 to a shear thinning fluid and λ > 0 to a shear thickening fluid. Furthermore we
shall assume that inertia is negligible so that the slow flow equation

σij,j = 0 (5.52)

holds.

Figure 4: The setup and coordinate system being considered.

For the flow (5.50) the strain rate is

γ̇ =
α(θ)

r3
, where α = (12f 2 + f ′2)1/2
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and the components of the stress tensor are

σrr = −4µ0
αλf

r3+3λ
− p, σθθ = 2µ0

αλf

r3+3λ
− p, σφφ = σθθ,

σrθ = µ0
αλf ′

r3+3λ
, σrφ = 0, σθφ = 0.

(5.53)

In spherical polar coordinates the slow flow equation (5.52) may be rewritten as

1

r2

∂

∂r

(
r2σrr

)
+

1

r sin θ

∂

∂θ
(sin θσrθ) − σθθ + σφφ

r
+

1

r sin θ

∂σrφ

∂φ
= 0,

1

r2

∂

∂r

(
r2σrθ

)
+

1

r sin θ

∂

∂θ
(sin θσθθ) +

σrθ

r
+

1

r sin θ

∂σθφ

∂φ
− cot θ

r
σφφ = 0,

1

r2

∂

∂r

(
r2σrφ

)
+

1

r sin θ

∂

∂θ
(sin θσθφ) +

1

r sin θ

∂σφφ

∂φ
+

cot θ

r
σθφ +

σrφ

r
= 0.

(5.54)

Since there is no φ-dependence in the problem, the third momentum equation is
redundant and we ignore it henceforth. On substituting (5.53) into (5.54) we obtain
the following coupled equations for f and p:

∂p

∂r
= 2µ0r

−(4+3λ)

(
6λαλf +

1

2 sin θ

d

dθ

(
sin θαλ df

dθ

))
, (5.55)

∂p

∂θ
= 2µ0r

−(3+3λ)

(
−3λ

2
αλ df

dθ
+

d

dθ
(αλf)

)
. (5.56)

The pressure can be eliminated in the standard way by cross differentiation (i.e. forming
the vorticity equation) and this leads to a third-order ODE for f :

d

dθ

(
1

sin θ

d

dθ

(
sin θαλ df

dθ

))
+ (6 + 18λ)

d

dθ

(
αλf

) − 3λ(3 + 3λ)αλ df

dθ
= 0,

α = (12f 2 + f ′2)1/2,

(5.57)

which must be solved together with the boundary conditions

f(β) = 0,
df

dθ
(0) = 0, 2π

∫ β

0

sin θf(θ)dθ = −Q. (5.58)

Here the first condition is the no-slip condition enforced on the edge of the cone, the
second a symmetry condition and the third specifies the flux Q down through the cone.
Since (5.57) is homogeneous in f , we choose instead to solve (5.57) for f̂ with the
boundary conditions

f̂(β) = 0, f̂ ′(0) = 0 f̂(0) = −1. (5.59)

Note that f is related to f̂ by

f = − Q

2π
∫ β

0
sin θf̂dθ

f̂
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and hence that f̂ is dimensionless. Before proceeding with the numerical solution, we
consider two special cases that arise for specific λ. First, we consider λ = 0, which
corresponds to the case where we have a Newtonian fluid. Equation (5.57) becomes(

1

sin θ
(f ′ sin θ)′

)′
+ 6f ′ = 0, (5.60)

which we can immediately integrate once to yield

1

sin θ
(f ′ sin θ)′ + 6f = C, (5.61)

where C is an arbitrary constant. Applying the transformation x = cos θ, where
−1 ≤ x ≤ 1, we have

(1 − x2)
d2f

dx2
− 2x

df

dx
+ 6f = C. (5.62)

Note that (5.62) is an inhomogeneous Legendre equation. Its solution f is given by

f(x) = A0P2(x) + B0Q2(x) +
C

6
, (5.63)

where P2(x) = (3x2 − 1)/2 and Q2(x) = (3x2 − 1)(ln(1 + x) − ln(1 − x))/4 − 3x/2, and
the constants A0, B0 and C0 are uniquely determined by the boundary conditions (and
B0 must be zero for the solution to be regular at the origin). Note that we generate this
solution so that we can check that our solution for general λ reduces to this solution
when we set λ = 0.

There is another special case that we may consider, namely λ = −1/3. In this case,
defining g = α−1/3f ′, we have

(
1

sin θ
(g sin θ)′

)′
+ 2g = 0. (5.64)

In this case, our transformed problem reads

(1 − x2)
d2g

dx2
− 2x

dg

dx
+

(
2 − 1

1 − x2

)
f = 0, (5.65)

which has solution

g(x) = A1P1
1(x) + B1Q1

1(x), (5.66)

where

P1
1(x) = (1 − x2)1/2 d

dx
P1(x) = (1 − x2)1/2, (5.67)

Q1
1(x) = (1 − x2)1/2 d

dx
Q1(x) =

(1 − x2)1/2

2
ln

(
1 + x

1 − x

)
− x(1 − x2)−1/2, (5.68)
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Figure 5: Figure showing f(θ) for fixed volume flux Q = 1 for three values of exponent
λ.

and B1 is found to be zero because we require the solution to be bounded as we approach
the axis of symmetry. This specifies the first integral; the resulting equation must be
solved numerically with the remaining boundary conditions to yield the functional form
for the velocity.

Numerical solution of (5.57) requires that we account for the singular point of the

equation at θ = 0. The correct behaviour of f̂ close to the origin, which ensures f̂ ′(0) = 0,
is

f̂ ∼ −1 + Mθ2, as θ → 0,

where M is a constant determined by the condition f̂(β) = 0.
We note that the pressure in this flow is given by

p = −2µ0
r−(3+3λ)

3 + 3λ

(
6λαλf +

1

2 sin θ

d

dθ

(
sin θαλ df

dθ

))
+ p0, (5.69)

where p0 is a constant. We show the solution to (5.57) for the three values of the shear
thinning exponent λ that we have considered so far in this report, namely λ = 0, −1/3
and −0.42, in figure 5. We see that changing the exponent has very little effect on the
solution.

5.1 The power required to sustain the flow

When discussing pipe flows it is conventional to talk about the pressure drop between the
ends of the pipe. This gives a measure of the resistance to flow in the pipe since a balance
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of forces exerted in the direction of the flow equates the pressure drop multiplied by the
cross sectional area of the pipe with the viscous forces exerted on the pipe walls, see
section 5.2. Furthermore the power required to sustain the flow is just the pressure drop
multiplied by the fluid flux. In contrast to pipe flow, there is no analogue of pressure drop
for flow in a converging channel which would give a measure of resistance to flow (since
the walls are non-parallel). As we wish to consider flow in a cone sustaining a radial
spherically symmetric flow we thus consider power as a measure of the effort required,
in particular we consider the power required to sustain the flow between radius a and
radius b where a > b.

We would like to use the solution to (5.57) to get an estimate of the power required
to force the flow through the cone. The power expended per unit area on a surface with
normal er is (σ · er) · u, which we can express in the form σrrf(θ)/r2 (we note that
we now need only work with one component of the stress tensor, σrr). It follows that
the total power W expended to sustain the flow between the surfaces r = a and r = b
(0 ≤ θ ≤ β) is

W = H(a) − H(b), where H(r) = 2π

∫ β

0

σrrf sin θdθ. (5.70)

We can use (5.53) and (5.69) to re-express H in the form

H(r) =
2µ0

r3+3λ

[
2π

∫ β

0

f

(6 + 6λ)

(
d

dθ

(
sin θαλf ′) − 12αλf sin θ

)
dθ

]
. (5.71)

Since we solve for f̂ it is convenient to leave this result in the following form

H(r) =
2µ0Q

2+λ

r3+3λ
H̃(β, λ), (5.72)

where the (negative) dimensionless parameter H̃ is given by

H̃(β, λ) = π

[
− 1

2π
∫ β

0
sin θf̂dθ

]2+λ ∫ β

0

f̂

3 + 3λ

(
d

dθ

(
sin θα̂λf̂ ′

)
− 12α̂λf̂ sin θ

)
dθ.

(5.73)

So for example when we calculate the solution for f̂ in the case where the cone angle
β = π/8 and the power law exponent λ = −0.42 we find

H̃(β, λ = −0.42) ≈ −12.1. (5.74)

5.2 Comparison with flow in a cylinder

Shear-thinning flow in a cylinder is well documented (see for example Bird, Armstrong
and Hassager [1]). Here we use cylindrical polars (r, θ, z) and the flow has the form

u = g(r)ez. (5.75)

The only non-zero components of the stress are

σrr = σθθ = σzz = −p, σrz = 2µ0(−g′)λ. (5.76)

G-14



If the flow satisfies the slow flow equations (5.52) and the no-slip boundary condition is
applied on r = ρ then

g =
λ + 1

λ + 2

(
k

2µ0

)1/(λ+1) (
ρ(λ+2)/(λ+1) − r(λ+2)/(λ+1)

)
, p = kz, (5.77)

and the flux Q down the pipe is given by

Q = π
λ + 1

3λ + 4

(
k

2µ0

)1/(λ+1)

ρ(3λ+4)/(λ+1). (5.78)

This also gives
dp

dz
= k =

(
3λ + 4

π(λ + 1)

)λ+1
Qλ+1

ρ3λ+4
, (5.79)

as used in Section 2.
The power required to sustain the flow between z = 0 and z = L is

W =

[
−2π

∫ ρ

0

σzzg(r)rdr

]z=L

z=0

= kLQ (5.80)

and hence

W = 2µ0
LQλ+2

ρ3λ+4

(
1

π

(
3λ + 4

λ + 1

)λ+1
)

. (5.81)

We note that the power, W , for a cylinder is directly proportional to L = b−a, while for
the cone W ∝ b−(3+3λ) − a−(3+3λ) and as such depends on the shear-thinning exponent.

5.3 Conclusions

We have looked at slow flow of a power law fluid with exponent λ down a cone. Assuming
spherical symmetry, in the style of Jeffery-Hamel flow, the equations of motion reduce
to a single, nonlinear, ordinary differential equation (5.57) for f(θ). For Newtonian flow,
λ = 0, an exact solution (5.63) was obtained which served as a check on any results
obtained for non-Newtonian flow. For the particular case of λ = −1/3 it is interesting
that a first integral of equation (5.57) can be obtained analytically.

To proceed further it was necessary to solve equation (5.57) numerically, and a

solution for f̂ was derived for the particular value of λ = −0.42 (see figure 5). Considering
power as a measure of the effort required to drive the flow, the expression (5.71) was
obtained, and evaluated for the semi-vertical angle β = π/8. We finally note that the
numerical solution for f(θ) allows all components of the stress tensor and indeed all flow
quantities to be calculated.

6 Conclusions

We formulated several models to describe the extrusion of aerated composite materials.
First, we looked at whether it was easier to get the material down the pipe or out through

G-15



the orifice, and we concluded that the main resistance to flow was in getting the material
out through the orifice. Then we described the motion of the material as a two-phase flow,
in which the two phases were particles and particle-free. In a one-dimensional model,
the material merely translated, with no change in composition. We then formulated a
model for describing the motion of air bubbles. We formulated a two-phase model, but
here we considered a slender block of material. The resulting “thin film” model was
solved, and it was seen that the geometry of the channel was very important. We ended
up with a solution in which the volume fraction of air was not constant throughout the
block. We postulated that, by a crafty choice of channel shape, it ought to be possible
to control the volume fraction of air at the exit of the tube. Finally, we formulated a
model to describe the flow of a one-phase power-law fluid in a cone. We were able to
calculate the power required to move the material down the cone.

There are several areas to follow up, including:

1. We could re-do the calculations for particles/particle-free in a two-dimensional
geometry, to see whether or not the shape of the channel could affect the volume
fractions, as it did in the air/not air case.

2. We could alter the power-law fluid flow to incorporate stress-free boundary
conditions (modelling the flow of the material between two corner vortices and
towards the orifice). Further, we could incorporate a yield stress into our
formulation, to see what effect this would have.
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