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3.1 Introduction

The problem under study here was brought by Dr. Allan Douglas of the Communication Security
Establishment. The Communication Security Establishment (hereafter referred to as the CSE)
includes a team composed of Defence Scientists assigned from the Operational Research Division,
National Defence Headquarters, Department of National Defence, Ottawa.

The CSE is interested in the general problem of locating objects in networks. Their interest
in this type of problem arises because of the emerging concern regarding security issues for
information operations.

The concept of transmitting code from one computer to another has been around for more
than forty years. As a programming practice, it has evolved from an occasional concern of
systems programmers working at the deepest levels of operating systems to a common and
widespread practice. It is now utterly unremarkable for a web browser to bring in a web page
containing a JAVA applet which then executes.

The next stage, in which objects move under conditions of their own determination, already
is upon us. Development environments are being created to facilitate this. One of these, for
example, is for the creation and use of “Aglets” which are examples of mobile network agents.
Mobile network agents are programs that can be dispatched from one computer and transported
to a remote computer for execution. At the remote computer they present their credentials in
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44 CHAPTER 3. SEARCHING NETWORKS

order to gain access to local services and data. It is apparent that mobile network agents are
going to undergo considerable development and become extensively used. The networked world
is going to see many of these objects.

Prudence dictates the expectation that some of the mobile objects will not be benign. Defen-
sive information operations will have to deal with mobile attackers. The problems of determining
whether or not attackers are present or likely to be present, and determining their present loca-
tions become of considerable interest.

The CSE people were familiar with the literature involving search theory, where the searches
are carried out over two- and three-dimensional regions. The techniques for these kinds of
searches typically involve partitioning the region into cells and considering the problem of getting
the searcher (or one of several searchers) and the target in the same cell.

They also were familiar with an old paper by G. Pólya [34] in which he considered random
searches on the n-dimensional grid with a single searcher and a single target. They were not
aware of any other work done on searching in graphs.

Because of their exposure to search theory, the problem they brought to the workshop was
phrased in terms of adapting search theory to networks. Thus, the first step was the introduction
of an already existing healthy literature on searching graphs.

T. D. Parsons, who was then at Pennsylvania State University, was approached in 1977 by
some local spelunkers who asked his aid in optimizing a search for someone lost in a cave in
Pennsylvania. Parsons quickly formulated the problem as a search problem in a graph. After his
paper [31] appeared, many subsequent papers appeared. Subsequent papers led to two divergent
problems. One problem dealt with searching under assumptions of fairly extensive information,
while the other problem dealt with searching under assumptions of essentially zero information.
These two topics are developed in the next two sections.

3.2 Complete Information

There is a variety of models we may use for attempting to find an evader or evaders in a graph.
The notion of searching a graph involves the evaders and searchers being located at vertices.
Evaders and searchers may stay at their current locations, or move along an edge of the graph
to a neighboring vertex. The simplest clock is one which ticks at regular intervals and all moves
take place when the clock ticks. In one version, any subset of searchers and evaders may move
at each tick. In a second version, subsets of searchers move on odd numbered ticks and subsets
of evaders move on even numbered ticks — the point being that evaders and searchers alternate
moves. In the most general version, the clock is continuous and participants may move at any
time. In all of these models, capture takes place whenever an evader and a searcher occupy the
same vertex at the same time.

Another decision which must be made for searching is whether or not capture takes place if
an evader and a searcher “pass” each other along the same edge. For example, if at a tick of the
clock, an evader moves along an edge from vertex u to v and a searcher moves along the same
edge from vertex v to vertex u, does capture take place?

The notion of sweeping a graph involves evaders and searchers being able to be located at
vertices or along an edge. In this case, we view the graph as being embedded in euclidean space.
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3.2. COMPLETE INFORMATION 45

The movement of an evader or searcher corresponds to a continuous function from the interval
[0,∞) to the embedded graph. If there are k searchers, let f1, f2, . . . , fk denote the k functions
describing the searchers’ movements in the graph. If there are ` evaders, let e1, e2, . . . , e` denote
the ` functions describing the evaders’ movements in the graph. Capture takes place whenever
there exist t, i, j such that fi(t) = ej(t). In other words, a searcher and an evader occupy the
same place at the same time.

Parsons’ first paper on this topic [31] considered sweeping a graph. He made the following
definition.

Definition 3.2.1 Let G be a finite graph. The sweep number of G, denoted SW(G), is the
smallest integer k such that k searchers can sweep G and capture a single evader.

He observed that SW(G) always exists because |V (G)| + 1 searchers can always capture an
evader. This is done by placing a searcher at each vertex and then using an additional searcher
to move along every edge of the graph. If the graph is not connected, the additional searcher
may sweep each component separately.

He proved the following theorem as well.

Theorem 3.2.2 If T is a tree and k = 1, then SW(T ) = k + 1 if and only if T has a vertex v
at which there are at least three branches T1, T2, T3 satisfying SW(Tj) = k for j = 1, 2, 3.

He was able to use the theorem to recursively characterize all trees with a given sweep num-
ber. At the end of [31], Parsons suggested many other variations of the problem for investigation.

A. LaPaugh [22] first proved that a graph may be optimally swept without going over any
edge twice. D. Bienstock and P. Seymour gave a new proof in [5].

Other people took up the problem obtaining many results. There also was a shift towards
considering searching rather than sweeping, and considering a single evader. The usual model
was alternating moves and complete information, that is, everybody knows everybody’s location.

Definition 3.2.3 Let G be a finite graph. The search number of G, denoted SE(G), is the
smallest integer k such that k searchers can search G and capture a single evader using alternate
moves and with complete information.

One direction taken by various researchers was to consider classes of graphs. The class of
Cayley graphs is an interesting class because of their use as models for network architectures.
P. Frankl [17] was the first person to consider Cayley graphs. He proved the following result.

Theorem 3.2.4 If X = X(G; S) is a Cayley graph on the finite abelian group G, then SE(X) 5

(|S| + 1)/2.

Since the n-dimensional cube is a Cayley graph on a finite abelian group, the preceding result
immediately yields the following corollary.

Corollary 3.2.5 If Qn is the n-dimensional cube, then SE(Qn) 5 (n + 1)/2.

M. Aigner and M. Fromme [1] characterized the class C of graphs for which SE(X) = 1
whenever X ∈ C. In particular, they showed that C contains all finite trees.

M. Maamoun and H. Meyniel [26] generalized the Aigner-Fromme result about trees in the
following way.
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46 CHAPTER 3. SEARCHING NETWORKS

Theorem 3.2.6 If X is a cartesian product of n finite trees, each of which has at least two
vertices, then SE(X) = d(n + 1)/2e.

Aigner and Fromme [1] also proved the following interesting result for another important
family of graphs.

Theorem 3.2.7 If X is a planar graph, then SE(X) 5 3.

T. Andreae [3] generalized the preceding result in the direction of classes of graphs not
containing a fixed graph as a minor. A. Quilliot [35] extended the result in the following
direction.

Theorem 3.2.8 If X is a graph of genus k, then SE(X) 5 3 + 2k.

The preceding results determine either upper bounds or exact values for the search number
of graphs. P. Frankl [18] determined a lower bound in terms of girth and minimum degree.

Theorem 3.2.9 If X is a graph with girth at least 8t − 3 and minimum degree larger than d,
then SE(X) > dt.

A negative result about lower bounds was established by T. Andreae [2]. He proved that
for any positive integers m and d, there exists a regular graph of degree d for which the search
number is bigger than m.

In [4] it is shown that for each fixed m, there is a polynomial time algorithm determin-
ing whether or not a fixed graph X satisfies SE(X) 5 m. Complexity also was studied by
A. Goldstein and E. Reingold in [19].

R. Nowakowski and P. Winkler [30] established a structural result by characterizing the
graphs for which one searcher can always capture one intruder under the complete information
model.

3.3 Zero Information

Zero information means that nobody knows anything about the location of anyone else. In
fact, the searchers do not know if there even is an intruder in the graph they are searching.
The problem is to devise a search mechanism whereby m searchers are guaranteed of finding an
intruder or establishing that the graph is free of any intruders.

Almost all the work which has been done on this version is the study of collision properties
of two random walks in graphs. The random search assumptions are that if someone is located
at a vertex of valency d, then at the next tick of the clock, he moves to a neighboring vertex
with probability 1/d for each of the d neighbors. Under this assumption, the following theorem
holds.

Theorem 3.3.1 Let u and v be any two distinct vertices of a graph X, let dist(u, v) denote the
distance between u and v in X, let ∆(X) denote the maximum valency of X, let T (u, v) denote
the first time two random walks beginning at u and v occupy the same vertex, and let ET(u, v)
denote the expected value of T (u, v). For any two distinct vertices u and v of X,
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• Prob(T (u, v) < ∞) = 1,

• ET(u, v) < 5∆(X)dist(u, v)|V (X)|, and

• for every ε > 0, there exists C(ε) > 0 such that Prob(T (u, v) > C(ε)|V (X)|) = 1 − ε.

Increasing the number of searchers does materially affect the preceding result. For a good
discussion of this material see [23].

3.4 Workshop

On the afternoon of the first day, the group had its first meeting. Several participants were
aware of some of the existing literature on searching and sweeping graphs. Our first course of
action was to launch an extensive literature search, visit the excellent mathematics library on
campus, and make copies of those papers which seemed most relevant.

By the end of the afternoon, most of the references given in the bibliography had been
discovered and copies of approximately ten of the papers were distributed to the group. The
object was to be able to begin to discuss their contents Tuesday morning.

Tuesday morning was spent discussing the contents of the papers, and exploring the potential
usefulness with regard to the problem Dr. Douglas had in mind. Dr. Douglas himself found
some of the results of considerable interest, but was mostly impressed by the fact these kinds of
problems had been examined by a variety of researchers.

It became clear that different subgroups were becoming interested in pursuing different as-
pects of the problem. The rest of Tuesday was spent trying to work out clear objectives for
different subgroups. Simultaneously, we were being presented with a nice description of random
walks in graphs by Dr. Kosygin. By the time Tuesday evening rolled around, it was clear we
still were not well organized.

Wednesday morning was spent completing the development of objectives for several sub-
groups. The subgroups then went their separate ways agreeing to meet late in the afternoon to
sum up what they had accomplished during the day.

One subgroup was working on various problems dealing with trees. Their first foray into
this was an attempt to independently work out proofs of several of the results on trees that we
found in the literature. After coming to grips with the proofs, they then began to think about
possible algorithms for computing search numbers for trees.

One approach is based on reducing a tree by removing all the leaves in a single stage. After
this stage, the smaller tree then has its leaves removed. This is a layered approach and is
recursive. It is shown that one less searcher is needed at each stage.

A divide and conquer approach for trees is based on deleting a central vertex, leaving a
searcher at the deleted vertex to prevent the target from moving from one subtree into another
subtree, and then searching each subtree separately. It is clear that the minimum number of
searchers needed to search the entire tree is one more than the maximum number needed to
search any of the subtrees created by the deletion of the vertex.

The last activity undertaken was an attempt to modify some of the known results on trees
to other search models. They made a presentation to the group on Thursday.
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A second subgroup wanted to look at the behavior of random searches. They decided to
concentrate on the n-dimensional cube, with some consideration of complete graphs.

Let’s look at what was done for the 10-dimensional cube first. The following table contains
information on how long it took six searchers, using random search, to capture one target in the
10-dimensional cube, and the following table one searcher.

The column headed Frequency gives the number of random searches using a number of steps
in the range shown in the column headed Time.

Frequency Time
1 1 – 71
71 72 – 142
57 143 – 213
38 214 – 285
29 286 – 356
18 357 – 427
16 428 – 499
9 500 – 570
7 571 – 641
2 642 — 713
3 714 – 784
3 785 –

Six searchers, one target

Frequency Time
1 11 – 366
72 367 – 722
50 723 – 1,080
38 1,081 – 1,435
24 1,436 – 1,792
24 1,793 – 2,148
18 2,149 – 2,505
5 2,506 – 2,861
8 2,862 – 3,217
5 3,218 — 3,574
3 3,575 – 3,930
1 3,931 – 4,287
3 4,288 – 4,643
5 4,644 –

One Searcher, one target

The next table provides some data correlating the number of searchers and the average
number of steps required to capture a single target, using random search, in the 10-dimensional
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cube. The data indicates a definite trend, but many more trials are necessary to increase the
accuracy. The column headed Time is the average number of steps required using the number
of searchers under the column headed Number.

Number Time
1 1,060
2 567
3 412
4 220
5 20
6 195
7 170
8 140
9 130
10 120
11 95
12 103
13 82
14 94
15 72
16 70
17 62
18 60
19 55
20 51

Number of searchers and time

For one searcher and one target, the next table relates steps to capture and the dimension
of the cube.

Dimension Time
1 0
2 2
3 10
4 25
5 40
6 85
7 130
8 320
9 590
10 1100

Dimension and time

π
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We ran random searches, using one searcher and one target, on complete graphs whose
orders were multiples of 100. We started with 100 vertices and went through 2,000 vertices. The
number of trials again needs to be increased considerably in order to introduce more accuracy.
Still, the average time behaved reasonably except for 1,300 and 1,400 vertices. From 100 through
1,800 vertices, the average number of steps required was approximately equal to the number of
vertices. For 1,900 and 2,000 there were steep increases. There is a lot of room for studying this
question more.

The subgroup working on generating random searches also made a presentation to the group
on Thursday.

The rest of Thursday was used for amalgamating our efforts into a report to be presented
Friday.

3.5 Summary

The following summarizes what we discovered during the week.

• Search results are greatly affected by the paradigm used.

• Searches on well defined families of graphs already present challenging problems.

• Simulations on random graphs and the n-dimensional cube agreed with computed expec-
tations.

• Random searches usually perform as well as structured searches.

• The surface of the problem has been only scratched.
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