
Sequencing spinning lines

Problem presented by

Jon Taylor

Acordis Acrylic Fibres, Grimsby

Problem statement

The Acordis acrylic fibres plant in Grimsby operates thirteen production
lines, extruding four basic polymer types to make fibres. There are twelve key
variables which define the end product. All changes to these variables take
time (some more than others) and low grade product or waste is produced
during the changeover. The most common product change is in the fibre
colour. It is believed that optimised production scheduling can reduce the
number or duration of the changes. Production scheduling is currently carried
out by one skilled person who has to consider both production issues and
customer requirements. The study group was asked to develop a tool to both
help the scheduler and assist the production team leaders who periodically
have to re-jig the production schedule outside of day hours and at short
notice.

Study Group contributors

R. Eglese (University of Lancaster)
J. Gravesen (Technical University of Denmark)
P. G. Hjorth (Technical University of Denmark)

S. D. Howison (University of Oxford)
S. Khan (University of Cambridge)

R. A. Leese (Smith Institute)
A. N. Letchford (University of Lancaster)

S. D. Noble (Brunel University)
H. Tewkesbury (Smith Institute)

Report prepared by

Jens Gravesen (Technical University of Denmark)
Steven Noble (Brunel University)

A-1

1 Overview

The study group was asked by Acordis to assist in the production of a tool to schedule
the production of acrylic fibres on a number of spinning lines. The group was informed
by a presentation from Dr. Jon Taylor describing the acrylic fibre production process.
Jobs are currently scheduled by a highly skilled and experienced scheduler without the
use of any computational tool. Currently a schedule is produced each week and it takes
several hours to produce the schedule.

In the next section we give a precise description of the problem, describing all the
variables involved in the fibre production and the delays involved when a change is made
to them. Many of the key variables may take only a small number of values and the
delays involved in changing the settings associated with these variables are well known
from experience. However a large range of colour dyes is used in the production of fibre
and the potential range of colours that may be used in the future is unlimited. The
amount of time needed to change between one colour and another is less well known and
in Section 3 we present two suggestions for modelling it.

Section 4 describes an algorithm which, when given a set of jobs to be assigned to
lines and sequenced, will produce a solution in a reasonable period of time. We close with
conclusions, discussing the effectiveness and applicability of our proposed algorithm.

2 Background

Acordis produces a wide range of acrylic fibres, with specifications determined by twelve
variables, including the polymer type, the thickness of the fibre and the colour. In detail,
these variables and the values that they may take are as follows:

1. Polymer. The basic polymer type may take three values: standard
(S), type ten (TX) and latent crimp (LC).

2. Pigment. The pigment may be one of three values: bright (B), matt
(M) or duracoll black (DB).

3. Stretch. This refers to the tension placed on the fibres and may be
high tension (HT), low tension (LT) or standard (-).

4. Spin bath temperature. This may be either standard or low.

5. F setting. This is a binary variable indicating whether the production
process includes the characteristic known as a ‘relaxation’.

6. Special pigments. This variable indicates the use of a variety of special
pigments and may take the values AB, BB, AF, BF, PCM or standard.
However the AB and BB, and the AF and BF settings are really the
same product for different manufacturers so essentially there are only 4
possible values for this variable.

7. Decitex. The decitex refers to the thickness of the individual fibres in
the product and may take 12 possible values.

8. Crimp. There are 9 possibilities here.

A-2

9. Soft finish. This variable may take 5 possible values.

10. Anti-static Here there are two possibilities indicating whether an anti-
static special finish is applied.

11. Kilotex. This is the total weight of fibre per unit length and is stated
in grammes per metre.

12. Colour. This is the colour of the fibre.

Currently there are eight spinning lines in use, labelled by the letters A, B, C, D, G,
H, J and K. Each line has different characteristics in that it may only produce certain
types of fibre, according to the following table:

A B C D G H J K
S N N Y Y Y Y Y Y

Polymer TX Y Y Y Y Y Y Y Y
LC N N N N N N Y Y
B Y Y Y Y Y Y Y Y

Pigment M Y Y Y Y Y Y Y Y
DB N N N N Y N N Y

Stretch All All All All All All All All
Spin bath temp Std Std Std Std All All All All
F N N N N N Y N Y
Special pigment N N N N N Y N N
Decitex > 2.2 > 2.2 > 2.2 > 2.2 All All All All
Crimp All All All All All All All All
Soft finish All All All All All All All All
Anti-static All All All All All All All All
Kilotex ≤ 80 ≤ 80 ≤ 80 ≤ 80 All All All All
Colour All All All All All All All All

Table 1: Summary of possible fibres that may be produced on each spinning line

The entries in the table require some explanation. The first two rows list all possible
values of the polymer and pigment type and indicate by means of a Y(es) or N(o) entry
whether a product with a particular polymer and pigment type may be produced on a
given line.

In the rest of the table the entry ‘All’ means that there is no restriction for the
corresponding variable and line, an entry ‘> 2.2’ or ‘≤ 80’ indicates a range of possible
values for a variable, and ‘Std’ indicates that only the standard setting for the variable
can be produced. The row corresponding to the F setting indicates that products
requiring the F setting can only be produced on lines H and K, and the row corresponding
to special pigments show that these products can only be produced on line H.

In addition to these hard constraints there is a preference for products using the
Duracoll Black pigment to be produced on line G.

A-3

Each of the lines consists of a number of different machines. Machines corresponding
to two different lines do not necessarily run at the same speed. Consequently the eight
spinning lines do not all produce fibre at the same speed. The following table shows the
production speeds in metres per minute.

Line A B C D G H J K
Speed 264 264 264 308 190 190 190 190

Table 2: Speeds of fibre production (metres/sec) on each line

Changing the value of any of the variables causes a delay during which waste product
of poor quality is produced. The delays depend not only on the variable being changed
but also on the precise values of the variable involved in the change, and can range from
3 minutes to 2 hours. Some variable changes require certain key features of the line to be
altered and production has to be temporarily stopped. This procedure is called a ‘respin’
and an important part of our proposed approach is to find a schedule that minimises
the number of respins. Each respin takes 1 hour, during which no fibre is produced.
More generally, we impose a penalty equal to the number of minutes of delay. The time
taken in a change of variable, other than a colour change, is summarised in the following
tables.

The first table is a matrix with (i, j)-entry representing the delay incurred when the
polymer variable is changed from the ith possible value to the jth possible value. A
respin is needed whenever the polymer is changed to or from latent crimp.

S TX LC
S 0 30 60
TX 30 0 60
LC 60 60 0

Table 3: Delays incurred during polymer change (minutes)

The next table is a matrix with (i, j)-entry representing the delay incurred when the
pigment variable is changed from the ith possible value to the jth possible value. A
respin is never needed.

B M DB
B 0 20 60
M 20 0 60
DB 120 120 0

Table 4: Delays incurred during pigment change (minutes)

For the remainder of the variables, with the exception of colour, the time taken for
a change to the variable does not depend on the actual values involved. The delays, in

A-4

minutes, that these changes incur are given below together with an indication (Y(es) /
N(o)) of whether a respin is required.

Variable Time Re-Spin
Stretch 60 Y
Spin bath temp. 15 N
F 20 N
Special pigment 60 Y
Decitex 60 Y
Crimp 20 N
Soft finish 15 N
Anti-static 15 N
Kilotex 60 Y

Table 5: Delays incurred during assorted changes

The amount of time needed to for a change to the colour is much more complicated
than any of the other variables. This is discussed in detail in the next section.

Each batch of fibre to be produced has a due date. The precise meaning of the
due date is quite involved and depends on whether the product is to be delivered
to a UK address or overseas. Most due dates correspond to Mondays. For a UK
customer this means that the product should be despatched as early as possible within
the week beginning on the due date whereas for an overseas customer the product must
be despatched by the Friday preceding the due date. For our application we have chosen
to simplify the treatment of due dates by assuming that each of them corresponds to
a Friday by which the product must be despatched. For late jobs we impose a fixed
penalty per tonne of product per week or part of a week that it is late.

The cost of a schedule is now given by adding the penalties due to delay and missed
due dates. In the next section we discuss delays due to a colour change.

3 Colour space

In this section we will estimate the time for a colour change, using two different models.
The first we call the ‘dye model’. Here we assume that the old dye mixes with the

new dye to produce a slightly wrong dye. We use the Kubelka-Munk method to model
the dye process, and, assuming a small fraction of the old dye, a simple linearization
yields the estimate.

The second approach is the ‘spot model’ where we assume that the old dye stains the
new fabric in form of small spots of the old colour. If the spots are small, then the light
reflected from the stained fabric will appear as a mix of light reflected from the old and
the new fabric. Hence the colour will be a convex combination of the old and the new
colour.

There are many ways to parameterize colour space, so in order to make our choice
precise we have included some background material on colours, mostly taken from [11].

A-5

3.1 From light to colour

The human retina has three types of colour photorecepter cone cells, with different
spectral sensitivities.1 Therefore three real numbers are necessary and sufficient to
describe a colour. We can think of the three numbers as the power received by each
of the three different colour photorecepters.

The International Commission On Illumination (CIE2) has defined several possible
parametrizations of the space of colours. If S : [λ1, λ2] → R+ is the intensity function
for the light, then the CIE XYZ components are defined by

(X,Y, Z) = k

∫ λ2

λ1

S(λ)
(
x(λ), y(λ), z(λ)

)
dλ,

where the functions x(λ), y(λ), and z(λ) are the CIE 1931 Standard Colorimetric
Observers (see Figure 1) and k is a normalization constant which makes Y = 100 for a
standard light source S(λ), i.e.

k =
100∫ λ2

λ1
S(λ) y(λ) dλ

.

For the CIE standard illuminant D65 in Figure 1, we have k = 0.047332. The component
Y is called the luminance and is an attempt to define the total observed intensity of the
light.

λ400nm 500nm 600nm 700nm

1

2

100

200
x(λ)
y(λ)
z(λ)
SD65(λ)

T
ri

st
im

ul
us

va
lu

es

R
el

at
iv

e
ra

di
an

t
po

w
er

Figure 1: CIE 1931 Standard Colorimetric Observers and the spectral distribution for
the CIE illuminant D65. They are tabulated in [11] and can also be found at the CIE
web-site.

The CIE xy chromatic coordinates are given by

x =
X

X + Y + Z
, y =

Y

X + Y + Z
.

1In fact a fourth type of photorecepter cells, the rod, is also present, but these are only used at
extremely low light levels (night vision), and do not contribute to the perception of colour.

2http://members.eunet.at/cie/

A-6

Sometimes a third coordinate z = Z/(X + Y + Z) is defined, but it can always be found
from the relation x + y + z = 1. The two chromatic coordinates x and y describe ‘pure’
colour, in the absence of luminance (or brightness). When monochromatic light sweeps
over the visual light range from 400nm to 700nm, it traces a curve in the xy-space, shown
in Figure 2. The line connecting the two ends of the curve is called the line of purples.
It joins extreme blue with extreme red and consists consequently of mixtures of blue and
red.

x

y

.2 .4 .6 .8

.2

.4

.6

.8

400nm450nm

500nm

550nm

600nm

650nm
700nm

Figure 2: The tristimulus diagram. The monochromatic colours lie on the curved part of
the boundary. The dashed line joining the the end of the visible spectrum [400nm, 700nm]
is the line of purples. The triangle are the colours that can be produced by the primaries
of the Rec. 709 RGB specifications, [1]. The circle indicates the D65 white point.

A colour can be specified by chromaticity (x, y) and luminance Y in the form of the
CIE xyY components. To recover X and Z the following formulas are used:

X = Y
x

y
, Z = Y

1 − x − y

y
.

The colours on a computer screen or a television are given by mixing three primaries :
red, green, and blue. The three primaries correspond to three points in xy-space and
the screen can reproduce all colours in the triangle spanned by the three primaries, the
gamut of the primaries. In Figure 2 the primaries for the HDTV [1] are plotted and it is
easily seen that not all colours can be obtained. The actual colours in the plot need not
be correct, they depend on the computer screen, or on the printer and the illumination.

3.2 The colour of an object

The colour of an object depends not only on the object itself, but also on the illumination.
The influence from the object is given by the reflection coefficient β(λ), which specifies
how light is reflected at different wavelengths. If the illumination has the spectral

A-7

distribution S(λ), then the object emits light with the spectral distribution β(λ) S(λ).
Hence the CIE XYZ components are given by

(X,Y, Z) = k

∫ λ2

λ1

β(λ) S(λ)
(
x(λ), y(λ), z(λ)

)
dλ.

We obviously have 0 ≤ β(λ) ≤ 1 so, if the illumination is fixed, then any object can at
most emit light with intensity S(λ). So the set of possible colours in a fixed illumination
is a bounded set; see [11, Figure 2(3.3.9)] and Figure 4.

3.3 Colour differences

The human perception of similar colours has little to do with the Euclidean distance
in the xy-plane. Indeed, some sixty years ago MacAdam conducted some colour
matching experiments where a person was asked to match a colour with given chromatic
coordinates (x, y) by adjusting another colour by a single control that traced a line
through (x, y) in the chromatic plane. The standard deviations turned out to be ellipses
in the chromatic plane, sketched in Figure 3.

x

y

.2 .4 .6 .8

.2

.4

.6

.8

Figure 3: The MacAdam ellipses [7], enlarged 10 times. If the depicted ellipses are
diminished by a factor of three then colours on the ellipse can just be seen to be different
from the colour at the centre. The parameters of the ellipses are tabulated in [11].

If the ellipses are enlarged approximately three times they define the just noticeable
difference, i.e. colours inside the enlarged ellipse appear to be the same as the one at
the centre while colours outside appear to be different from the colour at the centre.
This discrepancy between human perception and the Euclidean distance has spawned
attempts to define parameters which are more uniform with respect to the human

A-8

perception. The standard we use is the CIELAB coordinates which are given by

L∗ =

{
903.3 Y/Yn if Y/Yn ≤ 0.008856

116 3
√

Y/Yn − 16 if Y/Yn > 0.008856

a∗ = 500
(
f(X/Xn) − f(Y/Yn)

)
b∗ = 200

(
f(Y/Yn) − f(Z/Zn)

)
where

f(t) =

{
7.787 t + 16/116 if t ≤ 0.008856
3
√

t if t > 0.008856.

The inverse map is

Y

Yn

=

{
L∗/903.3 if L∗ ≤ 8(
(L∗ + 16)/116

)3
if L∗ > 8

(1)

X

Xn

= f−1
(
a∗/500 − f(Y/Yn)

)
(2)

Z

Zn

= f−1
(
f(Y/Yn) − b∗/200

)
(3)

where

f−1(t) =

{
(t − 16/116)/7.787 if t ≤ 0.2069

t3 if t > 0.2069.

The triple (Xn, Yn, Zn) are the components of the white reference, where Yn is normalized
to 100. For the D65 white point we have the values (Xn, Yn, Zn) = (95.043, 100, 108.88).
In the CIELCH coordinates the Cartesian coordinates (a∗, b∗) are replaced by polar
coordinates (C,H) called chroma and hue respectively,

a∗ = C cos H, b∗ = C sin H.

As we can see in Figure 4 the size of the ellipses has become somewhat more uniform,
but they are still far from circles (of equal size).

We will now describe the CMC3 colour difference formula, but first we need some
definitions. Let L∗

1, a
∗
1, b

∗
1, C

∗
1 , H

∗
1 and L∗

2, a
∗
2, b

∗
2, C2, H2 be the coordinates of two colours.

Then we let

∆L∗ = L∗
1 − L∗

2, ∆a∗ = a∗
1 − a∗

2, ∆b∗ = b∗1 − b∗2.

Likewise ∆C = C1 − C2, but ∆H is defined such that the equation (∆C)2 + (∆H)2 =
(∆a∗)2 + (∆b∗)2 holds, i.e.

3The Colour Measurement Committee of the Society of Dyers and Colourists, whose web site may
be found at http://www.sdc.org.uk/

A-9

a∗

b∗

−200 200

−200

−100

100

475nm

500nm

525nm
550nm

575nm

600nm
625nm

650nm

Figure 4: The MacAdam ellipses in the a∗b∗-plane, L∗ = 50. The smaller region contains
the possible colours of an object illuminated by the CIE D65 standard.

(∆H)2 = (∆a∗)2 + (∆b∗)2 − (∆C)2

= (C1 cos H1 − C2 cos H2)
2 + (C1 sin H1 − C2 sin H2)

2 − (C1 − C2)
2

= 2C1 C2(1 − cos H1 cos H2 − sin H1 sin H2)

= 2C1 C2(1 − cos(H1 − H2))

= 4C1 C2 sin2

(
H1 − H2

2

)
.

The CMC colour difference formula allows calculation of tolerance ellipsoids around a
given colour where the dimensions of the ellipsoid are a function of the given colour.
The design of this formula allows for two user-definable coefficients � and c and the
formula is thus normally specified as CMC(�:c). The values of � and c modify the
relative importance that is given to differences in lightness and chroma respectively. The
CMC(2:1) version of the formula has been shown to be useful for the estimation of the
acceptability of colour difference evaluations.

The CMC(2:1) equation is a British Standard (BS:6923) for the assessment of small
colour differences and is currently being considered as an ISO standard. The CMC(�:c)-
distance from colour 1 to colour 2 is defined as

∆E =

√(
∆L∗

�SL(L∗
1)

)2

+

(
∆C

cSC(C1)

)2

+

(
∆H

SH(C1, H1)

)2

,

A-10

where

SL(L) =

0.040975L

1 + 0.01765L
if L ≥ 16

0.511 if L < 16
(4)

SC(C) =
0.0638C

1 + 0.0131C
+ 0.638,

SH(C,H) = SC(C)
(
1 − f(C) + f(C)T (H)

)
,

with

f(C) =
C2

√
C4 + 1900

,

T (H) =

{
0.36 + |0.4 cos(H + 35)| if −15 ≤ H ≤ 164

0.56 + |0.2 cos(H + 168)| if 164 < H < 345

and H is measured in degrees. Notice that this notion of distance is asymmetric. The
distance from colour 1 to colour 2 is most likely not the same as the distance from
colour 2 to colour 1. For small differences we have

∆C ≈ a∗∆a∗ + b∗∆b∗√
a∗2 + b∗2

and ∆H ≈ −b∗∆a∗ + a∗∆b∗√
a∗2 + b∗2

.

Hence

∆C2 ≈ a∗2∆a∗2 + 2a∗b∗∆a∗∆b∗ + b∗2∆b∗2

a∗2 + b∗2 ,

∆H2 ≈ b∗2∆a∗2 − 2a∗b∗∆a∗∆b∗ + a∗2∆b∗2

a∗2 + b∗2 ,

and in CIELAB coordinates we have

∆E2 = GL(∆L∗)2 + Ga(∆a∗)2 + Gab∆a∗∆b∗ + Gb(∆b∗)2 , (5)

where

GL(L∗
1) = (�SL(L∗

1))
−2 (6)

Ga(a, b) =
S2(a, b)2a2 + c2b2

(a2 + b2)c2S1(a, b)2S2(a, b)2
, (7)

Gab(a, b) =
2ab(S2(a, b)2 − c2)

(a2 + b2)c2S1(a, b)2S2(a, b)2
, (8)

Gb(a, b) =
c2a2 + S2(a, b)2b2

(a2 + b2)c2S1(a, b)2S2(a, b)2
, (9)

A-11

and

S1(a, b) =
0.0638

√
a2 + b2

1 + 0.0131
√

a2 + b2
+ 0.638, (10)

S2(a, b) = 1 − g(a, b) + g(a, b)h(a, b), (11)

g(a, b) =
a2 + b2√

(a2 + b2)2 + 1900
, (12)

h(a, b) =

0.36 +

|0.3277 a − 0.2294 b|√
a2 + b2

if 0.2588 a + 0.9659 b ≥ 0,

0.56 +
|0.1956 a + 0.04158 b|√

a2 + b2
if 0.2588 a + 0.9659 b < 0.

(13)

Similarly

∆L∗ ≈ L∗′
(

Y2

Yn

)
∆Y

Yn

(14)

∆a∗ ≈ 500

(
f ′
(

X2

Xn

)
∆X

Xn

− f ′
(

Y2

Yn

)
∆Y

Yn

)
(15)

∆b∗ ≈ 200

(
f ′
(

Y2

Yn

)
∆Y

Yn

− f ′
(

Z2

Zn

)
∆Z

Zn

)
, (16)

where

L∗′(t) =

903.3 for t ≤ 0.008856
116

3
t−2/3 for t > 0.008856

(17)

f ′(t) =

7.787 for t ≤ 0.008856
1

3
t−2/3 for t > 0.008856.

(18)

Thus, in CIEXYZ coordinates the CMC-equation becomes

∆E2 = GX

(
∆X

Xn

)2

+ GY

(
∆Y

Yn

)2

+ GZ

(
∆Z

Zn

)2

+ GXY
∆X

Xn

∆Y

Yn

+ GY Z
∆Y

Yn

∆Z

Zn

+ GXZ
∆X

Xn

∆Z

Zn

, (19)

A-12

where

GX = 5002Gaf
′
(

X1

Xn

)2

(20)

GY = GLL∗′
(

Y1

Yn

)2

+
(
5002Ga − 500 · 200 Gab + 2002Gb

)
f ′
(

Y1

Yn

)2

(21)

GZ = 2002Gbf
′
(

Z1

Zn

)2

(22)

GXY =
(
500 · 200 Gab − 2 · 5002Ga

)
f ′
(

X1

Xn

)
f ′
(

Y1

Yn

)
(23)

GY Z =
(
500 · 200 Gab − 2 · 2002Gb

)
f ′
(

Y1

Yn

)
f ′
(

Z1

Zn

)
(24)

GXZ = −500 · 200 Gab f ′
(

X1

Xn

)
f ′
(

Z1

Zn

)
(25)

The MacAdam ellipses have roughly 1/3 of the size of the CMC-tolerance ellipses, as
they should, but the shapes of the two sets of ellipses are quite different; see Figure 5.
This need not concern us here, as the goal of the dye process is to be within the CMC-
tolerance, or perhaps the Marks & Spencer4 tolerance.

MacAdam ellipse

CMC ellipse

Figure 5: The MacAdam ellipses and the CMC-ellipses in the a∗b∗-plane, L∗ = 50.

3.4 The dye model

Just as in [3] we will use the Kubelka-Munk model — see also [8] — for the dye process.
If a material is dyed with a mixture of N dyes, each at a concentration Cn, then the

4In the 1980s Marks & Spencer, in conjunction with Instrumental Colour Systems, developed their
own in-house equations that are used in the textile industry. The M&S equations have never been
published, but are reported to give similar results as the CMC equations. In any case it should not be
difficult to replace the CMC-standard with the M&S-standard.

A-13

reflection coefficient is given by

β(λ) = 1 +
k(λ)

s(λ)
−
√(

1 +
k(λ)

s(λ)

)2

− 1.

Conversely k/s = (1 − β)2/(2β), and
√

(1 + k/s)2 − 1 = (1 − β2)/(2β). In terms of the
dye concentrations, the fraction k/s can be calculated from

k(λ)

s(λ)
=

k0(λ)

s(λ)
+

N∑
n=1

kn(λ)

s(λ)

Cn

C0

,

where kn(λ) is the absorption of dye n at concentration C0, and k0 is the absorption of
the undyed material. The equation basically says that all the scattering, s(λ), is due to
the undyed material, while the absorption, k(λ), may be superimposed linearly.

Now assume we have two dye recipes given by concentrations C1
n and C2

n respectively.
When the process shifts from C1

n to C2
n, a small fraction εC1

n of the old dye is left and
we will assume that it decays exponentially, as εe−µtC1

n. We then have

k(λ)

s(λ)
=

k0(λ)

s(λ)
+

N∑
n=1

kn(λ)

s(λ)

C2
n

C0︸ ︷︷ ︸
k2(λ)/s(λ)

+εe−µt

N∑
n=1

kn(λ)

s(λ)

C1
n

C0︸ ︷︷ ︸
k̂1(λ)/s(λ)

If (2(1 + k2/s) + k̂1/s εe−µt) k̂1/s εe−µt is small compared to (1 + k2/s)
2 − 1, we have√√√√(

1 +
k2

s
+

k̂1

s
εe−µt

)2

− 1

=

√√√√(
1 +

k2

s

)2

− 1 + 2

(
1 +

k2

s

)
k̂1

s
εe−µt +

(
k̂1

s
εe−µt

)2

≈
√(

1 +
k2

s

)2

− 1

(
1 +

1 + k2/s

(1 + k2/s)2 − 1

k̂1

s
εe−µt

)

=

√(
1 +

k2

s

)2

− 1 +
1 + k2/s√

(1 + k2/s)2 − 1

k̂1

s
εe−µt.

So if β2(λ) is the reflection coefficient for the second colour, then the reflection coefficient
of the mixed colour is

β(λ) = 1 +
k2

s
+

k̂1

s
εe−µt −

√√√√(
1 +

k2

s
+

k̂1

s
εe−µt

)2

− 1

≈ 1 +
k2

s
−
√(

1 +
k2

s

)2

− 1 +

(
1 − 1 + k2/s√

(1 + k2/s)2 − 1

)
k̂1

s
εe−µt

= β2 − β2

(1 − β2
2)/(2β2)

k̂1

s
εe−µt = β2 − 2β2

2

1 − β2
2

k̂1

s
εe−µt.

A-14

If (k̂1/s)
2 ε2 � 2β2

2/(1 − β2
2) (k̂1/s) ε � 1, this is a good approximation. The dye

concentrations Cn/C0, the absorption coefficients kn/s, and the reflection coefficient β2

are all quantities known to Acordis, so we only need to determine ε and µ. At this point
we can already see that if the second colour is lighter, then β2 is closer to 1, and the
initial error term 2β2

2/(1 − β2
2) (k̂1/s) ε is larger, thus it will take longer before the term

is negligible.
The CIE XYZ components are given by

(X,Y, Z) = k

∫
β(λ) S(λ)

(
x(λ), y(λ), z(λ)

)
dλ

= k

∫ (
β2(λ) − 2β2(λ)2

1 − β2(λ)2

k̂1(λ)

s(λ)
εe−µt

)
S(λ)

(
x(λ), y(λ), z(λ)

)
dλ

= k

∫
β2(λ) S(λ)

(
x(λ), y(λ), z(λ)

)
dλ

− εe−µt 2k

∫
2β2(λ)2

1 − β2(λ)2

k̂1(λ)

s
S(λ)

(
x(λ), y(λ), z(λ)

)
dλ.

If (X2, Y2, Z2) are the components for colour 2, then we have

X = X2 − ε e−µt∆X,

with similar expressions for the Y and Z components, where

(∆X, ∆Y, ∆Z) = 2k

∫
2β2(λ)2

1 − β2(λ)2

k̂1(λ)

s
S(λ)

(
x(λ), y(λ), z(λ)

)
dλ, (26)

Note that we can write

k̂1(λ)

s
=

(1 − β1(λ))2

2β1(λ)
− (1 − β0(λ))2

2β0(λ)

where β0 and β1 are the reflection coefficients for the undyed material and the material
dyed with colour 1, respectively. If the initial errors ε ∆X, ε ∆Y , and ε ∆Z are small
then we can write the CMC-error as ∆E = ∆E0 ε e−µt, where ∆E0 is given by (19). The
time for a colour change is given by the equation ∆E = 1, i.e.

t =
ln(∆E2

0) + 2 ln ε

2µ
. (27)

The quantity ∆E0 can be calculated with information available from Acordis. By looking
back at old production data or by conducting controlled experiments it is possible to plot
t as a function of ln(∆E0). If the assumptions we have made here hold, then the data
should fit well to a straight line, except for small values of ∆E0. There is a minimum
time for a colour change, so the graph should consist of a horizontal line followed by
another straight line. The slope of the latter is 1/µ and its intersection with the axis
ln(∆E0) = 0 is ln ε/µ.

These values of µ and ε can now be used to predict the time of any colour change.
All the above relies on the assumption that we can consider the tainting of the new

A-15

colour with the old colour as single dye process. This need not be true. For example,
the tainting could be due to floss of old fabric attaching itself to the new fabric, and it
is not clear what the best model for this would be. In any case the procedure outlined
above will tell us how good the model is.

3.5 The spot model

Instead of considering the residues of the old dye as a ‘correction’ to the new dye, we
could adopt the following point of view. We have some residues of the old dye or colour
scattered along the production line and they produce small spots of the old colour on
the new fabric. If the individual spots are too small to be seen, then the effect of, say
blue spots on a yellow fabric, would be to make the yellow colour more greenish. In the
CIEXYZ space we would have:

(X,Y, Z) = (1 − α)(X2, Y2, Z2) + α(X1, Y1, Z1)

= (X2, Y2, Z2) + α(∆X, ∆Y, ∆Z),

where (X2, Y2, Z2) and (X1, Y1, Z1) are the components of the new and old colour
respectively, ∆X = X1 − X2 and similar for Y and Z, and α is the fraction of the
old colour present on the fabric. If we once more assume exponential decay of the old
colour then we have

(X,Y, Z) = (X2, Y2, Z2) + ε e−µt (∆X, ∆Y, ∆Z). (28)

Once more we can write the CMC-error as ∆E = ∆E0 ε e−µt, where ∆E0 is found by
substituting (28) into (19). Consequently (27) is the time for a colour change, and we
can calibrate and check this model in exactly the same manner as in the previous section.
The only difference is the way we calculate ∆E0. The present model has the advantage
of being a function of the two colours only; we do not need the specific dye recipes.

If we only want to compare colour changes then we do not need the values of ε and
µ, because 1/µ is just a common factor and ε/µ is added to every colour change time.
But if we want to compare colour changes with other kinds of changes in the production,
then we do need these values.

At the study group we had the CIELCH values for seven different colours, given in
Table 6.

Colour no. 1 2 3 4 5 6 7
L∗ 59.40 44.60 37.16 83.75 79.01 28.22 84.48
C 62.94 11.64 50.29 81.47 16.10 19.99 8.39
H 162.86 148.27 166.69 139.60 168.05 85.00 175.83

Table 6: The CIELCH components of the seven colours.

If the ‘colour spot’ model is valid, then the colour change scheduling is determined
by the logarithm of the CMC(1:1)-distances in CIEXYZ-space. They can be determined

A-16

by the following algorithm. For each colour (L∗
i , Ci, Hi) we calculate:

(a∗
i , b

∗
i) = (Ci cos Hi, Ci sin Hi),

g(a∗
i , b

∗
i) and h(a∗

i , b
∗
i) using (12) and (13),

S1(a
∗
i , b

∗
i) and S2(a

∗
i , b

∗
i) using (10) and (11),

GL(L∗), Ga(a
∗
i , b

∗
i), Gab(a

∗
i , b

∗
i), and Gb(a

∗
i , b

∗
i) using (6), (7), (8) and (9),

GX , GY , GZ , GXY , GY Z , and GXZ using (20) – (25),

Yi/Yn, Xi/Xn, and Zi/Zn using (1), (2) and (3),

L∗′(Yi/Yn) using (17),

f ′(Yi/Yn), f ′(Xi/Xn), and f ′(Zi/Zn) using (18).

For each j = 1, . . . , 7 we then calculate

∆Xij/Xn = Xj/Xn − Xi/Xn,

∆Yij/Yn = Yj/Yn − Yi/Yn,

∆Zij/Zn = Zj/Zn − Zi/Zn,

∆E2
ij using (19).

The result is the following distance matrix:

[
ln(∆E2

ij)/2
]

=

— 5.10 4.64 4.22 4.34 6.19 4.84
4.11 — 2.71 4.79 5.17 5.29 5.54
4.19 2.98 — 4.80 5.19 4.99 5.55
4.55 6.08 5.62 — 4.19 6.98 4.07
4.09 5.85 5.39 3.43 — 6.78 3.55
4.64 4.76 3.89 5.05 5.51 — 5.84
4.41 6.03 5.57 2.96 3.37 6.93 —

. (29)

In the i’th row and j’th column we have the time (up to the parameters ε and µ) it takes
to change from the i’th colour to the j’th colour.

In both the present model and the dye model we may replace the exponential decay
e−µt with some other form of decay, say �(t). We then have the equation ∆E = ∆E0 ε �(t)
for the CMC-difference, and (27) is replaced by t = �−1

(
1/(∆E0 ε)

)
.

4 Solution method

We now describe an algorithm to find a good schedule. To begin with we restrict attention
to the case where we are only concerned with a single week’s worth of jobs, with all
lines free at the beginning of the week. In the final section we describe how to amend
the procedure to deal with a rolling schedule. Some of the jobs will have a due date
corresponding to the end of a week, some will have a due date further in the future and
some will already be late.

The key to this procedure is to split the set of jobs into blocks, where a block is
a maximal set of jobs for which the set-up time to change from one job to another is

A-17

strictly less than thirty minutes, and which may only contain jobs of a single special
pigment type. Notice that if a respin is required to change the settings from J1 to J2

then J1 and J2 are contained in separate blocks, however the converse in not true. In
the following we will loosely refer to a respin occuring between any two blocks since it is
only the time involved in changing the configuration of a line between jobs that concerns
us and not the precise procedure. Clearly the first step in any procedure should be to
minimise the number of lengthy delays due to respins, and partitioning jobs into blocks
is the first stage in achieving this. Blocks containing only jobs with due dates later than
the end of the week are now discarded as they may be scheduled at a later stage.

4.1 Assigning blocks to lines

Suppose we have blocks B1, B2, . . . , Bn. We now describe the first step of the scheduling
procedure which assigns blocks to lines. This is done using a version of depth first search
(DFS), assigning blocks one by one until either it is impossible to assign more blocks
or an assignment of all blocks is reached. Let ni denote the number of jobs in block
Bi, li denote the total length in km of fibre to be produced in Bi and let si denote the
minimum set-up time required during the processing of block Bi. For each i we estimate
si using the farthest insertion heuristic described in the next section. We label the lines
L1, . . . , L8 in some way and let rj denote the length in km of fibre produced by line Lj

in one hour (assuming no delays). Thus an estimate of the number of hours needed to
process block Bi on line Lj is li/rj + si plus the amount of time needed for a respin at
the start of the block. For each block Bi we let Fi denote the set of lines on which block
Bi may be processed.

Throughout the process we measure the capacity available on each line in terms of
time. The actual capacity aj is the amount of free time available on line Lj until the
end of the week, and the useful capacity uj is a more complicated measure which allows
some jobs to run late.

In order to determine the useful capacities to allocate to each line we next make an
estimate of the total time, in machine-hours, required to process all of the blocks. This
is given by

T̂ =
n∑

i=1

(
si +

8li
M

+

⌊
li

21M

⌋)
+ n − 8,

where M =
∑8

j=1 rj, the total length of fibre produced per hour across all lines. The
terms in the estimate correspond respectively to the delays due to changing settings
within a block, the time to actually produce the fibre, time spent in respins because
a large block must be split between lines5 and other time spent in respins. Now let
T = max{T̂ , 1344} (note that 1344 = 168 × 8 is the total number of machine-hours in
a week). The time T is then split up equally between the lines and an extra amount of
time added to allow for the possibility of avoiding some respins by allowing jobs to run

5Note that 8li/M is the time in hours taken to produce the fibre and dividing this by 168 gives the
number of respins needed because the block exceeds the time available in a single week

A-18

late. More precisely we define uj by

uj = T/8 +
1

0.066αrj

,

where α is the penalty per tonne of product for each week or part week that it is late.
The second term comes from choosing to add on a length of time which is chosen so that
if all jobs in that period are late then the ensuing cost would equal the cost of an extra
respin. It is based on an average kilotex of 66 grammes/metre. The values of aj and
uj are constantly updated in the procedure as they are used to represent the available
capacity given the current partial assignment.

The blocks are ordered for consideration by the DFS in the following way. Firstly
they are split into two types: those with total length greater than 100km or which may
be processed on four or fewer lines, and the remaining blocks. The blocks of the first
type are assigned by the DFS before those of the second type. Within each type, blocks
are ordered firstly by the size of the set of lines Fi on which they may be scheduled and
secondly by the total length of the block.

During the DFS, blocks are assigned one by one to a line in the order described
above. Block Bi may be assigned to line Lj if j ∈ Fi and the useful capacity remaining
on line Lj is at least si + li/rj. Each time a block is assigned to a line Lj the useful
and actual capacities of line Lj are updated to take into account the time processing the
block including the delays from changing settings within the block and time involved
in a respin before a new block can be processed afterwards. Should a block be reached
with, for every j, si + li/rj > uj this block is not assigned at this stage but placed at
the end of the blocks of the first type, to be split up between lines, as described below.
If at any stage it becomes impossible to allocate a block because all the lines on which
it may be scheduled have used up their useful capacity, then that branch of the DFS is
abandoned and backtracking occurs.

Splitting large blocks between lines. When the DFS has constructed a partial
assignment of all those blocks of the first type which do not require splitting it moves
on to consider how to split the large blocks left over. Typically there will only be one
or two blocks requiring splitting and these blocks are considered in all possible orders
by the DFS. Once the DFS arrives at this stage no more backtracking occurs. A given
block is split up using the following greedy heuristic, which ignores the fact that a block
consists of discrete jobs and assigns a proportion of each block to particular lines.

The proportion πij of block Bi that may be assigned to line Lj (assuming that j ∈ Fi)
without exceeding the useful capacity of Lj is

rjuj

sirj + li
.

To split a block Bi between lines, those lines in Fi are ordered in decreasing order of πij.
Proportions of Bi are assigned to each of these lines in order, filling up the useful capacity,
until there is a line with enough useful capacity to take the remaining proportion of the
block. Once this happens we try to assign the last proportion of Bi to the line with the
smallest actual capacity for the last proportion of Bi to fit. If no such line exists we
assign the last proportion of Bi to the line with the smallest useful capacity large enough

A-19

to take the final proportion of Bi. In the case where the final proportion of Bi does not
use up all the actual capacity of the line Ll to which it is assigned, we allocate as many
jobs from each of the other proportions of Bi in turn until the actual capacity of Ll is
used up. This procedure is repeated with all the other blocks that have been split.

Where possible, the blocks on each line are now ordered in decreasing order of W̄iqi

where W̄i is the average weight (in tonnes) of a job in block Bi and qi is the proportion
of jobs in block Bi that have due date at the end of the week or before. When there is
more than one block involving the production of jobs with a special finish this may not
be possible.

We can estimate the cost Cj of late jobs on line j as follows. If a block Bi is started
after the end of the week, then all jobs in the block with due dates at the end of the
week or before are late and so the estimated cost of these is αW̄iqi. If block Bi is started
before the end of the week but finishes after the end of the week and we assume that
late jobs are equally likely to occur at any position in Bi then if Tf and Ts are estimates
of the finishing and starting times (measured from the start of the week) of the block,
respectively, an estimate of the cost of late jobs is

α

⌈
Tf − 168

Tf − Ts

ni

⌉
qiW̄i.

The small blocks of type two are now assigned greedily, each one being assigned to
the line and in the position causing the smallest increment in total cost as a result of
late jobs.

Possible reallocation of split blocks. The final stage is to try to reallocate some
of the parts of blocks that have been split in an attempt to reduce the cost of late jobs
at the expense of an extra respin. We work with the blocks in the same order that they
were assigned to lines. Suppose we are considering reallocating parts of block Bi. Let
π̂ij denote the proportion of Bi that would have to be removed from line Lj in order that
all jobs on that line were finished by the end of the week. Then

π̂ij = min

{
max

{
0,

rj(−aj − 1)

sirj + li

}
, πij

}
.

The minus one is due to the fact that aj has already been updated to take care of a
potential respin occurring after the last block. The cost ĉj of removing proportion π̂ij of
the block can easily be calculated.

We try to reallocate parts of block Bi to the line Lj belonging to Fi with the greatest
value of

rjaj

sirj + li
.

Denote this line by Lk. Now order the lines with π̂ij > 0 in decreasing order of ĉj/π̂ij

and from each in turn remove as large a proportion of Bi up to a maximum of π̂ij and
allocate it to line Lk until the actual capacity of line Lk is used up. It is straightforward
to compare the improvement in the cost because fewer jobs are late with the cost of the
extra respin and decide whether the reallocation is worthwhile. Should such a reallocation
prove to be worthwhile we repeat the process and attempt to reallocate again until it is
no longer worthwhile.

A-20

Following the above procedure, each leaf node of the DFS tree corresponds to an
assignment of all the blocks to the lines. For each leaf node of the DFS tree, the cost of
the assignment is estimated by summing the estimated cost due to late jobs on each line
and the costs due to respins. At the end of the procedure the assignment with the least
cost is selected as the one used.

If no assignment satisfying the useful capacities is found during the DFS then the
process is repeated with uj incremented by 1/(0.066αrj) for each j repeatedly until a
feasible assignment is found.

4.2 Sequencing within a block

In this section we begin by describing an algorithm that will sequence the jobs within
a block assuming that the block is all to be processed on a single line. Later we will
discuss how this algorithm can be used to split long blocks within two lines.

We assume that we have jobs J1, . . . , Jn to be sequenced. Each job Ji has a processing
time pi, a weight wi and a due time di. Notice that the weights are proportional to the
processing times with the constant of proportionality depending on the speed of the line
and the kilotex. Now let ci,j denote the time to change the set-up of the line between
the configuration required for job Ji and that required for job Jj. In order to simplify
the algorithm we first compute a set of jobs for which the due dates are guaranteed to
be met using any schedule.

Suppose we start processing the block at time T0. The time to process the complete
sequence of jobs is at most

M =
n∑

i=1

pi +
n∑

i=1

max{ci,j : 1 ≤ j ≤ n}.

Therefore those jobs with due time di satisfying di + T0 ≥ M will not be late under any
schedule and so they are given a new due time of ∞ reflecting the fact that the due date
will not concern us.

The problem is now to find a permutation π : [1, n] → [1, n] (which we regard as a
sequence of the jobs J1, . . . , Jn) that minimises

n∑
i=1

pi +
n−1∑
i=1

cπ(i),π(i+1) + α
n∑

i=1

wiI(π, i),

where I(π, i) is an indicator variable taking the value one if job Ji is late under the
schedule given by π and the value zero otherwise.

Our problem is very similar to the well-studied travelling salesman problem (TSP) [2,
4, 5, 6, 9, 10]. In the TSP we are given a complete graph on vertices {v1, . . . , vn} where the
edge (vi, vj) has weight ai,j and we seek a permutation π of the vertices which minimises

n∑
i=1

aπ(vi),π(vi+1),

where by π(vn+1) we mean π(v1). In the case where all due dates are equal to infinity
then by adding a dummy job J0 with processing time zero, due date ∞ and set up

A-21

costs c0,i = ci,0 = 0 for all i, we transform the problem to an instance of the TSP.
Unfortunately the TSP is an NP-hard problem and so it is extremely unlikely that there
is a fast, efficient (i.e. polynomial time) algorithm to solve it. However a huge range of
heuristics has been studied for the TSP and the similarity with the sequencing problem
suggests that these heuristics might be suitable for solving the sequencing problem.

Although there is no analytical method to formally determine the best heuristic
for the TSP, the best methods appears to be branch and cut algorithms using integer
programming formulations [2, 9]. It does not appear to be straightforward to make these
methods work when we have extra constraints such as those given by the due dates.
Consequently we have opted for an approach using construction heuristics followed by
local search. A construction heuristic for a scheduling problem builds up a schedule step
by step, adding a new job into the schedule at each stage. There is a rule for selecting
the next job to be inserted and a second rule for deciding where to insert it into the
current partial schedule. One construction heuristic that appears to have relatively good
performance is farthest insertion [10] which we describe now.

Within each block, we first partition the jobs into two sets, A1 and A2, where A1

contains those jobs Ji for which di is at or before the end of the current week and A2

contains the others. Notice that because we are only sequencing a week’s worth of jobs
and we assume that all the due dates correspond to the end of some week, the jobs in A1

are precisely those jobs for which the choice of how the block is scheduled will determine
whether they are late or not. Furthermore A1 will be empty if the choice of schedule has
no effect on which jobs are late.

The next stage is to sequence the jobs in A1. We assume that

A1 = {J1, J2, . . . Jm}.

We begin by finding the pair of jobs Jr and Js which achieve the maximum in

max
i�=j

min{ci,j, cj,i}

and forming an initial sequence from them by taking them in the order achieving the
minimum.

Throughout the process we build up a partial schedule by inserting one job at a time.
Suppose, without loss of generality, that the schedule assembled so far is J1, J2, J3, . . . , Jk.
For each job Jl where k + 1 ≤ l ≤ m we compute the minimum extra delay ml resulting
from inserting Jl into one of the possible k+1 positions in the schedule. The extra delay
incurred from inserting Jl between Jr and Js is

cr,l + cl,s − cr,s.

Since the costs satisfy the triangle inequality, this value is always positive. We then find
the unplaced job with the maximum value of ml and add it to the schedule in the place
where this value is achieved, that is the place where the minimum extra delay is incurred
for that job.

Notice that at each stage in this process, we ignore the extra cost incurred from jobs
being late. This is reasonable providing the jobs all have similar processing times, for

A-22

then we have little control over how many jobs are late and can make the reasonable
assumption that the schedule requiring the smallest total time is a good one.

The quality of the solution can be improved by applying a procedure such as 3-OPT.
This is an iterative local improvement heuristic. To describe one stage of the iteration,
suppose without loss of generality that in the current schedule the jobs are ordered
J1, J2, . . . , Jn. The schedule J is broken into four pieces and the schedule Ĵ produced by
interchanging the intermediate pieces is compared with the original schedule. If Ĵ has
cost less than that of J then we replace J by Ĵ and start another iteration, otherwise we
carry on choosing places to break the chain. More precisely we enumerate all possible
choices of integers j, k and l such that 1 ≤ j < k < l ≤ n + 1 and find the cost of the
schedule Ĵ given by taking the jobs in the order

J1, . . . , Jj−1, Jk, Jk+1, . . . , Jl−1, Jj, Jj+1, . . . , Jk−1, Jl, . . . , Jn.

This procedure is repeated until either a local optimum is reached or a fixed number of
iterations have been carried out. Using an implementation [4], which we do not describe
here, the procedure can be implemented so that each iteration takes time O(n2).

Once the jobs in A1 have been sequenced, we take any jobs from A1 that will be late
in the schedule and then add them to A2. We now sequence A2 in the same way as for
A1 producing a sequence to follow the one that we have already constructed.

For the set of jobs discussed in the Section 3, the set-up times are determined by the
matrix (29). If we take the (i, j) entry to be the time taken in minutes to change colour
from that required for job Ji to that required for job Jj where {J1, . . . , J7} is a set of jobs
forming a block for which due dates are sufficiently large to be dismissed, the sequence
produced by the farthest insertion heuristic is J6, J3, J2, J1, J5, J7, J4 with a total set-up
time of 21.56 minutes. Careful checking shows that this is optimal and that the 3-OPT
procedure would not even be needed.

Generally the farthest insertion heuristic will not produce the optimal solution.
Empirical evidence [4] suggests that for problems without due dates, it produces a
solution with cost about 10-15% above the optimal value. Again empirical evidence
suggests that 3-OPT can achieve a significant improvement on this and will tend to
produce a solution with cost about 3-4% above the optimum.

Split blocks. Blocks which need to be split over two or more lines have their jobs
sequenced last. We first obtain upper bounds bj on the amount of time that can be used
for processing the jobs from Bi allocated to line Lj. Suppose that the DFS has allocated
a proportion πij of the jobs from Bi to line Lj. An estimate of the total time needed to
process the proportion of Bi allocated to Lj is

πij(si + li/rj).

If this estimate does not exceed the remaining actual capacity of Lj and there are no
other portions of split blocks on line Lj still to be sequenced then we set bj to be the
remaining actual capacity of Lj (after all the blocks other than Bi have been sequenced).
Otherwise we set

bj = πij(si + li/rj).

When the farthest insertion heuristic is run it first selects the initial jobs to be assigned
to each machine by choosing those jobs which maximise minj ci,j. One of these jobs is

A-23

allocated to each line. The procedure then carries on exactly as before except that the
heuristic will never insert a job into a line which would cause the total processing time
to exceed bj, unless it becomes impossible to prevent this.

When a block has been split between lines, the 3-OPT heuristic can carry out two
types of move. It can interchange segments of jobs within a portion of a block or it
can interchange two segments of jobs between two portions of a block. Without loss of
generality suppose a block is split between lines L1, . . . , Lk. Suppose further that there
are mi jobs assigned to Li. The 3-OPT routine first makes a choice of line, Lj say, and
then chooses two integers p and q with 1 ≤ p < q ≤ mj + 1. It may then do one of two
things. Firstly it may choose a third integer r such that q < r ≤ mj + 1 and carry out
a normal 3-OPT move as before or it may choose another line m′

j and an integer r such
that 1 ≤ r ≤ m′

j − q + p + 1 and consider the benefit of interchanging the segments of
jobs Jj,p, . . . , Jj,q−1 with Jj′,r, . . . , Jj′,r+q−1−p. As before 3-OPT can be run for a fixed
period of time or until a local optimum is reached.

4.3 Sequencing over more than 1 week

In this section we describe the additional complications that result from having a rolling
schedule. The procedure we describe will produce a schedule looking at a two-week
window. We assume that for each week we are given a collection of new orders, some of
which must be completed by the end of the week. Much of the procedure is exactly as
described above and we work with a week’s worth of jobs at a time. However we allow
ourselves the option of altering the schedule for the previous week as we construct the
next week.

We divide the new jobs into blocks in exactly the same way as before and discard any
blocks with no jobs to be assigned by the end of the week as before. Actual and useful
capacities are defined in a similar way to before except that they have to take account
of the time that the lines finish processing the jobs from the previous week’s schedule.
This is done by adding the remaining actual capacity of the previous week’s jobs to the
initial values of actual and useful capacity.

The DFS proceeds in a similar fashion to before except in two places. When it
attempts to add a block Bi to a line it may either assign it as a new block in its own right
or if there is a compatible block B̂ scheduled in the previous week then it will consider
the possibility of combining the two blocks by inserting the new block immediately after
B̂, avoiding the cost of an extra respin. (Two blocks are said to be compatible if their
jobs may be considered as a single set, still without incurring any respin.) When doing
this, the extra cost due to jobs from the previous week being late will be compared with
the cost of an extra respin. Secondly when the DFS attempts to order the blocks on a
line it will also try to reorder the blocks from the previous week if a pair of blocks, one
from each week, are compatible. This may produce an improved schedule if the ordering
can be arranged so that the last block from the first week is compatible with the first
block of the second week, avoiding the need for a respin.

The farthest insertion and 3-OPT heuristics work in the same way as for when just
one week is scheduled except in the case when there is a set of compatible blocks with
one or more in each week of the schedule. In this case both the heuristics are modified to

A-24

work in a similar way to how they work when a block has to be split between lines. The
farthest insertion heuristic is allowed to add jobs to blocks in the previous week with
the proviso that no job in any block in the previous week may become late as a result of
doing this. The 3-OPT heuristic will attempt to move sequences of jobs between blocks,
again in a similar way to when a block has been split.

5 Conclusions

In our model of the problem, some simplications have been made and it is important
to understand the implications of these. The main simplification is the way we have
treated due dates. In a more detailed model, the two different types of due dates that
we have described could be dealt with more accurately or a function giving the penalty
for lateness for each job could be specified.

Our solution method has two stages. In the first part the jobs are partitioned into
blocks and the blocks assigned to lines. This task seems relatively straightforward for
the two sets of real data we have seen but we do not know whether this is generally the
case. In the second stage sequencing is carried out within the blocks. This uses methods
developed for the Travelling Salesman Problem, for which there is a vast literature. The
problem considered here is complicated by due dates, meaning that some of the methods
for the Travelling Salesman Problem cannot be used or are much less efficient. The
method we have chosen to use is generally regarded as being one of the better heuristics
for the Travelling Salesman Problem but not the best. However it can cope with the
problem of due dates. It is possible to refine the method to achieve significant speed-
up when sequencing a set of jobs for which any sequence meets the due dates, but it
is unclear whether this refinement can be achieved when due dates are important. An
interesting question is to determine how much time is spent in each part of the algorithm
and which parts are the most efficient.

To evaluate the effectiveness of the methods we have discussed, it will be necessary to
schedule a number of weeks of jobs and compare with the schedules currently produced
by Acordis. This will be particularly useful to identify desirable features that have not
been incorporated within the model. A reasonable approach to combining the computer
and human schedulers would be to use the computer for assigning jobs within a block.
This is a simple problem to describe but a hard problem to solve. In practice there seems
less scope for finding good solutions to the problem of assigning blocks to lines. Because
of the nature of the constraints in this part of the problem, to ensure that the computer
does not miss a solution which is fairly obvious to a human requires the construction of
a cumbersome and only moderately efficient program.

References

[1] Basic parameter values for the HDTV standard for the studio and for the
international program exchange, ITU-R Recommendation BT.709, ITU, Geneva
(1991).

A-25

[2] D. L. Applegate, R. Bixby, V. Chvátal and W. Cook, Finding cuts in the TSP,
Technical report, DIMACS (1995).

[3] S. D. Howison and R. J. Lawrence, Fluorescent transfer of light in dyed materials,
SIAM J. Appl. Math., 53(2) 447–458 (1993).

[4] D. S. Johnson and L. A. McGeoch, The traveling salesman problem: a case study
in local optimization, in E. H. L. Aarts and J. K. Lenstra (editors) Local Search in
Combinatorial Optimization, pp. 215–310, John Wiley, 1997.

[5] S. Lin, Computer solutions of the traveling salesman problem, Bell Systems
Technical Journal, 44 2245–2269 (1965).

[6] S. Lin and B. W. Kernaghan, An effective heuristic algorithm for the traveling-
salesman problem, Operations Research, 21 498–516 (1973).

[7] D. L. MacAdam, Visual sensitivities to color differences in daylight, J. Optical Soc.
America, 32 247–274 (1942).

[8] L. McLaren, The Color Science of Dyes and Pigments, Adam Hilger, Bristol, 1983.

[9] M. Padberg and G. Rinaldi, A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems, SIAM Review, 33 60–100 (1991).

[10] D. J. Rosenkrantz, R. E. Stearns and P. M. Lewis, An analysis of several heuristics
for the traveling salesman problem, SIAM J. Comput., 6 563–581 (1977).

[11] G. Wyszecki and W. S. Stiles, Color Science, Concepts and Methods, Quantitative
Data and Formulae (Second edition), John Wiley, 1982.

A-26

