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4.1 Introduction

Oil and gas wells are regularly monitored for their production rates. Typically, daily produc-
tion rate data is available, expressed in millions of standard cubic feet per day (MMscf/d) for
natural gas wells or barrels per day (Bbl/d) for liquids, i.e., oil or water. This data reflects
changing physical conditions within the oil or gas reservoir, changes in equipment (eg. failure or
maintenance), activity of surrounding wells, variability in outshipping methods, and changing
production rates due to economic factors. As a result, typical production rate data is noisy and
highly discontinuous.

Decline analysis is a process that extrapolates trends in the production rate data from oil
and gas wells to forecast future production and ultimate cumulative reserve recovery. Current
software often attempts a best fit approach through all the data, but the result is erroneous in
the majority of cases. A human operator with an understanding of the factors that affect the
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56 CHAPTER 4. DECLINE ANALYSIS

behavior of oil and gas wells can do a much better job of forecasting appropriately; however, it
is a time-consuming process.

The goal is to find an algorithm that can be easily interfaced with standard industrial
software and that incorporates some of the criteria used in the human analysis so as to perform
acceptable forecasts in the majority of cases.

4.2 Proposed Solution

The proposed solution consists of three main steps: (1) Segmentation of Data, (2) Curve fitting,
and (3) a Decision Process. Segmentation of Data attempts to identify intervals in the data
where a single trend is dominant. A curve from an appropriate family of functions is then fitted
to this interval of data. The Decision Process gauges the quality of the trends identified and
either formulates a final answer or, if the program cannot come to a reliable answer, ’flags’ the
well to be looked at by an operator.

4.2.1 Segmentation

The input data is assumed to consist of a time series, {U(i)}N
i=1, where U(i) represents the data

point (rate of oil/gas flow from the well) at time i. We assume the list is contiguous, i.e., there
is a data point for each time step (the length of a time step is input by the operator). In this
stage of the analysis the data set is divided into segments. Each segment will be analyzed in
subsequent stages.

The end points of the segments are determined by (1) discontinuities in the data, and (2)
discontinuities in the slope of the mean data (changes in trend). Two methods were developed
for detecting these types of discontinuities; one method for detecting type (1) discontinuities,
and one method for detecting type (2) discontinuities.

Because the data is typically very noisy, the data is smoothed a number of times. This
smoothing reduces the amplitude of the oscillations of the noise relative to the amplitudes of
the discontinuities in the data, making the discontinuities easier to identify.

Each smoothing operation is obtained by moving averages with a window of width three. Let
{U l−1

s (i)}N
i=1, l ≥ 1, denote the data after being smoothed l− 1 times. Then the next smoothed

version of the data, {U l
s(i)}

N
i=1, is obtained by the formula;

U l
s(i) =

1

3

(

U l−1
s (i − 1) + U l−1

s (i) + U l−1
s (i + 1)

)

.

The number of times the data is smoothed depends on the length N of the data set. We
found from experience that an appropriate value for the number of times k the data should be
smoothed is k = blog2(N)c. (From now on, ”smoothed data” will mean {U k

s (i)}N
i=1.)

After the data is smoothed a data set of differences {Ud(i)}N
i=1 is produced, where

Ud(i) = |U(i) − Uk
s (i)|.

That is, the differences are the (absolute value of) oscillations of the data around the smoothed
data. The method for detecting type (1) discontinuities analyzes these differences.
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The type (1) discontinuities in the data show up as larger peaks in the differences. However,
because the data is typically very noisy, and to facilitate the identification of the locations of
peaks (as described below), the differences are also smoothed a number of times, precisely, k/2
times (where k is as above), and in the same manner as the data was smoothed, i.e., by moving
averages with a window of width three. This has the effect of suppressing oscillations in the
differences {Ud(i)}N

i=1 that are due to noise in the data, and thereby enhancing the peaks in the
differences that are due to discontinuities in the data.

The discontinuities in the data are identified as the largest peaks in the (smoothed) differ-
ences. This is accomplished by locating peaks in the differences that are above some threshold.
The threshold is set at 15% of the mean of the (original) data. That is, a peak in {Ud(i)}N

i=1 is
identified as a point of discontinuity in the data if the amplitude of the peak is greater or equal
to 15% of the mean value of the data.

The locations of the peaks are found by identifying local maxima in the differences that
are above the threshold. Here we look for points where the (finite-difference) derivative of the
differences change from positive to negative. That is, if D(i) = Ud(i + 1) − Ud(i), then if
D(i) > 0 and D(i + 1) < 0 we record i as a point of discontinuity in the data (provided that
Ud(i) is above the threshold).

Now we look for discontinuities in the slope of the (mean) data (i.e., the type (2) disconti-
nuities). For each interval obtained above (from looking for type (1) discontinuities), a value for
the derivative of the ’mean’ data at that point is obtained by computing the derivative of the
best-fit parabola at that point. The parabola is fitted only to the data within 15 points on either
side of the point under consideration. This gives a time series of ’mean’ derivative values of the
data in the interval. This time series is fed into the program that finds type (1) discontinuities.
The output is a list of points where the slope of the ’mean’ data has a discontinuity.

The locations of the two types of discontinuities are combined into one list - the list of end
points of intervals for the data. This list is passed on to the next stage in the analysis.

Wavelet analysis

Another approach to determining the segmentation of the data uses wavelets (see for example
[1]). Wavelets are functions that cut up the data into different temporal and frequency compo-
nents, and then study each component with a resolution matched to its scale. They are highly
useful in analyzing physical situations where the signal is discontinuous. In this work, given the
noisy data, wavelets are used to de-noise the data and to divide time series into segments.

The technique works in the following way. When you decompose a data set using wavelets,
you use filters that act as averaging filters and others that produce details. Some of the re-
sulting wavelet coefficients correspond to details in the data set. If the details are small, they
might be omitted without substantially affecting the main features of the data set. The idea
of thresholding, then, is to set to zero all coefficients that are less than a particular threshold.
We then use an inverse wavelet transformation to reconstruct the data set. The de-noising is
carried out without smoothing out the sharp structures. The result is a cleaned-up signal that
still shows important details. In our case we used a Haar Wavelet base function to de-noise the
noisy decline data and also to determine the changes in the production dynamics.
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4.2.2 Curve Fitting and EUR

The previous stage in the analysis produced a list {a1, . . . , am} of end points of intervals
I1 = (1, a1), I2 = (a1, a2), . . . , Im+1 = (am, N) for the data {U(i)}N

i=1. The second stage in
the analysis performs a least squares curve fitting to each of the intervals. That is, curve fitting
is applied to the time series
{U(i)}a1

i=1, {U(i)}a2
i=a1

, . . . , {U(i)}N
i=am

. The actual intervals of data used in the curve fitting
are slightly smaller than these (to remove transient effects).

The class of curves used in the fitting belong to the family

q(t) = qo(1 + nDt)−1/n (4.1)

where qo, n and D are parameters. It has long been accepted within the petroleum industry
that this function accurately models the uninterrupted flow rate of a well, and it can be also
derived from basic physical principles.

Once we have found the best fit for the kth interval Ik, we compute a number of summary
statistics;

• qo,k, nk, Dk ; least squares estimates of qo, n and D, and

• S2
k = normalized variance of the data over the interval =

∑

i∈Ik
|U(i) − qk(i)|

2/lk where lk
is the length of Ik and qk(t) is the curve fit for the kth interval.

The most important of these statistics is EURk, the Estimated Ultimate Recovery based on
the best fit curve of the kth interval. It is determined by solving for the time at which the best
fit curve passes below a minimum threshold rate, call this time Tk, and then computing the sum;

EURk =

ak−1
∑

1

U(i) +

Tk
∑

i=ak

qk(i) (4.2)

where the first sum simply represents the volume of oil or gas that has already been produced,
and the second is the amount we expect to produce based on the curve fit qk(t) for the kth
interval. These statistics are then passed as parameters to a weight function which decides their
relevance and usefulness, and based on this we can calculate a final EUR value.

4.2.3 Decision Process, Final Estimated Ultimate Recovery (EUR),
and Overall Rate Curve

Given the parameters pk = (nk, qo,k, Dk, EURk, S
2
k, lk), k = 1, ..., m + 1 for the fits over the

intervals I1, ..., Im+1, we choose a weight function wk = wk(pk) that indicates how ’reliable’ the
EURk is. The following conditions may be considered as rules for a reliable EURk;

• Ik is a long data set,

• the variance S2
k over Ik is small,

• 0 ≤ n ≤ 0.5 (a physically plausible hyperbola), and

• Ik is a recent interval.
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The weight reflects the importance of the hyperbolic curve fit over interval k in determining
the final EUR. The precise formula incorporating the factors above was chosen to be;

wk =

(lk−r)+h(nk)

S2
k
(N−ak)

∑m+1
i=1

(li−r)+h(ni)

S2
i (N−ai)

. (4.3)

Here, as above, lk is the length of interval k, m+1 is the total number of intervals obtained from
the segmentation stage of the analysis, r is an integer such that intervals of length less than or
equal to r will not be used, and (lk−r)+ denotes the positive part of lk−r (i.e., (lk−r)+ = lk−r
if lk − r ≥ 0, and (lk − r)+ = 0 if lk − r < 0). nk is the estimate of the model parameter n for
interval k (cf. Equation (1.1) ), and h(n) is a function which gives the parameter n from the
hyperbolic fits a separate weighting, for example,

h(n) = 1 if n ∈ [0, 0.5]

2(1 − n) if n ∈ (0.5, 1]

0 if n > 1.

(Engineering knowledge indicates that low values of the model parameter n indicate a well which
is past its period of transient activity.) A similar function could instead be applied. S2

k is the
normalized sum of squared residuals between the curve qk and the data in the interval Ik (see
above).

Once the weights have been determined, the EUR is calculated with the formula,

ÊUR =
m+1
∑

k=1

wk × EURk (4.4)

where EURk is the EUR which would be predicted using the curve fitted from interval k (cf.
Equation (1.2) ). The following provisions must also be implemented:

• If EURk is less than the amount of oil which has already been recovered, wk is set to zero.

• If EURk is calculated to be infinite, wk is set to zero.

Finally, we would like to be able to predict the amount of production between the end of the
observed data and any future time t using a single, ‘overall’ hyperbolic curve of the form given
in Equation (1.1). Engineering practice allows us to use for the estimate of the parameter n of
this ’overall’ curve, the convex combination of the nk, namely,

n̂ =
m+1
∑

k=1

wk nk.

This, along with the following two equations, will give us the parameters of a single hyperbolic
curve.
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For the final time point N ,

q̂0(1 + n̂D̂N)−1/n̂ = qN , (4.5)

(cf. Equation (1.1) ), the observed rate at time N . Alternatively, we could use the observed rate
at the last acceptable time point used for curve fitting, or an average of the last few acceptable
observed rates for the right hand side of the equation.

For the ÊUR,

q̂0

(

1 +
D̂(n̂ − 1)ÊUR

q̂0

)− 1
n̂−1

= 1. (4.6)

This is simply stating that at the time of ÊUR, we will be pumping at a rate of 1 barrel per day.
Some other acceptable cut-off value could be used instead. Note that this equation is obtained by
writing the rate function in terms of the cumulative production at time t. This transformation is
easily obtained by integrating the original rate function considered, qt = q0(1 + nDt)−1/n (with
respect to t), to come up with a cumulative function, solving for time and substituting back into
the original rate function again.

Equations (1.5) and (1.6) can be reduced to a single variable problem by solving Equation
(1.5) for q̂0 and then substituting into Equation (1.6). Then, only D̂ would need to be solved
for numerically.

When all three parameters in the final hyperbolic curve are estimated, we can make forward
predictions for rate and cumulative production at future time points.

4.3 Discussion

A more thorough testing of the algorithm presented here would include;

• More sophisticated techniques such as wavelets or neural networks (see below) could be used
in the segmentation stage if the present method (of moving averages) turns out to be unreliable.

• An examination of the uncertainties in the curve fits and the final predictions made.

• Fine tuning the weighting functions wk.

• Verification that the parameters for the final (’overall’) hyperbolic curve are realistic.

• A more robust approach to the estimates obtained in stage 3; initial tests show that Equations
(1.5) and (1.6) may be unstable.

One may consider using a neural network in the analysis (see for example [2]). Given suf-
ficiently many data sets it may be sensible to avoid the choice of a heuristic weighting scheme
such as given by Equation (1.3) in favour of a neural net approach where we would allow the
algorithm to find good weighting schemes through training. Furthermore, it may be possible
to invoke some training components in the segmentation algorithm as well. More specifically,
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4.3. DISCUSSION 61

the choice of the important thresholding parameters in the smoothing algorithm seems to be a
likely candidate for a neural net approach.
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