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2.1 Introduction

This problem was brought to us by Ritchie (Yeqi) He of RBC Financial Group. It concerns
the pricing of swaps involving the so-called pseudo-statistics, namely the pseudo-variance, -
covariance, -volatility, and -correlation. These products provide an easy way for investors to
gain exposure to the future level of volatility. Swaps, in this context, are forward contracts in
which the underlying is an interest rate St. They are also path-dependent because the payoffs
depend on the trajectory of St on some time period [Ts, Te] ⊆ [0, T ], where T is the maturity
date. The prefix pseudo is used to indicate that samples of the underlying are taken at discrete
times t0, t1, ..., tn ∈ [Ts, Te]. In the usual complete market framework, the unique prices of these
swaps can be computed as the mathematical expectation of the discounted payoffs under the
measure in which the discounted rate process is a martingale. In this report, we present analytic

1University of Western Ontario
2University of Calgary
3York University
4McGill University
5Moscow State University
6University of Illinois
7University of Toronto

27



28 CHAPTER 2. PRICE PSEUDO-VARIANCE AND PSEUDO-VOLATILITY SWAPS

formulas for these expectations for the pseudo-variance and pseudo-volatility swaps, as requested
by the problem statement. Also, we use Monte-Carlo simulation to experiment with a stochastic
volatility model.

2.2 Definitions

Here we briefly describe the problem presented to us. The bibliography contains references on
variance and volatility swaps. The market we consider consists of the strictly positive underlying
rates S

(1)
t and S

(2)
t satisfying the stochastic differential equation (SDE)

dS
(i)
t

S
(i)
t

= µ
(i)
t dt+ σ

(i)
t dW i

t , t > 0, i = 1, 2

and a numeraire Nt which is a zero-coupon bond df(t, T ). Here dW
(i)
t are standard Wiener

processes (zero mean, unit variance per unit time) with correlation ρtdt. In the cases of the

variance and volatility swaps, we drop the superscripts so for example we write St = S
(1)
t

and µt = µ
(1)
t , etc. We assume that the market is complete, so there exists a unique martingale

measure Q with respect to Nt. First, let us define the following continuously realized (measured)
statistics over an observation period [Ts, Te]:

Σ2
(S)(Ts, Te) =

1

Te − Ts

∫ Te

Ts

σ2
τdτ, (realized volatility-square)

Σ2
(S(1),S(2))(Ts, Te) =

1

Te − Ts

∫ Te

Ts

σ(1)
τ σ(2)

τ ρτdτ, (realized volatility-cross)

σ(S)(Ts, Te) =

√
1

Te − Ts

∫ Te

Ts

σ2
τdτ, (realized volatility)

ρ(S(1),S(2))(Ts, Te) =

∫ Te

Ts
σ

(1)
τ σ

(2)
τ ρτdτ√∫ Te

Ts
σ

(1)
τ

2
dτ

√∫ Te

Ts
σ

(2)
τ

2
dτ

. (realized correlation)

Note that when S
(1)
t ≡ S

(2)
t , the correlation is equal to one and the volatility-cross coincides

with the volatility-square. Here we only consider the simpler case where we approximate the
above quantities by ones that are discretely sampled. Thus, let Ts = t0 < t1 < ... < tn = Te be
the sampling dates, and we define the log-return1 for the underlying rate S as

X
(k)
i = log

(
S

(k)
ti

S
(k)
ti−1

)
, k = 1, 2, i = 1, 2, ..., n

and also denote the arithmetic mean by

X̄(k)
n =

1

n

n∑

i=1

X
(k)
i , k = 1, 2.

1Here log denotes the natural logarithm.

π



2.3. PRICE PSEUDO-VARIANCE & PSEUDO-COVARIANCE SWAPS 29

Now, we can define the following realized pseudo-statistics:

Σ̂2
(S)(n;TS, Te) =

n

Te − Ts

(
1

n− 1

n∑

i=1

(Xi − X̄n)2

)
, (realized pseudo-volatility-square)

Σ̂2
(S(1),S(2))(n;Ts, Te) =

n

Te − Ts

(
1

n− 1

n∑

i=1

2∏

k=1

(X
(k)
i − X̄(k)

n )

)
, (realized pseudo-volatility-cross)

σ̂(S)(n;Ts, Te) =

√√√√ n

Te − Ts

(
1

n− 1

n∑

i=1

(
Xi − X̄n

)2
)
, (realized pseudo-volatility)

ρ̂(S(1),S(2))(n;Ts, Te) =

∑n
i=1

∏2
k=1(X

(k)
i − X̄

(k)
n )

∏2
k=1

√
∑n

i=1

(
X

(k)
i − X̄

(k)
n

)2
. (realized pseudo-correlation)

Based on these pseudo-statistics, we can define the swaps, which are really forward contracts,
by their payoffs at maturity date T ≥ Te:

Vvar(T ) = αvar · I ·
[
Σ̂2

(S)(n;TS, Te) − Σ2
K

]
, (pseudo-variance swap)

Vcov(T ) = αvar · I ·
[
Σ̂2

(S(1),S(2))(n;Ts, Te) − Σ2
K

]
, (pseudo-covariance swap)

Vvol(T ) = αvol · I ·
[
σ̂(S)(n;Ts, Te) − σK

]
, (pseudo-volatility swap)

Vcorr(T ) = αcorr · I ·
[
ρ̂(S(1),S(2))(n;Ts, Te) − ρK

]
. (pseudo-correlation swap)

In the above, αi are the converting parameters, I = ±1 is a long-short index, and Σ2
K , σK and

ρK are the strikes.
The problem is to price the above swaps. The general pricing formula is the mathematical

expectation of the Nt-discounted claim under the unique martingale measure Q:

Vi(0) = EQ

[
N0

NT
Vi(T )

]

= EQ [df(0, T )Vi(T )]

= df(0, T ) EQ [Vi(T )] , i = var, cov, vol, and corr.

Note that the payoffs are path-dependent. Our goal is to find analytic expressions for the above
pricing problems.

2.3 Price Pseudo-Variance & Pseudo-Covariance Swaps

To find the price of a pseudo-variance swap, it is necessary to compute the expected value of
Σ̂2

(S)(n;TS, Te). First, notice that each Xi is independently and normally distributed with mean

αi =

∫ ti

ti−1

(
µt −

σ2
t

2

)
dt,
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30 CHAPTER 2. PRICE PSEUDO-VARIANCE AND PSEUDO-VOLATILITY SWAPS

and variance

β2
i =

∫ ti

ti−1

σ2
t dt.

Now we compute

EQ
[
Σ̂2

(S)(n;TS, Te)
]

= EQ

[
n

Te − Ts

(
1

n− 1

n∑

i=1

(Xi − X̄n)2

)]

=
n

Te − Ts
· 1

n− 1
EQ

[
n∑

i=1

(Xi − X̄n)2

]

=
n

Te − Ts
· 1

n− 1
EQ




n∑

i=1

(
(αi + βiYi) −

1

n

n∑

j=1

(αj + βjYj)

)2


 ,

where Yi is a normal N(0, 1) random variable. Let ᾱ :=
∑n

k=1 αi be the mean. After some
calculations, the above expression can be written

EQ
[
Σ̂2

(S)(n;TS, Te)
]

=
n

Te − Ts

· 1

n− 1




n∑

i=1

(αi − ᾱ)2 + EQ




n∑

i=1

(
βiYi −

1

n

n∑

j=1

βjYj

)2








=
n

Te − Ts

· 1

n− 1

(
n∑

i=1

(αi − ᾱ)2 +
n− 1

n

n∑

i=1

β2
i

)

=
n

Te − Ts
· 1

n− 1

n∑

i=1

(αi − ᾱ)2 +
1

Te − Ts

n∑

i=1

β2
i

=
n

Te − Ts
· 1

n− 1

n∑

i=1

(αi − ᾱ)2 +
1

Te − Ts

∫ Te

Ts

σ2
τdτ

=
n

Te − Ts
· 1

n− 1

n∑

i=1

(αi − ᾱ)2 + Σ2
(S)(Ts, Te).

We point out that a variance swap can be replicated by a portfolio of options, forwards and
zero-coupon bonds [2].

As pointed out in the problem statement, the pricing of a pseudo-covariance swap can be
reduced to the pricing of a pseudo-variance swap. More specifically, it was argued that the price
of a covariance swap can be written

Vcov(0) =
1

4
αcov · I · df(0, T ) ·

(
EQ
[
Σ̂2

(S(1)·S(2))(n;TS, Te)
]
− EQ

[
Σ̂2

(S(1)/S(2))(n;TS, Te)
]
− 4Σ2

K

)
.

Hence we do not need to price the pseudo-covariance swap directly.

2.4 Price Pseudo-Volatility Swaps

To price the pseudo-volatility swap of strike σK , we need to compute the expected value of the
realized-pseudo volatility σ̂(S)(n;Ts, Te). To get a second-order approximation, we use a Taylor
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expansion of the square root function about some Σ̂0 close to the expected swap value:

EQ
[
σ̂(S)(n;Ts, Te)

]
= EQ

[√
Σ̂2

(S)(n;TS, Te)

]

≈ EQ

[
Σ̂2

(S)(n;TS, Te) + Σ̂0

2
√

Σ̂0

−
(Σ̂2

(S)(n;TS, Te) − Σ̂0)
2

8(Σ̂0)
3
2

]

=
EQ
[
Σ̂2

(S)(n;TS, Te)
]

+ Σ̂0

2
√

Σ̂0

−
EQ
[
Σ̂2

(S)(n;TS, Te) − Σ̂0

]2

8(Σ̂0)
3
2

=
EQ
[
Σ̂2

(S)(n;TS, Te)
]

+ Σ̂0

2
√

Σ̂0

−
VarQ

[
Σ̂2

(S)(n;TS, Te)
]

+
(
EQ
[
Σ̂2

(S)(n;TS, Te)
]
− Σ̂0

)2

8(Σ̂0)
3
2

.

Note that the expected value EQ
[
Σ̂2

(S)(n;TS, Te)
]

is already computed in the previous section,

so here we compute the variance:

VarQ
[
Σ̂2

(S)(n;TS, Te)
]

= VarQ

[
n

Te − Ts

(
1

n− 1

n∑

i=1

(Xi − X̄n)2

)]

=
1

(Te − Ts)2
· n2

(n− 1)2
VarQ

[
n∑

i=1

(Xi − X̄n)2

]

=
1

(Te − Ts)2
· n2

(n− 1)2



EQ

[
n∑

i=1

(Xi − X̄)2

]2

−
(

EQ

[
n∑

i=1

(Xi − X̄)2

])2


 .

After some calculations, the first term in the bracket above can be written

EQ

[
n∑

i=1

(Xi − X̄)2

]2

= EQ

[
n∑

i,j=1

X2
i X

2
j

]
− 2

n
EQ




(

n∑

k=1

X2
k

)2 n∑

i=1

X2
i



 +
1

n2
EQ

[
n∑

i=1

Xi

]4

.

Now, let us denote the coefficients by

A := EQ

[
n∑

i,j=1

X2
i X

2
j

]
,

B := EQ




(

n∑

k=1

X2
k

)2 n∑

i=1

X2
i



 , and

C := EQ

[
n∑

i=1

Xi

]4

.

Then our formula for the variance can be written

VarQ

[
n∑

i=1

(Xi − X̄)2

]
= A− 2

n
B +

1

n2
C −

(
EQ

[
n∑

i=1

(Xi − X̄)2

])2

.
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Note that the last term has already been calculated in the previous section, so it remains to
find formulas for A,B, and C. Indeed, we spent much of our time to do this and here are the
results:

A =
∑

i

(α4
i + 6α2

iβ
2
i + 3β4

i ) + 2
∑

i<j

(α2
i + β2

i )(α
2
j + β2

j ),

B =
∑

i

(α4
i + 6α2

iβ
2
i + 3β4

i ) + 2
∑

i<j

(α2
i + β2

i )(α
2
j + β2

j ) + 2
∑

i<j

(3αiβ
2
i + α3

i )αj

+ 2
∑

i<j

αi(3αjβ
2
j + α3

j ) + 2
∑

i<j<k

αiαj(α
2
k + β2

k),

C =
∑

i

(α4
i + 6α2

iβ
2
i + 3β4

i ) + 4
∑

i<j

(α3
i + 3αiβ

2
i )αj + 6

∑

i<j

(α2
i + β2

i )(α
2
j + β2

j )

+ 12
∑

i<j<k

(α2
i + β2

i )αjαk + 4
∑

i<j

αi(α
3
j + 3αjβ

2
j ) + 12

∑

i<j<l

αj(α
2
j + β2

j )αl

+ 12
∑

i<j<l

αiαj(α
2
l + β2

l ) + 24
∑

i<j<k<l

αiαjαkαl.

In the above, we have again used the notation that each random variable Xi follows a normal
distribution with mean αi and variance β2

i .
Further, it can be shown that

EQ
[
Σ̂2

(S)(n;TS, Te)
]
→ Σ2

(S) and VarQ
[
Σ̂2

(S)(n;TS, Te)
]
→ 0,

as n → ∞. This means that Σ̂2
(S)(n;TS, Te) is an asymptotically unbiased and consistent esti-

mator of Σ2
(S)(Ts, Te).

2.5 Numerical Simulation

Following the idea of [1], we consider for the numerical simulations, a stochastic volatility model
of the CIR type:

dσ2
t = κ(θ2 − σ2

t ) dt+ γσt dW
(2)
t . (2.1)

Similar to the previous section, once discretized in time, Xt becomes a stochastic process taking
random values, Xi, normally distributed with mean αi and variance β2

i , at each time step:

Xi = log

(
Si

Si−1

)
∼ N(αi, β

2
i ).

The parameters are related to the Xt process through the following equations:

αi = EQ [Xi] =

∫ ti

ti−1

µtdt−
1

2
EQ

[∫ ti

ti−1

σ2
t dt

]
,

β2
i = VarQ [Xi] = EQ

[∫ ti

ti−1

σ2
t dt

]
.
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2.6. ANOTHER APPROACH 33

In order to evaluate the expectation and the variance of the Xt process, two different ways
are being used. The first one is the application of the Monte-Carlo technique directly on the
discretized σ2

t process, whose behaviour is given by (2.1). The second one is the application of
the Monte-Carlo technique on the discretized process Xi = log(Si/Si−1).

The advantage of using the CIR model is that it yields an exact solution for the expectation
and the variance of the Xt process (cf.[1]). Hence, the numerical results can be easily verified.

All simulations are generated over 1000 time steps. For the results in Table 2.5, only 100
scenarios are considered, since the idea of the simulations is more to give an illustration and
improve our understanding of the processes than to provide a numerical proof. The values of
the parameters are set to κ = 10, θ2 = 0.2, σ0 = 0.2 and γ = 0.75. Note that γ = 0 yields a
deterministic volatility (see Figure 2.5).

Expectation Variance
Exact 0.1281 0.0019
MC σ2

t 0.1287 0.0022
MC (log St)

2 0.1280 0.0021

Table 2.1: Exact and numerical results for the expectation and variance of Xt.

Although the relatively low number of scenarios, the numerical results match the exact
solutions within some reasonable error range.

2.6 Another Approach

Here we describe another approach in finding the expectation and variance. The idea is to work
with the bond-discounted rate process S∗

t in the martingale measure Q. Let (Ω,F ,Ft, P ) be a
probability space with Ft being filtration. We define the discounted St process by

S∗
t =

St

Bt
,

where Bt is the deterministic bond price at time t satisfying dBt = rtBt dt. It is known that the
unique martingale measure Q for the discounted rate process S∗

t is given by the Radon-Nikodym
derivative

dQ

dP
= exp

(∫ T

0

rt − µt

σt

dWt −
1

2

∫ T

0

(
rt − µt

σt

)2

dt

)
. (2.2)

Under this martingale measure, the driftless process S∗
t satisfies dS∗

t = σtS
∗
t dW

∗
t , where W ∗

t

given by

W ∗
t = Wt −

∫ t

0

rs − µs

σs
ds, 0 ≤ t ≤ T

is a standard Wiener process on the probability space (Ω,F ,Ft, Q). We also have

d logS∗
t = −σ

2
t

2
dt+ σt dW

∗
t .
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Figure 2.1: Monte-Carlo simulation, for the log-returns Xt and the stochastic volatility σ2
t .

Then, the log-return for the discounted process S∗
t can be written

X∗
i := log

S∗
ti

S∗
ti−1

= −1

2

∫ ti

ti−1

σ2
t dt+

∫ ti

ti−1

σt dW
∗,

and it follows a normal distribution with mean

αi := EQ [X∗
i ] = −1

2

∫ ti

ti−1

σ2
t dt

and variance

β2
i := VarQ [X∗

i ] =

∫ ti

ti−1

σ2
t dt.

Thus, X∗
i has the representation X∗

i = αi + βiY , where Y is a standard normal N(0, 1). We
note that

EQ
[
(X∗

i )2
]

= α2
i + β2

i and EQ
[
(X∗

i )4
]

= α4
k + 6α2

iβ
2
i + 3β4

i .

Now, we compute the expected value of the pseudo-volatility-square, first neglecting the
mean X̄∗

n := 1
n

∑n
i=1X

∗
i :

EQ
[
Σ̂2

(S)(n;TS, Te)
]

= EP
[
Σ̂2

(S)(n;TS, Te)MT

]
.
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Here MT is defined in the right-hand side of (2.2). If we use Taylor expansion for MT , then we
obtain the formula demonstrated below. We propose to calculate EQ for the discounted process
S∗

t , which simplifies some calculation in the case of St:

EQ
[
Σ̂2

(S∗)(n;TS, Te)
]

=
n

(Te − Ts)
· 1

(n− 1)

n∑

i=1

EQ
[
(X∗

i )2
]

=
n

(Te − Ts)
· 1

(n− 1)

n∑

i=1

(
α2

i + β2
i

)

=
n

(Te − Ts)
· 1

(n− 1)

n∑

i=1

(
1

4
β4

i + β2
i ).

If we do not neglect X̄∗
n, then we obtain the more general expression

EQ
[
Σ̂2

(S)(n;TS, Te)
]

=
n

(Te − Ts)
· 1

(n− 1)

n∑

i=1




(
−1

2
β2

i +
1

2n

n∑

j=1

β2
j

)2

+
n− 1

n
β2

i



 .

In the risk-neutral world, the process St satisfies the SDE

d logSt =

(
rt −

σ2
t

2

)
dt+ σt dW

∗
t .

This means that under the measure Q the log-return Xi is normally distributed with mean

αi =

∫ ti

ti−1

(
rt −

σ2
t

2

)
dt

and variance

β2
i =

∫ ti

ti−1

σ2
t dt.

In this case our formula becomes

EQ
[
Σ̂2

(S)(n;TS, Te)
]

=
n

(Te − Ts)
· 1

n− 1

n∑

i=1



(
αi −

1

n

n∑

j=1

αj

)2

+
n− 1

n
β2

i


 ,

which is the same as in Section 2.3.
To compute the variance, we need to find the the following expectation:

EQ

[(
Σ̂2

(S)(n;TS, Te)
)2
]

=
1

(Te − Ts)2
· n2

(n− 1)2

(
n∑

i=1

EQ
[
(X∗

i )4
]
+ 2

∑

i<j

EQ
[
(X∗

i )2(X∗
j )2
]
)

=
1

(Te − Ts)2
· n2

(n− 1)2

(
n∑

i=1

(α4
i + 6α2

iβ
2
i + 3β4

i )

+ 2
∑

i<j

(
α2

iα
2
j + α2

iβ
2
j + 2β2

i α
2
j + 3β2

i β
2
j + 2αiαjβiβj

)
)
.

Since αi = −1
2
β2

i , the above expression can be simplified.
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2.7 Conclusion

During the short week, our group has obtained closed-form formulas for the expectation and
variance of the realized pseudo-volatility-square, as requested by the problem:

EQ
[
Σ̂2

(S)(n;TS, Te)
]

(Question 1)

VarQ
[
Σ̂2

(S)(n;TS, Te)
]

(Question 2)

Although these formulas are complicated, they can be (carefully) implemented on a computer to
compute prices of pseudo-variance, pseudo-covariance, and pseudo-volatility swaps in real time.
This is the advantage of formulas over (quasi-) Monte-Carlo simulation and is highly desired by
market practitioners.

In theory, we should be able to obtain the answer for question three as well, that is, to
compute the covariance of different combinations of

A1(n) := Σ̂2
(S(1))(n;TS, Te),

A2(n) := Σ̂2
(S(2))(n;TS, Te),

A12(n) := Σ̂2
(S(1)·S(2))(n;TS, Te), and

A1/2(n) := Σ̂2
(S(1)/S(2))(n;TS, Te).

However, we did not have time to complete this task, so this can be part of future work. Also,
we did not have the opportunity to verify the appropriateness or validity of our results with our
industry representative Ritchie He of RBC Financial Group, since he was away for the last days
of the week.
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