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1 Statement of the problem

An active sensing system probes the environment by transmitting a signal and processing
the output of a receiver, which contains echoes from reflectors and boundaries. It will also
contain noise. Usually the transmission is pulsed. Delay between the transmission of a
pulse and the moment when it returns to the receiver determines the distance to a target.
Using a continuous periodic signal in transmission leads immediately to ambiguities and
demasking. The scheme under consideration here transmits a continuous signal generated
by a driven chaotic dynamical system. There are the following advantages in the use of
chaotic signals:

(1) Reduction of ambiguity: Usually one estimates the time delay τ between pulsed
or continuous signals by shifting them against each other and comparing. For some
τ the two signals are most similar, as assessed by means of statistical characteristics
like the mutual correlation function (dynamical methods can be used as well).
However, two periodic signals will be most similar for τ +kT , where k is an integer
and T is the period of the signal. Thus, there will always be kT uncertainty when
defining the time delay τ from periodic signals. On the contrary, chaotic signals
do not repeat in time and thus avoid this ambiguity.

(2) Robustness: A chaotic signal possesses a broad-band Fourier power spectrum.
Information theory testifies that broad-band signals are more robust against
external noise [1].

(3) Security: It is always more difficult to recognize a chaotic signal than a periodic
one.

A means of determining echo arrivals is required. Finding the correlation function
and use of higher order statistics are the methods put forward by Bauer [2, 3]. In this
report, a scheme is proposed, based on the work of Thompson [4], by which the presence
of a signal causes bifurcation in a dynamical system. There are two versions. In the first
version, the delayed and attenuated output of the transmitter is fed back into itself (Fig.
1(a)). In the second version, two dynamical systems run in parallel, with the delayed
and attenuated output of the transmitter being fed into the receiver (Fig. 1(b)). Due to
possible multipath propagation, the signal on the input of the receiver could be a mix of
echoes with different intensities αi and delays τi.

As an idealisation we assume the medium in which signals propagate to be
homogeneous, linear and non-dispersive. For the formulae below we also assume the
bottom to be horizontal. A bottom with a slope or of a more complex shape will require
more sophisticated geometrical formulae connecting the signal delay and attenuation
with the configuration of the environment. However, once the configuration of the system
is known, the corresponding formulae can be derived and substituted into the model
equations. The basic feature of signal propagation will remain the same, independent
of configuration: the longer the signal path is, the larger is the time shift between the
radiated and received signals and the larger is the attenuation. Complication of the
geometry will not affect considerations below.
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Figure 1: Two schemes for inducing bifurcations in a receiving system: (a) direct
feedback scheme and (b) parallel systems.

Within this approximation, there can be two possibilities:

(1) The water only attenuates the propagated signals, and does not make other
transformations. Let us take into account two reflected signals and introduce how
their parameters will be related to the geometry of the whole system. One signal
is reflected from the target and returns directly to the processing device (suppose
this is roughly the same straight line along which the signal traveled to the target
after being radiated). Then its attenuation factor α0 and time delay τ0 will be

α0 = 1/r, τ0 = r/c , (1)

where c is the wave speed and r is the distance from the transmitter to the target,
as shown in Fig. 2. The second signal will be reflected from the target at some
nonzero angle and go to the water surface. It will then be reflected from the water
surface, which is supposed to be perfectly reflecting. Its attenuation factor α1 and
time delay τ1 will be

α1 = 2/
√

r2 + 4d2, τ1 =
√

r2 + 4d2/c, (2)

with d as shown in Fig. 2. If one takes into account the reflection from the bottom
as well, the attenuation factor α2 and time delay τ2 will be

α2 = 2/r2, τ2 = r2/c , (3)

where r2 =
√

r2 + 4(D − d)2 and D is as shown in Fig. 2.
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Figure 2: Geometry of two-path signal propagation.

(2) The water may make some linear transformation of the system resulting in a
change to the Fourier spectrum. Note that linear transformations cannot remove
or add spectral components. The only effect of linear transformations can be
attenuation of some components to a larger extent than others. To characterize
this transformation a transfer function can be used.

In this case we can estimate the transfer function of the medium and present a
received signal not just as a sum of attenuated and delayed versions of the radiated
one, but as a sum of convolutions of each reflected signal with the transfer function.

As a refinement to the above approximation, one can take into account nonlinear
properties of the propagation medium, in agreement with e.g. [5]. The results of
simulation with nonlinear media should be compared with the results for linear media
to reveal the extent to which nonlinearity influences the operation of the whole system.

The problem is to analyse the behaviour of the proposed detection system and to
establish conditions under which it bifurcates in the presence of a signal. Note that the
model applies both to monostatic (source and receiver collocated) and bistatic systems,
with suitable choice of the path parameters. Note also that this is a simplified case,
because the source and target will not in general be at the same distance from the water
surface. The key matter is the presence in the problem of the attenuations and delays.
Their dependence on the environment may not be important for the initial investigation.
For realization of scheme Fig. 1(a) a forced Duffing oscillator could be considered as
an example of a transmitter. The model equations in the approximation of two-path
propagation are then written as

ẍ + c1ẋ − c2x + c3x
3 = F cos(ωt) +

2∑

i=0

αix(t − τi) + ξ(t). (4)

Here c1,2,3, F and ω are intrinsic system parameters; α0,1,2 and τ0,1,2 are the attenuations
and delays with which the radiated signal is received, having been reflected from a target
(see (2), (3)); ξ is some generalized noise in the system.

F-4



The final aim of this technology is to find the distance from the target, and possibly
other data like depth etc., using knowledge about bifurcations in systems like (4). A
special requirement is that this information should be gained from short data sets to
speed up the process of parameter recognition.

2 Solution of the problem

The Study Group first defined the task more precisely from the nonlinear dynamics
point of view. Then the requirements of the dynamical systems suitable for the presented
problem were elaborated. Finally, possible ways of solution were proposed. All numerical
results during discussion were obtained by using the “Dynamics Solver” software [6].

2.1 Problem definition

The whole problem can be split into three parts:

1. Signal radiation.

2. Signal propagation through water.

3. Processing of the reflected signal by a receiver.

In reality the signal is affected by noise at each of the above stages. Let us for simplicity
consider the idealised noise-free case.

It was initially supposed that the radiated signal has to be chaotic. Therefore the
dimension of possible models cannot be less than three. For simplicity, propagation of
the signal through the water was considered as its linear transformation. Then a general
model of the ‘feedback scheme’ of Fig. 1(a) could be written as

ẋ1 = f1(x1, x2, . . . , xN ; t; �µ) +
∑

i

αix1(t − τi)

· · ·
ẋN = fN(x1, x2, . . . , xN ; t; �µ) (5)

and a general model of the ‘parallel scheme’ of Fig. 1(b) as

ẋ1 = f1(x1, x2, . . . , xN ; t; �µ)

· · ·
ẋN = fN(x1, x2, . . . , xN ; t; �µ) (6)

ẏ1 = g1(y1, y2, . . . , yL; t;�ν) +
∑

i

αix1(t − τi)

· · ·
ẏL = gL(y1, y2, . . . , yL; t;�ν)

Here �x is a state of radiating system, �y is a state of receiving system, �µ, �ν are vectors
of system parameters, and t is time. In terms of (5) and (6) the initial problem could
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be reformulated into the problem of finding αi and τi, if �x ,�y, and
∑

i αix1(t − τi) are
known. How in this situation could the knowledge about bifurcations in systems (5) and
(6) be used?

The approach consists of plotting the (series of) bifurcation diagram(s) of the system
on the plane of two selected control parameters. Bifurcation diagrams consist of the
curves separating the regions with qualitatively different behaviour. Each type of
behaviour is associated with an attractor. Assume a control parameter corresponding to
the horizontal axis of the parameter plane is the distance from the target. Then one wants
the bifurcation diagram to have a striped structure consisting of narrow adjoint regions,
every two neighbouring regions corresponding to qualitatively distinct attractors. Then
the received signal can be classified as belonging to one of these regions, and the distance
from the target will be estimated with some finite accuracy defined by the width of this
particular region in the parameter plane.

Therefore, the system modelling the transmitter should satisfy the following criteria:

(1) Richness of the bifurcation diagram. To provide a more precise estimation of
the control parameter, one needs the different regions in the parameter plane to be
narrow. This means that for a given range of control parameter values, the number
of different regimes will be large enough. The requirement for short datasets to
process also imposes restrictions to the system: its attractors should allow an easy
and reliable detection from short datasets.

(2) Robustness towards external fluctuations. One needs the system to be robust
towards noise. A problem is likely to arise from the effect of unavoidable noise on
the system, especially near the bifurcation. When the system’s parameters are
selected near the bifurcation curve, but bifurcation has not yet occurred, noise can
induce the bifurcation. This means an effective shift of parameter value and will
lead to incorrect estimation of the corresponding control parameter. In view of
this, regions in the parameter plane should be not too narrow, to avoid frequent
closeness of the system to their borderlines. This requirement contradicts the first
one. Thus, a balance between these two requirements is needed.

(3) Absence of multistability. Multistability is the coexistence in the phase space of
different attractors for the same set of control parameters. In practice this means
that different initial conditions may lead to distinct attractors. Moreover, for
different attractors there are different bifurcation curves in the parameter plane.
Also noise can induce random switches between the two attractors so that the
resulting motion will not be simply smeared motion on one attractor, but one which
would never exist without noise. Multistability will thus cause strong ambiguity
in defining the control parameter value.

2.2 Choice of the models for transmitter and receiver

From the practical point of view, the system under consideration should be as simple
as possible. The minimal dimension of dynamical system being able to generate chaotic
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oscillations is three, and therefore we started our considerations from three-dimensional
models of chaotic systems. Then, for realization of the ‘feedback scheme’ a three-
dimensional system (two-dimensional nonautonomous) is sufficient to generate chaotic
signals, whereas for the ‘parallel scheme’ the dimension of the system should a priori
be more than three, because of additional equations required for the description of the
receiving system. Therefore, consideration was started from the feedback scheme.

2.2.1 Feedback scheme

During discussion, two systems were studied, namely the two-dimensional Duffing
oscillator subject to harmonic forcing and three-dimensional autonomous Rössler
oscillator. The corresponding equations read as follows:

ẋ = y

ẏ = −c1y + c2x(1 − x2) + F cos(t) + α0x(t − τ0) + α1x(t − τ1) + α2x(t − τ2) (7)

for Duffing oscillator and

ẋ = −y − z + α1x(t − τ1) + α2x(t − τ2)

ẏ = x + ay (8)

ż = a + z(x − b)

for the Rössler system. The parameters α0,1,2 and τ0,1,2 reflect the geometry of the
transmitter-target system in Fig. 2 and are defined by formulae (2) and (3). Bifurcations
in (7) and (8) have been studied with respect to variation of the parameter r. It was
found that in both cases there are wide ranges of parameters where the models under
consideration demonstrate rich bifurcation structures formed by transitions between
different types of periodic, quasiperiodic and chaotic motions. In Fig. 3 examples of
bifurcation diagrams for both models are shown. The value of parameter r is shown
on the horizontal axis, and the Poincaré section of system’s solution is presented along
vertical axis.

Thus, from the viewpoint of richness of bifurcations both system are suitable for
solution of the given problem. However, our studies have also shown that the Duffing
system is able to demonstrate a multistability in a wide range of parameter values.
Multistability manifests itself in the coexistence of different types of attractors for the
same parameter values and makes a solution depend on initial conditions. The latter
leads to ambiguities. In Fig. 4, three coexisting attractors are depicted for the same
parameter values. Actually, the occurrence of multistability in the Duffing model is in
many respects a result of the specific nonlinearity of Duffing system, due to which the
Duffing system possesses three equilibrium states. Around two of them the rotation of
phase trajectories is possible as well as possible rotation around all the three equilibrium
points. In this respect, the Rössler system seems to be preferable for the specified aims,
since only two equilibrium points exist for that system, and the attractor corresponds to
rotations only around one of them.
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Figure 3: Examples of bifurcation diagrams for (a) a forced Duffing oscillator with
parameters c1 = 0.04, c2 = 1, F = 0.3 using a stroboscopic Poincaré section with
t = 2πn + const and (b) the Rössler system with parameters a = 0.2, b = 6.5 using
a Poincaré section with y(t) = 0. Parameters α0,1,2 and τ0,1,2 were defined for c = 1,
D = 10, and d = 8.
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Figure 4: Multistability in a forced Duffing oscillator with delayed feedback for
parameters values c1 = 0.24, c2 = 1, F = 0.27, r = 2, D = 10, d = 8.

Disadvantages of the feedback scheme:

(1) The experience of plotting bifurcation diagrams for various systems shows that one
of the typical delay-induced regimes is expected to be a limit cycle whose shape
changes from region to region. A limit cycle corresponds to a periodic behavior of
the system. This means that since the radiated signal is defined by the existing
attractor within this scheme, it will also be periodic. This will result at least in
violation of masking for radiated signals.

(2) The knowledge of the bifurcation diagram will allow one to define the distance from
the target only within the width of the particular region in the plane of control
parameters. Thus, it will not be a precise definition.

2.2.2 Parallel scheme

To overcome the first disadvantage of the previous approach, the parallel scheme was
considered. The first system only generates and emits a chaotic signal, while the reflected
signal is fed to another system. This approach allows one to control precisely the
characteristics of the signal propagating in water. With this, one can define the range of
control parameters with the help of the bifurcation diagram in essentially the same way
as in the previous case. As a receiver, one can select a system that satisfies the following
requirements:

(1) Its bifurcation diagram is striped.

(2) Its bifurcation diagram is rich in attractors.

(3) Its attractors should allow reliable recognition from short datasets.

(4) There is no multistability.
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From the general point of view, this scheme corresponds to the problem of two
unidirectionally coupled nonlinear systems, where at least one of them (transmitter)
is a self-sustained dynamical system with chaotic oscillations. In this kind of a scheme
it is impossible to expect bifurcational transition from chaos to some regular one. Only
transitions from one type of chaos to another are possible. It is generally impossible to
distinguish reliably between different types of chaos using only short datasets, therefore
condition 3 above is violated. A possible way to surmount this complication is to try to
use some phenomena which are induced in coupled self-sustained systems.

Anticipating synchronization

We propose to exploit a phenomenon which was recently discovered [7, 8] in delay
differential equations and called anticipating synchronization. This phenomenon consists
of the following. Assume we have two identical dynamical systems with chaotic
attractors. The requirement for identity is essential here. Suppose a signal from one
system is time delayed with delay τ and applied to another system. Note that this is a
unidirectional coupling between the two identical systems. If the strength of the coupling
is large enough, one observes that the state of the forced system �x = x1, x2, . . . , xN at
time t is equal precisely to the state of the forcing system �y = y1, y2, . . . , yN at time t−τ ,
and this is valid for all times when the system’s behavior is stationary. This phenomenon
is called anticipating synchronization and can be very easily detected by observing the
space (plane) of coordinates {x1(t)−y1(t−τ), x2(t)−y2(t−τ), . . . , xN(t)−yN(t−τ)}. If
there is no synchronization, the phase trajectory wanders chaotically. If synchronization
takes place, one observes just a fixed point in this space (plane). There seem to be no
other types of bifurcations of chaotic attractors detected in the system studied in [7], and
the only bifurcation transition is abrupt. Two unidirectionally coupled Rössler systems
have been examined:

ẋ1 = −y1 − z1

ẏ1 = x1 + ay1

ż1 = a + z1(x1 − b) (9)

ẋ2 = −y2 − z2 + η

ẏ2 = x2 + ay2

ż2 = a + z2(x2 − b).

Here a = 0.2 and b = 6.5. The coupling term with a single delay of the form

η = h(x1(t − τ) − x2)) (10)

was used during the Study Group discussion. In terms of the initial problem, the latter
means that one-path propagation of the signal takes place. It was shown numerically
that the anticipating synchronization appears for coupling value 0.2 < h < 4 for r = 10.

The possible way to use this phenomena for solution of the initial problem was
elaborated in discussions. Let us require the coupling term η to be in the form
η = h(aαx(t − τ) − x(t)), where the values of h and a could be controlled, while α
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and τ correspond to the attenuation and time delay of signal which was received by
system. The parameter h is chosen to have such a value which guarantees the occurrence
of anticipating synchronization in the case aα = 1 for a large enough range of delays.
We assume that attenuation of the reflected signal is tightly linked to the value of the
time delay through the distance to the target. Assume that a signal with delay τ0

and attenuation α0 is fed into the receiving system. Using phase projection techniques
one can detect if synchronization occurs or not. Suppose there was no synchronization
originally. Let a factor (which may implemented automatically) multiply this signal
by some a > 1. At a value of a = 1/α0 synchronization occurs. Then the value of
attenuation α0 provides one with the length of a path of signal propagation.

Following the Study Group a generalised coupling term was considered with three
delays of the form

η = h(φ1 − φ2), (11)

where

φ1 = α0x1(t − τ0) + α1x1(t − τ1) + α2x1(t − τ2) (12)

φ2 = α0x2 + α1x2(t − (τ1 − τ0)) + α2x2(t − (τ2 − τ0)), (13)

and remarkably the synchronization was also observed. Using (11) the differences
between asynchronous and synchronous dynamics of (9) are illustrated by Fig. 5, where
different phase projections of chaotic attractors are shown.

Issues for further investigation

(1) Since this phenomenon was just discovered for a single delay, little is known about
its generality and robustness to noise. Subsequent work based on (11) seems to
indicate that anticipating synchronization can occur in a system with multiple
delays. However further research is needed to confirm this observation.

(2) If the basic assumption that the attenuation factor depends strongly on the delay
is not true, that is, if this relation is very weak, the precision of this approach
decreases.

2.3 Alternative methods of problem solution

As was mentioned above, all approaches based on bifurcation phenomena have these
or other disadvantages. Therefore, the consideration of alternative (complementing)
methods of solving the given problem seem to be very useful.

2.3.1 Nonlinear time series analysis

There is the possibility of using standard nonlinear time series analysis. One can feed the
received chaotic signal into the receiver, register the output of it and compute from this
output several dynamical or statistical characteristics like attractor dimension, Lyapunov
exponents, rotation numbers, etc. One should do this for the whole range of possible
αi and τi for which bifurcation diagrams were planned to be plotted. One needs to
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Figure 5: Phase projections of (a),(b) ‘asynchronous’ (h = 1.0, r = 10) and (c),(d)
‘synchronous’ (h = 1.5, r = 10) chaotic attractors of system (9).
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associate with each point in the parameter plane the particular set of values of these
characteristics. Finally, when a real experimental signal comes, one can simply compare
this set estimated from the output of the receiver with the pre-calculated sets. If all
characteristics coincide with the ones for a particular set of control parameters αi and
τi, the latter presents the solution sought.

Disadvantages:

• This method requires a long dataset to process and not a negligible time
of computation. This violates the requirement about short datasets and low
processing time.

• The precision of estimation of any dynamical characteristics from noisy
experimental signals is quite low.

2.3.2 Global reconstruction of equations of motion

Calculations of statistical and dynamical characteristics of available signals can overcome
disadvantages of the bifurcation approaches, but the solution provided still does not
satisfy some essential requirements for the data processing. In particular, it suggests
treating the received signals as those coming from some black box and does not take into
account that we know quite a lot both about the transmitter and about the receiver.
Here we suggest a method to exploit this information by involving an approach referred
to as global reconstruction of equations of motion from experimental data.

The task of global reconstruction is posed in its most general form as follows [9].
Assume we have a black box, about which nothing is known. At the output there is one
or several signals which we can record and process. We assume that

• Output signals demonstrate sustained oscillations in time.

• The black box represents some finite-dimensional dynamical system governed by
evolution equations, possibly with noise.

• The black box is a self-sustained system possessing an attractor. The presence
of attractor is essential here in order to assume that our oscillations are always
bounded.

The task in its original form is posed as follows: to write the equations of motion
that are able to reproduce the signals at the output. This is called the problem of global
reconstruction of equations of motion. However, if underlying attractors are chaotic, this
is often impossible for a series of reasons whose discussion can be found in a variety of
related publications [10]. Thus, less rigorous requirements for the reconstructed system
are:

• The system possesses the attractor topologically equivalent to the attractor in the
black box.

• All realizations possess the same dynamical and statistical properties as the signals
at the output of the black box.
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The problem of global reconstruction is ill-posed and nonunique. So, although it has
no theoretically justified solution, there will be an infinite number of various approximate
solutions. The most challenging problem is to select a proper form of evolution equations.
However, if something is known about the contents of the black box, the task dramatically
simplifies. Recently, methods were developed to reconstruct even extended systems in
the form of partial differential equations and delay differential equations of specific forms
[11, 12, 13].

In our case, by construction, we know everything about the generating system,
everything about the receiving system, also the way the reflected signal enters the receiver
and the reflected signal itself. The only unknown parameters are the time delays and
attenuation factors. Thus, in this special case the problem of reconstruction reduces to
the numerical estimation of several pairs of unknown parameters, namely, attenuation
and delay for each reflected signal.

If there were no time delays, the task would be most trivial and reduced to the
definition of M parameters linearly entering the equations by means of a least squares
technique [14]. However, we do not yet know time delays and cannot apply this method
straightforwardly.

To find time delays τi one can use statistical approaches like the function of mutual
correlation. Disadvantages of the use of statistics for this purpose are that a large amount
of data is required and this method still is not very reliable for more than two delays.

We propose to exploit again the reconstruction approach to define any number of
time delays in the received signal. Assume without loss of generality that the form of
the system modeling our situation is as follows:

ẋ1 = f1(x1, x2, . . . , xN ; �µ)

· · ·
ẋN = fN(x1, x2, . . . , xN ; �µ) (14)

ẏ1 = g1(y1, y2, . . . , yL;�ν) + a0x1(t − τ0) + a1x1(t − τ1) + ... + aMx1(t − τM)

· · ·
ẏL = gL(y1, y2, . . . , yL;�ν).

Here, �µ and �ν are vectors of control parameters for each system which we assume to be
fixed and known. Certainly, the way how the first system is coupled to the second one
can be changed and depends only on the operator, so it is supposed to be known in any
case. The values to be found are ai and τi. We assume the attenuation factors ai to be
explicitly related to the time delays τi through the lengths of the paths ri. That is, each
time delay corresponds to a unique attenuation.

Now suppose that we do not know all or some components of the parameter vectors �µ
and �ν. Let us apply global reconstruction to find them. It is clear that if time delays (and
corresponding attenuations) are selected properly, the fitted parameters will be equal to
the true values of them, and not equal otherwise. We propose to try systematically all
possible combinations of distances ri in order to find a set of them which will result in
correct fitting of the ‘unknown’ control parameters.
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Advantages:

• Small data sets to process. If the number of ‘unknown’ parameters to fit is quite
small (about 10 or less), the number of datapoints needed to estimate them by a
least squares technique is quite small as well, being roughly 10 times larger than
the number of unknown parameters [15].

• Straightforward estimation of delays and attenuations is sought avoiding the
uncertainty of a bifurcation diagram approach.

In principle, in the ideal noiseless case this approach does not even need the plotting
of bifurcation diagrams for the system.

Disadvantages:

• Possibly this could be a computing intensive task if all combinations of delays are
to be considered.

• If the receiving system is near bifurcation, noise can lead to the effective shift of
control parameter values and thus to their incorrect estimation.

In view of the second disadvantage, plotting of bifurcation diagrams of a noiseless
system should still be helpful. In the case that parameters estimated by means of
reconstruction take values close to bifurcation curves, one should be aware of the possible
loss of precision. Thus, combination of bifurcation analysis and global reconstruction can
provide a promising solution.

2.4 Other possible approaches

2.4.1 Controlling chaos

In general it is known that if a chaotic signal forces a chaotic system, so that coupling
between the two chaotic systems is unidirectional, there is no possibility of obtaining
a periodic attractor in a forced (receiving, in our terms) system. However, if some
additional loop is applied to the receiver, it is possible to stabilize some selected unstable
(saddle) periodic orbit embedded in a chaotic attractor. As a result, chaotic forcing
applied to a chaotic system with such a feedback will produce a periodic attractor. This
approach is in fact reduced to a recently introduced ideas of ‘controlling chaos’ [16, 17].
This idea was only mentioned during the Study Group and not developed to some explicit
method to extract parameters of interest from the resulting periodic signal.

2.4.2 Neural networks

Alternatively, multi-layer neural networks can be used for pattern recognition of the
received signals, e.g. [18, 19]. In this approach the device used to recognise the system
parameters is a network of neurons or units modelling the relationships between the
inputs and outputs. The network of neurons can be trained to associate the signals with
the system parameters. The robustness of this approach largely depends on the quality
of the network training.
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3 Summary and conclusions

During the work of the group, problems of applications of chaotic signals for sonar
techniques were discussed from the viewpoint of the use of bifurcation theory for
signal recognition and processing. In this context, two suggested configurations of
transmitter-receiver system were considered, namely, when transmitter and receiver are
the same device (feedback scheme), and when they are separated (parallel scheme).
It was revealed that the parallel scheme is preferable for the aims specified, since
it is more secure than the feedback scheme. As a possible way to use bifurcation
analysis, the use of ‘anticipating synchronization’ was suggested and its generalisation
to accommodate multiple delays should open up a new avenue in tackling the problem.
Some disadvantages of the bifurcation approach were revealed and discussed. The
use of alternative complementing methods was proposed to improve the quality of the
bifurcation approach. Another promising tool seems to be reconstruction techniques.
Finally, two other approaches were proposed that might be suitable for sonar problems.
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