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1 Introduction

A process used by Trikon to etch a semi-conductor comprises a plasma chamber in which
radicals and electrons are produced through ionisation in a plasma. These then migrate
onto a silicon wafer, leading to etching through chemical action. Power for this process
comes from an external radio-frequency source which causes skin heating of the gas inside
the chamber. The resulting heat is then transferred to the plasma through conduction,
leading to an electron temperature Te. The gas in the devices studied is primarily oxygen
O2 which has a flow rate λ that can be controlled as part of the process. The heating of
this gas in its plasma state leads both to ionisation, forming electrons e and positive ions
O+, and bond breaking of the molecules leading to neutral oxygen O radicals, which can
then recombine. (There are many other related reactions as well.) It is the electrons e
and radicals O that migrate to the wafer, which can be regarded as a sink of charged
particles. More precisely we can identify sources of ions, radicals and electrons through
the following processes:

• Bond breaking: O2 + e → O + O + e

• Thermal ionisation: O2 + e → O+
2 + e + e; O + e → O+ + e + e

• Other species . . . e.g. −ve ions (not considered)

and sinks via

• Recombination: O + O → O2; O+
2 + e → O2; O+ + e → O

• Boundary losses at the wafer

• Pumping of the gas out of the container.

We illustrate these processes in Figure 1.
The main questions that Trikon wanted answering in the Study Group were how the

process depends on

• the gas flow λ,

• the RF heating power P ,

• the gas pressure, which is directly related to the available number of oxygen
molecules for ionisation.

Our investigation comprised two parts. Firstly we looked at some detailed models of
the transport of the electrons and the oxygen ions and their associated field E within
the plasma. Secondly, we considered a simplified diffusion model of this process to
approximate the global distribution of the electrons and oxygen radicals in a simple
one-dimensional approximation to the plasma chamber.
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Figure 1: A diagram of the plasma chamber

2 Modelling the transport of ions and electrons in

the plasma

In this section we write down a simple model for the transport of oxygen ions (O+) and
electrons inside the chamber (the model is easily generalised to include other charged
species). Since the plasma is fairly weakly ionised (about 1%) we neglect ‘coulomb
collisions’, whereby charged particles interact over short ranges via their electric fields,
and assume that the dominant collisional interactions are with the uncharged oxygen
molecules (which form about 99% of the plasma). This assumption leads us to model a
scenario in which ions (and electrons) diffuse around the plasma chamber being scattered
off oxygen molecules but have a net drift due to the action of the ‘averaged’ electric field.
Here the electric field is averaged over many charged particles to smooth out the small
scale variations that give rise to coulomb collisions.

In the modelling process we shall use the following variables and parameters:

nI : number density of oxygen ions,
ne : number density of electrons,
vI : velocity of ions in the absence of diffusion,
ve : velocity of electrons in the absence of diffusion,
DI : diffusion coefficient of the ions,
De : diffusion coefficient of the electrons,
F : reaction rate for the creation of ions and electrons,
T : absolute temperature of the plasma,
Te : electron temperature,
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x : distance from the electrode (silicon wafer),
E : magnitude of the ‘averaged’ electric field,
ε0 : the permittivity of free space,
q : the charge on an O+ ion,
m+ : the mass of an O+ ion.

We start by writing down equations for the conservation of oxygen ions and electrons:

−F +
∂nI

∂t
=

∂

∂x

(
DI

∂nI

∂x

)
− ∂

∂x
(vInI) , (1)

−F +
∂ne

∂t
=

∂

∂x

(
De

∂ne

∂x

)
− ∂

∂x
(vene) . (2)

These are coupled to Poisson’s equation for the electric field,

∂

∂x
(ε0E) = q(nI − ne), (3)

and equations which give the ion and electron drift velocities in terms of the electric field
E. It is usual to equate the force on an ion (or electron) with a linear drag term such that
µIvI = qE, where µI is the mobility coefficient. However, the derivation of this linear
drag law assumes that collisions between an ion and the neutral gas molecules occur with
average frequency ν independent of the drift velocity. This is equivalent to assuming that
the thermal velocity of the oxygen molecules is much higher than the drift velocity of the
ion. A rough estimate for this mobility coefficient based on an ion uniformly accelerating
in an electric field and losing all its momentum in collisions at uniform frequency ν gives
µI = CmIν, where mI is the mass of the ion and C an order one constant. At the other
extreme, if we assume that the drift velocity of the ion is much greater than the thermal
velocity of the oxygen molecules, then it follows that the average distance dI between
collisions is independent of the drift velocity of the ions. This leads to a drag law of the
form γIvI |vI | = qE. The coefficient γI may be estimated (roughly) by looking at the
motion of an ion accelerating in an electric field and losing all its momentum in collisions
separated by distance dI . This leads to the result γI = BmI/dI , where B is an order
one dimensionless constant. An order of magnitude estimate indicates that the thermal
velocity of an oxygen molecule is comparable with the drift velocity of an ion and so we
opt to model the drag on an ion by the law

µIvI + γIvI |vI | = qE. (4)

Similarly in the case of an electron we obtain a law of the form

µeve + γeve|ve| = −qE. (5)

The preceding arguments then suggest that µe ≈ µIme/mI and γe ≈ γIme/mI since d
and ν will be approximately the same for electrons and ions.

In a similar vein it is worth noting that the diffusion coefficients DI and De cannot be
derived using the Einstein relation because the thermal velocity of the ions is comparable
to, and the thermal velocity of the electrons is much greater than, that of the oxygen

G-4



molecules. Thus for an electron the mean free path de is determined by the density of
oxygen molecules through the relation

de =
1

σcnO2

(6)

where σc is the collision cross section of an oxygen molecule (roughly the area a molecule
presents for collisions) and nO2 is the number density of oxygen molecules in the gas (see
The Feynman Lectures on Physics [1] Vol 1 formula (43.12)). This is in turn related to
the diffusion coefficient for electrons De by

De = 1
3
deVe where 1

2
meV

2
e = 3

2
kTe. (7)

Here Ve is the thermal velocity of the electrons and k is Boltzmann’s constant (see
Feynman [1] Vol 1 formula (43.27)).

2.1 Nondimensionalisation of the model

We nondimensionalise the model comprising equations (1)–(5) as follows:

t = τt∗, x = Lx∗, ne = I0n
∗
e, nI = I0n

∗
I , F = F0F

∗ ,

ve =
De

L
v∗

e , vI =
De

L
v∗

I , E =
γeD

2
e

L2q
E∗ , (8)

where τ is the typical timescale for the etching process, 2L is the height of the plasma
chamber, I0 is the typical number density of ions and F0 is the typical reaction rate. We
then write

v∗
I =

(
γe

γI

)1/2

vI . (9)

The dimensionless model is

−λF ∗ + δ
∂n∗

e

∂t∗
=

∂2n∗
e

∂x∗2
− ∂

∂x∗ (v∗
en

∗
e) , (10)

|v∗
e |v∗

e +
ε2

ε
Γv∗

e = −E∗ , (11)

−λ

ε
F ∗ +

δ

ε

∂n∗
I

∂t∗
=

1

αε

∂2n∗
I

∂x∗2
− ∂

∂x∗ (v∗
In

∗
I) , (12)

vI |vI | + ΓvI = E∗ , (13)

∂E∗

∂x∗ = Λ(n∗
I − n∗

e) , (14)

where we make use of the following dimensionless parameters:

λ =
F0L

2

DeI0

, δ =
L2

Deτ
, Λ =

q2L3I0

ε0γeD2
e

, ε =

(
µe

µI

)1/2

,
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ε =

(
γe

γI

)1/2

, Γ =
µIL

(γeγI)1/2De

, α =
De

DI

. (15)

A crude estimation of the dimensionless parameters, based on a pressure of 1 Nm−2,
a gas temperature of 1000 K, a lengthscale of 10−1 m and an electron temperature of
5 eV, gives

Γ ∼ O(1), ε ∼ O(10−3), ε ∼ O(10−3), δ ∼ O(10−7), Λ ∼ O(1012), α ∼ O(104). (16)

This would suggest that we retain the following terms in the model:

∂2ne

∂x2
− ∂

∂x
(vene) = 0 (17)

ve|ve| = −E, (18)

1

αε

∂2nI

∂x2
− ∂

∂x
(vInI) = −λ

ε
F, (19)

|vI |vI + ΓvI = E, (20)

nI = ne, (21)

where we drop the stars. Here we have ended up with a quasistationary model. However
we have lost the highest derivative in E and to satisfy all the boundary conditions on
the model we must match the solutions of the simplified model to an inner region (or
Debye layer) in which the ∂E/∂x term in (14) again becomes important. In order to
solve the simplified model we substitute nI = ne into (19) and then eliminate ∂2ne/∂x2

between (17) and (19); this gives an equation for E which can be solved. The solution
for E is then substituted back into (18), which is then solved for ne.

3 Global models of electron and radical transport

3.1 A simple model

For the remainder of this report we will consider a simplification of the model proposed
above for the motion of the electrons, together with a model for the motion of the oxygen
radicals. In this simplification we make the following assumption of a diffusion-dominated
plasma in which rapid motions of electrons due to local field imbalances are neglected,
and we look only at the relatively slow motion of the electrons, ions and radicals as they
move together. Explicitly, we assume

1. The local distributions of the positive and negative charges balance, leading to a
locally zero field, with all motion of the particles due to diffusion.

2. The electrons follow the positive ions and diffuse (macroscopically) at a similar
rate 2DI .

3. The density nO2 of oxygen molecules remains (approximately) constant and is a
function of the gas pressure.
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Accordingly we consider a diffusion model in which free electrons and neutral radicals
are created by ionisation and bondbreaking, and are lost through recombination and
the effects of pumping and boundary condition. This leads to the following system of
equations for the densities of electrons, radicals and molecules given by ne, nO and nO2 .

Motion of the oxygen radicals

−DOn′′
O = BO(Te)nO2ne − kOOn2

O − K2(Te)nOne − λnO (22)

Motion of the electrons

−2DIn
′′
e = K1(Te)nO2ne − keen

2
e + K2(Te)nOne. (23)

Note that the effect of the motion of the oxygen ions has been absorbed into the
equation for the motion of the electrons via the enhanced diffusion term. In this system
the right hand side gives the various source and recombination terms. In particular we
have

• Bond-breaking: BO(Te)nO2ne.

• Thermal ionisation: K1(Te)nO2ne and K2(Te)nOne.

• Recombination: keen
2
e and kOOn2

O (since the ion density is taken equal to the
electron density, the ion-electron recombination rate is proportional to n2

e).

• Pumping: λnO.

In these expressions the various ionisation coefficients BO(Te), K1(Te) etc. are Arrhenius
functions of the electron temperature Te, so that they are very low if Te is lower than
some threshold value (around 5 eV) and then rise rapidly to a saturated value above this
threshold.

3.2 Boundary conditions

The boundary conditions in this model are important and represent the dominant cause
of electron depletion in the plasma. Very close to the boundary, in the so-called ‘dark
space’ region, a complicated set of physical processes take place as electrons move rapidly.
However, this occurs only in a thin boundary layer, away from which we have the
behaviour described in the previous section, where the electrons move with the ions. At
the edge of the boundary layer the plasma obeys the following set of derived boundary
conditions called the Bohm conditions:

−DIn
′
e =

√
kTe

m+
ne ≡ VBene and − DOn′

O =

√
kTg

m+
nO ≡ VBgnO. (24)

Here the Bohm velocity is given by VBe � VBg and Te � Tg.

G-7



3.3 Some scalings

To make progress with this simple model we introduce some scaling based on the observed
physical values of certain of the terms. In particular we have the following:

• The dimensions of the chamber are given by [−L,L] where L is approximately
20 cm.

• The Bohm electron velocity at the boundary is VBe ≈ 106 cm s−1 � VBg .

• The diffusion coefficients are DO ≈ DI ≈ 3 × 106 cm s−1.

• The pumping rate is given by λ ≈ 100Λ where Λ is of order unity.

• The electron temperature is given by Te ≈ 5 eV.

• The observed relative sizes of the molecular, radical and electron densities are

nO2 ≈ 1014−15cm−3, nO ≈ 1012cm−3, ne ≈ 1011cm−3.

We can also obtain estimates for the sizes of the various Arrhenius factors which
control the ionisation and recombination effects. These are given by

Ionisation

• BO(Te) = 10−11α0e
−5/Te where α0 is of order unity.

• K1 ≈ K2 ≈ 10−11α1e
−10/Te where α1 is of order unity.

These are illustrated in Figure 2.

Recombination

It is observed that in the absence of pumping (so that Λ = 0) the nO ions have a
half-life of 10−3 s. Solving the equation

n′
O = −kOOn2

O

which describes the loss due to recombination, we have that an initial density of nO(0)
decreases by half in a time τ given by τ = 1/(kOOnO(0). Accordingly we may estimate
kOO by 1/(τnO(0)) so that kOO ≈ 103.10−12 and kee � kOO.

Using these values we may rescale the various coefficients. In particular we set

nO2 = 1015NO2 , ne = 1011Ne, nO = 1012NO. (25)

This then leads to the rescaled equations

−DON ′′
O = 103α0e

−5/TeNe − α1e
−10/TeNeNO − 100ΛNO − 103N2

O (26)

−2DIN
′′
e = 104α1e

−10/TeNe + 10α1e
−10/TeNeNO − (small). (27)
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Figure 2: The ionisation coefficients BO and K1 = K2 plotted as functions of Te in
electron volts.

3.4 A simplified equation for electrons and radicals

Consider first averaging the equation for the electron density. Integrating over the length
of the cavity gives

[−2DIN
′
e]

L
L ≡ 2VBeNe = L

[
104α1e−10/T Ne + 10α1NeNOe−10/Te

]
. (28)

Looking at the relative sizes of the terms, the effect of the boundary conditions is
of the order of 106Ne which is comparable in size to the number of electrons created
in ionisation and related processes. In contrast the number of electrons lost through
recombination and pumping is around 103Ne which is much smaller. The dominant loss
of the electrons created in the plasma is thus due to the effects of the boundary terms,
i.e. most of the created electrons are arriving at the work-piece.

In contrast we can also consider averaging the equation for the radical concentration
NO. This gives

[−2DON ′
O]

L
L ≡ 2VBgNO = L

[
103α0e−5/T Ne − 102ΛN̄O − 103N̄2

O

]
. (29)

Estimating the size of the coefficients in this equation we see that the effect of the
boundary losses is small, and that there is a dominant balance between the number of
radicals created within the plasma and the various internal sinks. In this case rather
fewer radicals reach the work-piece. Balancing the source and sink terms throughout the
plasma gives a simple relation between the electrons and the radicals:

NO ≈ α0e
−5/TeNe

NO + Λ/10
. (30)

The radical concentration can thus be estimated once we have solved the (scaled)
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differential equation for the electron densities. Keeping only the dominant terms this
equation is given by

−2DIN
′′
e ≈ 104α1e

−10/TeNe for − L < x < L

−DIN
′
e = VBeNe at x = ±L

(31)

Observe that the diffusive length scale is given by
√

104α1e−10/Te/2DI . For a value of

DI = 3 × 106 and Te of order 5 eV this gives a diffusive length scale of around 10 cm,
which is comparable to L.

3.5 Temperature

We now consider the equation for the electron temperature Te (measured in electron
volts), noting that it is not always easy to define a temperature for a rarefied plasma!
(see Lieberman and Lichtenberg [2] for a discussion of this). We consider there to be a
generation of thermal energy through ohmic heating P within the body of the plasma and
heat loss through conduction and ionisation. There is an additional source of heat which
arises from the radical terms which are neglected in the one-dimensional approximation.
Averaging the temperature profile over the radius of the plasma this leads to a source
term proportional to Te arising from boundary effects. In Lieberman and Lichtenberg
[2] it is proposed that there is an additional source term 5TeDIn

′′
e due to variations in

the electron density.
Putting this together and looking for a thermal balance we have

−kT ′′
e = hTe + P − (5α0e

−5/Te + 10α1e
−10/Te) × 10−11 nO2 ne + 5TeDIn

′′
e . (32)

If we consider the relative sizes of these different terms we have from experimental
measurements that

P ≈ 1015 Q eVcm−3, where Q = O(1). (33)

Also
ne nO2 × 10−11 ≈ 1015 NeNO2 (34)

and, from the differential equation for Ne,

−5DIn
′′
e = −2.5 × 1011 DIN

′′
e ≈ −2.5 × 1015 α1e

−10/TeNe , (35)

so that the contributions to the thermal balance equation due to electron diffusion and
due to ionisation via the term NeNO are of order 1015 and roughly balance. If we
substitute the scaled values of the various components and consider NO2 to be unity we
have

−kT ′′
e = hTe + 1015

[
Q −

(
5α0e

−5/Te + 10α1e
−10/Te

)
Ne − 2.5α1e

−10/TeNeTe]
]

(36)

In practice Te is constant or slowly varying and k is small, so that the diffusive term
in the above can be neglected. Combining the various equations on this assumption, it
follows that Te, Ne,No satisfy the following differential algebraic equation system

0 = 10−15hTe + Q −
[
(5α0e

−5/Te + 10α1e
−10/Te) + 2.5α1e

−10/TeTe

]
Ne (37)
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−2DIN
′′
e = 104.α1e

−10/TeNe , (38)

with boundary condition

−DIN
′
e = VBeNe at x = −L,L (39)

and an algebraic equation for N̄O given by

NO =
α0e

−5/TeNe

NO + Λ/10
. (40)

We may solve the differential algebraic system numerically (for example by using the
MATLAB code ode15s) for general coefficients and we will give some figures for this
shortly. However, we can make some rough analysis as follows. If we set Ne = QN̂e then

−2DIN̂e
′′

= 104α1e
−10/TeN̂e , −DIN̂e

′
= VBeN̂e at x = −L,L. (41)

If we consider Te to be constant then N̂e (which is symmetric about x = 0) is given
by

N̂e(x) = N̂e(0) cos




√
104α1e−10/Te

DI

x


 . (42)

From the boundary conditions we then find that Te must satisfy the eigenvalue equation

DIβ tan(β) = VBe , (43)

where
β2 = 104α1e

−10/Te/DI . (44)

This condition fixes the value of Te which, to this level of approximation, is independent
of Q. We then have further that for a given exponential function g(Te) of Te

N̂e g(Te) = 1 + 10−15hTe/Q. (45)

If h is zero and Ne does not vary too much from a constant, we thus have that

• Ne = Q N̂e, N̂e independent of Q to first order;

• Te is independent of Q to first order;

• N̄O = (α0e
−5/TeN̂e · Q)/(NO + Λ/10).

Thus Ne and NO both increase with Q and NO decreases with Λ. These observations
are both in agreement with experiment.

3.6 Numerical results

To supplement this very rough analysis we now present a solution of the differential
algebraic system in the case of (large) h = 1014 with α0 = α1 = DI/VBe = 1 and L = 20.
This was calculated numerically using the Matlab code ode15s. The results of the various
calculations are presented below. In these we see that the cosine approximation is a good
one and that the predictions from this of the variations of Ne, NO and Te with Q and Λ
are all consistent with the numerical calculations.
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Figure 3: The variation of Ne with x comparing it to the cosine approximation
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Figure 4: The variation of Te with x. Note that Te is close to constant but increases
slightly towards the boundary.
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Figure 5: The variation of the maximum value of Te with Q. Note that for moderately
large values of Q the temperature Te is close to being constant.
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Figure 6: The variation of the maximum value of Ne with Q. Note that Ne is proportional
to Q.
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Figure 7: The variation of NO with Q and Λ, showing that it increases with Q and
decreases with Λ.
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