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Richard Shenton
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Executive Summary

Reliable Data Systems is developing a video-based odometry system that
enables trains to measure velocities and distances travelled without the
need for trackside infrastructure. A camera is fixed in the cab, taking
images of the track immediately ahead, at rates in the range 25–50
frames per second. The images in successive frames are ‘unwarped’
to provide a plan view of the track and then matched, to produce an
‘optical flow’ that measures the distance travelled.

The Study Group was asked to investigate ways of putting bounds on
the accuracy of such a system, and to suggest any improvements that
might be made. The work performed in the week followed three strands:
(a) an understanding of how deviations from the camera’s calibrated
position lead to errors in the train’s calculated position and velocity;
(b) development of models for the train suspension, designed to place
bounds on these deviations; and (c) the performance of the associated
image processing algorithms.
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1 Introduction

1.1 Background

(1.1.1) In the next generation of railway management systems, such as the Euro-
pean Train Control System (ETCS), there is a trend away from the use of
trackside infrastructure to detect the positions and speeds of trains. Re-
liable Data Systems (RDS) is developing a video-based odometry system
that enables a train to measure distances travelled, using a forward-facing
camera mounted in the cab. Such a system can report train positions via
a radio data link in real time to the signalling control centre, which in
turn can provide information to the train on braking points, etc.

(1.1.2) In the short term, the benefits of the video system are likely to be in terms
of lower costs and higher accuracy of positioning. In the longer term, there
are possibilities for allowing closer separation of trains, leading to higher
capacity of the rail network.

(1.1.3) Alternative approaches suffer from various shortcomings. Systems that
rely on trackside infrastructure are expensive to install and maintain. For
systems on the train, there may be limitations on performance in winter
conditions, for example due to wheel slip for devices that measure wheel
rotations. Inertial methods are expensive. There has been much work
done on satellite positioning, but visibility is not consistent (for example
in tunnels) and so a secondary sensor system is needed to provide coverage
during those periods. The video system being developed by RDS appears
to overcome all these problems.

(1.1.4) The overview operation of the video-based system is as follows. The cam-
era mounted in the cab images the track immediately ahead of the train,
generally at a frame rate in the range 25–50 frames per second. Each im-
age is ‘unwarped’, to provide a plan view as if viewed from directly above
the track. The unwarped images from successive frames are matched by
looking at pixel blocks, to build up an ‘optical flow’ from one image to
the next. This flow provides an estimate of the distance moved between
frames.

(1.1.5) Early trials have indicated that this technique is robust, and works effec-
tively at a range of train speeds and in a variety of weather and lighting
conditions. However, in order for such a system to be adopted by the in-
dustry, it is important to have (very) high confidence that the positioning
is accurate to within known error bounds. In ETCS the agreed design
requirement is that for a distance travelled s (from some reference point)
the accuracy in position shall be better than ± (0.05s + 5 metres). For
estimates of speed, the accuracy requirement is ± 2 km/h for speeds up
to 30 km/h, then increasing linearly up to an accuracy of ± 12 km/h at a
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speed of 500 km/h. Empirically, the accuracy of the current RDS position
estimates is better than ±0.025s, but it is important to provide a rigorous
underpinning for such claims.

(1.1.6) The three questions addressed to the Study Group were:

(a) What accuracy claims can be made for the existing system?

(b) What improvements might be made to the existing system?

(c) What accuracy claims can be made for any improvements?

(1.1.7) After a recap of the main sources of error, Section 2 of this report deals
with error in the existing system due to vehicle body motion. A linear
approximation is developed in detail, along with supporting evidence that
indicates the nonlinear corrections are generally small. Section 3 looks
at models of the train suspension, in order to construct bounds on the
possible variations in camera position and orientation. Section 4 looks at
some of the imaging processing issues, and Section 5 summarises the main
conclusions.

1.2 Sources of error

(1.2.1) The possible sources of error in the systems are:

(a) Imaging deficiencies: these include inaccurate calibration of the
camera, errors in the timing of video frames, and motion blur due
to finite exposure times. These are not felt to be the major sources
of error, and can in any event be addressed through upgrading the
camera hardware.

(b) Vehicle body motion: trial results indicate that this is the dom-
inant source of error, and is where the Study Group focussed its
attention. The position and orientation of the camera will in general
be affected by movements in the train suspension. In the current
system, the unwarping is fixed, following initial calibration. There-
fore small changes in position and orientation will mean that the
unwarping is slightly in error, and these errors will propagate to the
estimates of position.

(c) Nonplanar track bed: the positioning calculations assume that
the track bed is planar. In practice, sleepers and ballast are ‘bumpy’,
or there may be uneven snow cover. There may be also be changes
in track gradient and occasional sharper raised areas, such as those
at level crossings.

(d) Image processing: errors can result from the incorrect correspon-
dence of image points (for example caused by lack of detail on the
imaged surfaces) and pixel quantisation. The effects of vehicle body
motion on the image processing algorithm were also looked at in the
Study Group. The need for real-time operation is a constraint on
the computational complexity of the image processing.
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(e) Cornering: errors due to the additional rotational motion when
cornering are a particular case of errors due to more general vehicle
body motion.

2 Vehicle body motion

2.1 The unwarping transformation

(2.1.1) The camera image and its unwarping are related by a projective transfor-
mation. The starting point for assembling this transformation is shown in
Figure 1. The coordinate x measures distance along the track, from some
fixed point on the ground, with y being in the transverse direction. Let the
camera be at position (xD, yD), and at a height H above the plane of the
track. Three angles describe the orientation of the camera: a declination
or ‘pitch’ θ from the horizontal, a ‘yaw’ angle φ about the vertical, and a
‘roll’ ψ about the axis of the camera.

xD

yD

Direction of travel
x

y
H Direction of travel

Figure 1: The initial variables used in the analysis of the video
system, with the plan view on the left and the side view on the right.

(2.1.2) A general point in the plane of the track has coordinates (x, y, 0). Relative
to the position of the camera, its coordinates become (X,Y,−H), where
X = x− xD and Y = y− yD. Transforming into coordinates (ξ, η, ζ) rela-
tive to the frame of the camera involves applying three rotation matrices,
so that

⎛
⎝ ξ

η
ζ

⎞
⎠ = R1(ψ)R2(θ)R3(φ)

⎛
⎝ X

Y
−H

⎞
⎠ , (1)

where
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R3(φ) =

⎛
⎝ cosφ sinφ 0

− sinφ cosφ 0
0 0 1

⎞
⎠ , (2)

R2(θ) =

⎛
⎝ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠ , (3)

R1(ψ) =

⎛
⎝ 1 0 0

0 cosψ sinψ
0 − sinψ cosψ

⎞
⎠ . (4)

(2.1.3) The coordinates (u, v) in the camera image are related to (ξ, η, ζ) by the
projection

(
u
v

)
= f

(
η/ξ
ζ/ξ

)
, (5)

where f is the focal length.

(2.1.4) However, the unwarping transformation used by the system assumes that
the camera is at a height H0 above the track, with a pitch of θ0 and with
zero roll and with fixed yaw. We shall take the yaw of the unwarping
transformation to be zero, although in practice it is determined by cal-
ibrating against the the parallel lines formed by the rails. Coordinates
(X∗, Y ∗) in the unwarped image are then related to coordinates in the
camera image through a rotation R0 ≡ R2(θ0). Explicitly,

(
X∗

Y ∗

)
= −H0

⎡
⎣R−1

0

⎛
⎝ f

u
v

⎞
⎠
⎤
⎦

1,2

/⎡⎣R−1
0

⎛
⎝ f

u
v

⎞
⎠
⎤
⎦

3

, (6)

meaning that X∗ corresponds to taking the first component in the numer-
ator and Y ∗ to taking the second.

2.2 Errors introduced by unwarping

(2.2.1) In general we are interested in the effects of small deviations in camera
position and orientation from its calibrated position (θ, φ, ψ, x, y,H) =
(θ0, 0, 0, xD0(t), yD0, H0), where dxD0(t)/dt = V . We denote the small
deviations by δθ, δφ, δψ, δxD, δyD and δH, all functions of time.

Then the perturbed orientation is

R = R1(δψ)R2(θ0 + δθ)R3(δφ) , (7)
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or equivalently R = R0 + δR, where δR may be written in terms of δθ, δφ
and δψ using (2)–(4). Furthermore, the perturbed camera location is

(xD, yD, H) = (xD0(t) + δxD , yD0 + δyD , H0 + δH). (8)

(2.2.2) The unwarping transformation then becomes

(
X∗

Y ∗

)
= −H0

⎡
⎣(I +R−1

0 δR)

⎛
⎝ X

Y
−(H0 + δH)

⎞
⎠
⎤
⎦

1,2

/
⎡
⎣(I +R−1

0 δR)

⎛
⎝ X

Y
−(H0 + δH)

⎞
⎠
⎤
⎦

3

. (9)

(2.2.3) The error in the estimated position that is caused by vehicle body motion
comes from comparing (X∗, Y ∗) and (X,Y ). If we consider two successive
time steps, δt apart and label the coordinates of some fixed point on the
track at these two times by subscripts 1 and 2, then the actual mean
velocity V is equal to (X1 −X2)/δt.

1

(2.2.4) By linearising (9) around the calibrated camera position, we are able to
calculate the leading errors to the velocity estimate:

X∗
1 −X∗

2

δt
= V + ˙δxD − δH

H0

V −H0δ̇θ

+X

(
˙δH

H0

+
2V

H0

δθ

)

+ Y

(
sin θ0

˙δψ − ˙δφ− V

H0

cos θ0 δψ

)

−X
2

(
δ̇θ

H0

)

+X Y

(
cos θ0

H0

˙δψ

)
. (10)

1Note that X is measured relative to the frame of the camera and so as the train moves forwards
X decreases, meaning that X2 < X1; hence V is positive in our expressions.
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The corresponding error in the transverse direction is given by

Y ∗
1 − Y ∗

2

δt
= ˙δyD − V δφ+H cos θ0

˙δψ + V sin θ0δψ

+X
(

˙δφ− sin θ0
˙δψ
)

+ Y

(
˙δH

H0

+
V

H0

δθ

)

−X Y

(
δ̇θ

H0

)

+ Y
2
(cos θ0

˙δψ) . (11)

In these expressions, an overbar indicates the average value across the two
timesteps, e.g. δH is equal to 1

2
(δH1 + δH2), and an overdot indicates a

rate of change between the two time steps, e.g. ˙δH = (δH2 − δH1)/δt. All
other terms involving overbars and overdots are defined similarly.

(2.2.5) These errors have been derived from purely geometrical considerations.
They are also pointwise estimates, taking no account of any matching of
features in successive images, but they are sufficient to make some useful
observations.

(2.2.6) Replacing X and Y with X∗ and Y ∗ in (10) and (11) incurs only O(δ2)
errors. Thus, given a particular camera offset or motion, we can predict
the displacement field between two successive unwarped images. This
information can be used in two ways:

(a) We can use the displacement field to estimate the error in the com-
putation of the train velocity by some given algorithm, in terms of
the camera motion.

(b) We can attempt to fit the theoretical displacement field to that ob-
served between two images, by varying the coefficients of δθ etc. This
allows most of the artifacts caused by camera motion to be identified
and removed. Looking at the terms in (10) that are independent of
X and Y , it can be seen that it is not possible to distinguish a change
in camera height from a change in speed of the train. Likewise we
cannot distinguish ˙δyD from V δφ, but all other camera motions pro-
duce independent displacement fields, and so in principle the other
coefficients can be identified by fitting.

(2.2.7) To illustrate the possible use of expressions (10) and (11), consider oscilla-
tions in camera height around a mean of 3 m; specifically suppose H varies
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between 2.95 m and 3.05 m, with a frequency of 2 Hz.2 The velocity errors
when V = 12 km/h are shown as a vector field in Figure 2, for points
between 5 m and 15 m in front of the train and up to 5 m on either side,
and at times when the camera passes through its mean height.

Velocity Errors, V = 12km/h, H varying from 2.95m to 3.05m at 2Hz, t = 0

6

8

10

12

14

x

–4 –2 0 2 4

y

Figure 2: Velocity errors from the linearised analysis when the train
velocity is 12 km/h and the camera height oscillates at a frequency of
2 Hz about a height of 3 m with an amplitude of 5 cm.

(2.2.8) Similar plots for velocity errors arising from oscillations in pitch (θ), yaw
(φ) and roll (ψ) are shown in Figures 3–5. Note that oscillations in θ and
H give the same general error pattern, and both have lower errors close
to train than further away.

(2.2.9) Train movement around corners and also changes in ground height (for
example due to snow) can be expressed as suitable combinations of trans-
lations and rotations and are therefore present in the above model.3

2.3 Full error treatment

(2.3.1) The linearised analysis of the previous section can be compared with
higher-order approximations and with the exact calculation. In this sec-
tion we investigate the difference between actual error due to vehicle body

2We are not suggesting that real oscillations would be so large; in fact, an amplitude of 5 cm
at 2 Hz would be extremely uncomfortable for the passenger.

3The equation xD = xD0(t) + δxD is correct to leading order for motion around corners, and
therefore can be used in a linearised model.
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Velocity Errors, V = 12km/h, H = 3m, pitch varying from 0.26 to 0.32 radians at 2Hz, t = 1/4

6

8

10

12

14

x

–4 –2 0 2 4

y

Figure 3: Velocity errors from the linearised analysis when the train
velocity is 12 km/h, the camera height is 3 m and the pitch, θ, oscillates
between 0.26 and 0.32 radians at a frequency of 2 Hz.

Velocity Errors, V = 12km/h, H = 3m, yaw varying from –0.03 to 0.03 radians at 2Hz, t = 0

6

8

10

12

14

x

–4 –2 0 2 4

y

Figure 4: Velocity errors from the linearised analysis when the train
velocity is 12 km/h, the camera height is 3 m and the yaw, φ, oscillates
between −0.03 and 0.03 radians at a frequency of 2 Hz.

motion and the error associated with a linear or quadratic approxima-
tion. Suppose that there are two unwarped images between which the
train has travelled a distance ΔX. Instead of calculating pointwise er-
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Velocity Errors, V = 12km/h, H = 3m, roll varying from –0.01 to 0.01 radians at 2Hz, t = 0

6

8

10

12

14

x

–4 –2 0 2 4

y

Figure 5: Velocity errors from the linearised analysis when the train
velocity is 12 km/h, the camera height is 3 m and the roll, ψ, oscillates
between −0.01 and 0.01 radians at a frequency of 2 Hz.

rors, as in the previous section, the two images are matched by finding
the translation that minimises the least-squares distance between them.4

Because of deviations from the calibrated camera parameters, this trans-
lation is (ΔX + δX, δY ), where (δX, δY ) is the error caused by vehicle
body motion.

(2.3.2) We investigated the differences between the actual error, (δX, δY ), and
linear and quadratic approximations to the error. The parameters in
this analysis are deviations (δH1, δθ1, δφ1, δψ1) for the first image, and
(δH1, δθ1, δφ1, δψ1) for the second image.

(2.3.3) Visually, we can conveniently investigate the combined effects of pairs of
these deviations on a set of axes. It is assumed in the following figures
that H0 = 3 m, θ0 = 15◦ and ΔX = 2 m. Figures 6 and 7 show the
inaccuracies that result from linear and quadratic approximations to the
error δX, when looking at combined deviations δH1 and δH2.

(2.3.4) As another example, figures 8 and 9 show the inaccuracies in linear and
quadratic approximations to δX, for deviations δθ1 and δθ2.

4In effect, it is being assumed that the image processing algorithms always find the best match
between successive frames.
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Figure 6: The difference between the actual positioning error δX
and a linear approximation, as a function of the deviations in the
camera height from the calibrated value in each of the two matched
images.
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Figure 7: The difference between the actual positioning error δX
and a quadratic approximation, as a function of the deviations in the
camera height from the calibrated value in each of the two matched
images.
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Figure 8: The difference between the actual positioning error δX
and a linear approximation, as a function of the deviations in the
camera pitch from the calibrated value in each of the two matched
images.
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Figure 9: The difference between the actual positioning error δX
and a quadratic approximation, as a function of the deviations in the
camera pitch from the calibrated value in each of the two matched
images.
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3 The train suspension

3.1 A static model

(3.1.1) For a static model of the suspension, we considered a fixed chassis, with
springs at each corner, on which the carriage is free to move. Assume that
the maximum travel of each spring is 10 cm, that the train measures 20 m
by 5 m, that the chassis is 1.5 m high, and that the camera is 3 m off the
ground. The limits of motion of the springs determine the possible range
of camera positions and orientations, and hence the possible positioning
errors.

(3.1.2) Calculations of positioning errors were carried out in Maple. The max-
imum positioning errors arising from vertical motion of the carriage are
50 cm, from pitching are 2 m and from rolling are 3.2 m. They depend
strongly on distance ahead of the train. In this model, rolling is the main
source of error. The error in velocity is less than 6.4 m/s (or 4 km/h).

3.2 A dynamic model

(3.2.1) A model incorporating linearised dynamics was used to look at oscillations
in the pitch of the camera resulting from track vibration. The rail is
modelled as an infinite beam with periodic forcing. Two axles (although
the model could be readily extended to more) transmit these oscillations
to the train via springs and dampers, as shown in Figure 10.

c1

r2

k1 c2
k2

r1

Carriage: mass M, length L
Centre
of mass

Figure 10: A model of the suspension dynamics, using a spring and
damper at each axle.

(3.2.2) Suppose that the spring constants and damping constants are k1, c1, k2

and c2 (see Figure 10) and that the vertical displacements of the the axles,
owing to the periodic forcing of the rails, are u1 and u2. Then the vertical
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forces, measured positive upwards, that are transmitted to the carriage by
the axles are

F1 = k1(u1 − u+ r1θ) + c1(u̇1 − u+ r1θ̇) (12)

F2 = k2(u2 − u− r2θ) + c2(u̇2 − u− r2θ̇) , (13)

where u is the vertical displacement of the carriage, θ is the pitch of the
carriage measured from the horizontal, and r1 and r2 are the horizontal
distances of the axles from the carriage’s centre of mass.

(3.2.3) The equations of motion are Mü = F1 +F2 and Jθ̈ = −F1r1 +F2r2, where
M and J are the mass and moment of inertia around the pitching axis.
Substituting (12) and (13) for F1 and F2, and rescaling lengths in units of
the carriage length L, we obtain

ü = 1
2
ω2

0(u1 + u2 − 2u+ (r1 − r2)θ)

+ 2ηω0(u̇1 + u̇2 − 2u̇+ (r1 − r2)θ̇) (14)

θ̈ = 6ω2
0(r2u2 − r1u1 + (r1 − r2)u− (r2

1 + r2
2)θ)

+ 12ηω0(r2u̇2 − r1u̇1 + (r1 − r2)u̇− (r2
1 + r2

2)θ̇) , (15)

where

ω0 =

√
2k

M
and η = c

√
2

kM
. (16)

(3.2.4) In deriving the right-hand sides of (15), it has been assumed that J ≈
1
2
ML2, with L ≈ 20 m, and also that k1, k2 and c1, c2 take common

values k and c, respectively. Typical values are k ≈ 3 × 104 N/m and
c ≈ 2 × 104 Ns/m.

(3.2.5) If r1 = r2 and θ is small then in terms of the rescaled variables the vertical
displacement of the camera is approximately L(u+ 1

2
θ).

(3.2.6) The periodic forcing of the rail is modelled by using u1 of the form
A cos(ωt + β) and u2 of the form A cos(ωt) in (14) and (15), which then
become a pair of coupled linear equations for u and θ. The parameter β
allows for a phase shift between the forcing at each axle.

(3.2.7) If the amplitude of the forcing is taken in the range 0.6–1.0 cm (so taking
A up to about 0.0005 in terms of the rescaled variables when L ≈ 20 m)
then the associated maximum oscillations in camera height are in the
range 0.8–1.0 cm and the corresponding oscillation in camera pitch has
amplitude of about 0.01 radians.

13



Accuracy of a video odometry system ESGI64

(3.2.8) There is a connection between the phase difference of forcing at the two
axles and the dimensionless Strouhal number in fluid dynamics. In the
model above, the Strouhal number, St, is (r1 + r2)/(V T ), where r1 + r2
is the distance between the two axles, V is the forward velocity of the
train, and T is the natural time period of oscillation of the springs. If we
assume that the typical distance between successive ‘bumps’ in the track
is much larger than the distance between the axles, then one expects the
following qualitatively different regimes in the dynamics: if St � 1 then
both sets of wheels see bumps in the track at the same time, and the
resulting camera displacement is mainly due to changes in u rather than
θ; if St ≈ 0.5 then there are resonant effect that lead to large variations
in θ; and if St � 1 then variations in u and θ are both important. The
initial numerical solution of (14) and (15) that was carried out at the
Study Group indicated that the main contributions came from variations
in θ and so the precise relationship between the Strouhal number and train
suspension dynamics remains an open question.

4 Image processing effects

4.1 Investigating alternative algorithms

(4.1.1) The current algorithm uses blocks of 16-by-16 pixels to build up a motion
field linking one image to the next. Each block in the image is matched to
some location in the next image, except where no clear matching can be
found. The largest set of similar block displacements is used to estimate
the movement of the train from one image to the next.

(4.1.2) Some considerable time was spent at the Study Group looking for sys-
tematic error patterns in the motion vectors of the 16-by-16 blocks. None
were found, but it should be borne in mind that we were working with
JPEG compressed image of the individual camera frames. It is possible
that a different result would have been obtained if the raw images had
been available.

(4.1.3) Further experiments were carried out using a single larger block, in place
of the 16-by-16 blocks, on a sample video clip. In this clip, the train
moves of the order of 20 pixels between frames, and so without subpixel
resolution the uncertainty in the positioning estimate is about 5%, which is
higher than required. Fitting a quadratic to the sum-of-squares difference
between images provides good subpixel resolution, as shown in Figure 11.

(4.1.4) It was also found that two independent algorithms, using small (16-by-
16) blocks and large blocks gave good agreement. In particular, both
algorithms resolve a clear oscillation of approximate frequency 2 Hz in the
calculated shift between successive frames (see Figure 12). The fact that

14



Accuracy of a video odometry system ESGI64

20 40 60 80 100 120
20

30

40

50

60

70

80

Data 

Quadratic fit to 
the minimum 

Shift (pixels) 

Sum-squared 
distance 
between 
images 

Figure 11: Calculating the shift between images by fitting a
quadratic to the sum-of-squares difference.

different algorithms capture the same oscillation suggests that it is not an
image processing artefact. Indeed, visually there appears to be appreciable
carriage motion in this particular video clip.
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Figure 12: Two independent image processing algorithms, applied
to the same video clip. Both resolve a clear oscillation of approximate
frequency 2 Hz.

(4.1.5) It should also be noted that the splitting of frames into 16-by-16 blocks
is used in MPEG compression. MPEG4 provides further compression by
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coding for camera motion, and this may in future make possible the ex-
traction of rigid body motion from the video. See [1] for general reference
on MPEG4.

5 Conclusions

5.1 Vehicle body motion

(5.1.1) We carried out a (linearised) calculation of errors due to camera motion.
The results may be used either to fit the observed image displacements,
so eliminating the error, or to estimate the maximum errors if the camera
displacements and rates of change of camera displacements are known.
Nonlinear corrections seem to be small.

(5.1.2) Modelling the train suspension provides a means of determining the max-
imum deviations of camera position and orientation from the calibrated
values, and therefore also the magnitude of errors in position and velocity
estimates.

5.2 Image processing

(5.2.1) The current algorithm derives an optical flow in terms of 16-by-16 blocks
of pixels. It may be possible as an alternative to match the whole image
in one go. Experiments with a real video clip indicated that both options
successfully capture apparent oscillations in the vehicle body motion.

(5.2.2) Finally, it was noted that the errors are not cumulative, at least when
successive train positions are present in a sequence of frames. An error
in matching the first and second frames will by removed when matching
the second and third frames, so that the cumulative error is just as if
the first and third frames had been matched directly. However, ‘skipping’
frames in this way incurs an image processing loss due to less overlap
between the frames being matched. Furthermore, the error field is not
uniform across each individual frame (see Figures 2 through 5); errors are
generally smaller close to the train.
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