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Executive Summary

In the oil and gas industry, an underreamer is a tool used to extend and
enlarge the diameter of a previously-drilled bore. The problem proposed
to the Study Group is to obtain appropriate mathematical models of
underreamer dynamics, in forms that will lead to feasible computation.
The modes of dynamics of interest are torsional, lateral and axial. This
report describes some initial models, two of which are developed in more
detail: one for the propagation of torsional waves along the drill string
and their reflection from contact points with the well bore; and one for
the dynamic coupling between the underreamer and the drill bit during
drilling.
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1 Introduction

1.1 Problem description

(1.1.1) In the oil and gas industry, an underreamer is a tool used to extend and
enlarge the diameter of a previously-drilled bore. Appropriate mathemat-
ical models are needed of underreamer dynamics, in forms that will lead
to feasible computation. The modes of dynamics of interest are torsional,
lateral and axial. There are various key components to be modelled.

Figure 1: Schematic diagram

(1.1.2) Underreamer: The underreamer may be 12 feet long and is illustrated in
Figure 1. It can pass through a pipe, of diameter say 83

4
inches, with its

3 cutter blocks retracted, and then the blocks can be expanded hydrauli-
cally to enable it to enlarge the bore to, say 97

8
inches. Further ahead of

the underreamer is the leading drill bit, so rock cuttings are already in the
mud flow past the underreamer. The cutters are positioned at 120◦ to each
other round the axis, and the main back flow of mud and cuttings past the
underreamer goes through the 3 “junk slots” in the circumferential posi-
tions between the cutter blocks. A jet of drilling mud is directed through
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a nozzle ahead of each cutter block in a further attempt to give it clear
access to the rock face. It is expected that the main elastic deformation
of the underreamer during drilling is in bending.

(1.1.3) Cutter blocks: The cutter blocks are mounted with cutting elements made
of PDC (polycrystalline diamond compact). These will be subjected to
highest loads, vibration and loads will be applied across different points
of the cutter blocks.

(1.1.4) Drillstring: The drillstring between the surface and the underreamer is
so long that it undergoes significant torsional motion. It is rotated at
a steady speed at the surface, say 60 or 120 rpm, but the rotation at
the underreamer and bit will be unsteady and can have peaks of up to
1000 rpm. There is also up to 50 m of drillstring from the underreamer
to the bit. The drillstring is free to move within the bore and may make
contact at various points along its length. Such points known as torque
or drag hotspots could be identified.

(1.1.5) Rock and bore: Prior to the passage of the underreamer the rock faces of
the bore will already be uneven. The bit is steerable, so the centreline of
the bore is generally neither vertical nor straight: it curves and may have
horizontal sections.

1.2 Requirements of model

(1.2.1) The underreamer dynamics are expected to show various kinds of wear and
instabilities depending on both the surface parameters — rotation rate,
weight on bit (WoB), flow rate etc.— and on the downhole parameters —
formation hardness, wellbore inclination etc.

These parameters may adversely affect the underreaming operation and
the resulting hole size, concentricity and rugosity. The model should
specifically take into account:

• All types of loading and bending moments based on stabilisation
points and wellbore contact points.

• Resonant and non-resonant vibration, i.e. torsional, axial, lateral
as well as eccentric, sudden, nonresonant vibration modes releasing
stored torque.

(1.2.2) The model could also be refined to model bit and underreamer wear in
varying formations and investigate the effects that differing formation
loading would have on both. The main challenge is to construct a model
of underreamer dynamics, meeting the above requirements, that can be
used both to highlight wear and avoid premature failures due to inherent
tool design weak spots or usage related to surface or downhole parameters;
and to optimise the rate of penetration and hole cleaning.
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2 Basic mathematical problems and models

We here describe some of the basic geometrical and mechanical models that are
involved in this problem.

2.1 Drillstring dynamics

(2.1.1) The fundamental situation we consider to start with is illustrated in Fig-
ure 2. Given the geometry of the bore (which is not known accurately),

Figure 2: Schematic of drillstring dynamics problem

the material properties of the drillstring, the rotation rate or torque at
ground level, and the hook tension, we would like to be able to predict
the weight on bit (the normal force at the bottom of the borehole), the
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bending moment on the underreamer and the rotation rate or torque at
the underreamer and bit.

2.2 Preliminary model

(2.2.1) A model that is obviously unrealistic but still illuminating is a planar
model, in which there is no twisting or torque. It is, in effect, a planar
model, and is illustrated in Figure 3. It is a clamped incompressible

Figure 3: Schematic of planar model

elastic sheet confined between rigid walls φ±(z) = 0. Our plan is to
describe the frictionless dynamics of this with a Lagrangian density, and
then add in the frictional forces later. The Lagrangian density per unit
width we write as

L = 1
2
ρd∂tζi∂tζi−ρdgζiδi2− 1

2
e∂2

sζi∂
2
sζi + 1

2
Λ(∂sζi∂sζi−1)−

[
Γ±H(φ±)

]+
− ,

(1)
where the first 3 terms represent the kinetic, gravitational and elastic en-
ergies, and the final 2 terms represent the inextensibility and confinement
constraints. (In the last term H is the Heaviside step function.) The
Lagrange multipliers Λ and Γ± will then be the tension in the string, and
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the reaction forces per unit length at the contacts on the upper and lower
surfaces.

(2.2.2) The Euler-Lagrange equation then gives the dynamics in the form

(ρd∂2
t + e∂4

s )ζj + ∂s (Λ∂sζj) = −
[
Γ±δ(φ±)

∂φ±

∂ζj

]+

−
− ρdgδj2. (2)

This has to be solved along with the inextensibility constraint ∂sζi∂sζi = 1
and the containment constraints that φ±(z) = 0 for z on the upper and
lower boundaries.

(2.2.3) A possible solution method would be to use the tangential component of
the field equation to solve for the tension, and the normal component to
solve for the curvature. The constraints have to be built in, and there
can be two kinds of contact of the sheet with the wall: one where it is in
contact at just one point, where there is a point reaction; and a second
kind of contact where there is contact over an interval, with point reaction
forces at each end of the interval and a distributed reaction force along
the interval.

(2.2.4) If this problem is rescaled, it is natural to scale s and ζ with L, the length
of the borehole, Λ and Γ with eL−2, and then scale time t with

√
ρdL4/e.

This results in the dimensionless equation becoming

(∂2
t + ∂4

s )ζj + ∂s(Λ∂sζj) = −
[
Γ±δ(φ)n̂j

]+
− − αδ2j. (3)

The dimensionless constant that appears is α = ρdgL3/e (which we expect
to be large since it very similar to the combination of parameters that
occurs in the problem of pipelaying from a reelship).

2.3 Model with twisting and torque

(2.3.1) We now need to modify this kind of model to include the fully 3-dimensional
geometry as illustrated in Figure 4. The centre-line of the drillstring can
be described by the Frenet-Serret vectors, the curvature and geometrical
torsion etc. However, for the purposes of a mechanical model like this, the
geometrical torsion is not what matters, and instead one has to use the
mechanical torsion. We do not write down the full equations, but they
will take a similar form to those given for the planar model.

(2.3.2) It is then necessary to add in the frictional forces, using some appropriate
model for their dependence on the normal forces at the contact points.
(The purpose of using the Lagrangian approach for the frictionless case is
that it gives a reliable way of getting the interaction between the geometry
and the mechanics correct.)
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Figure 4: Schematic of three-dimensional model

(2.3.3) If this model is pursued, there would be two distinct regimes to consider.
In one case there is more-or-less steady drilling, with the bit rotating and
removing material. But in the other case the bit is stuck, and the applied
torque builds up until eventually the combination of the torque and weight
on the bit overcomes the formation hardness and drilling resumes.

3 Torsional waves in a simplified drillstring model

Based on the work of Tucker and Wang [1, 2, 3], we model the drill-string as
a long slender rod under the standard assumptions of Cosserat theory (arbitrary
deformations but small strains).1

3.1 Torsional wave model

(3.1.1) By considering only the twisting of the drill-string, we arrive at the tor-
sional wave equation

Jsutt(x, t) = Guxx(x, t) (4)

1Tucker and Wang come up with a very general model, including axial, torsional and lateral
motions of the drill-string. However, it is too complicated to do anything with in a week!
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with boundary conditions given by a constant driving torque at the top
and Coulomb friction (F (ut)) at the base

ut(0, t) = Ω, (5)

Jbutt(L, t) = Γux(L, t)− F (ut(L, t)). (6)

The Coulomb friction is approximated by a tanh(ut/ε) term with small ε.
Using a travelling wave ansatz, these equations together can be reduced
to a neutral delay differential equation of the form v̇(t) = f(v(t), v(t −
τ), v̇(t − τ)) where τ is the time taken for a torsional wave to propagate
from the tip of the drill-string to the top and back again (see [4]). However,
the results are unphysical due to the lack of dissipation in the system.

(3.1.2) To overcome this lack of reality, viscous damping is added to the torsional
wave equation to give

Jsutt(x, t) = Guxx(x, t)− cut(x, t). (7)

The addition of the damping term prevents the transformation to a delay
equation (the dispersion relation becomes non-trivial and a delay equa-
tion would be needed for each individual mode, each with different delay
times). Instead, we coded up a spectral PDE solver that uses Chebyshev
polynomials for the spatial discretisation and Matlab’s ode23s stiff solver
for the time direction.

(3.1.3) Figure 5 shows a simulation of (7) with representative parameters taken
from the literature [1]; the value for the damping constant is unknown
and so we just pick one but experimentation suggests that there are no
qualitative changes in dynamics when you change the damping. Also the
parameters for the friction terms are a little dubious. The torsional wave
propagation can clearly be seen. However, the torsional waves eventually
die out (there is a question here as to the ratio between static and dynamic
friction constants; in the undamped model torsional waves only persist if
the static friction constant is sufficiently larger than the dynamic friction
constant).

(3.1.4) To simulate the presence of contact points along the length of the drill-
string, boundary conditions are introduced with additional friction terms.
Figure 6 shows the results of the simulations with a single contact point
at (a) the top, (b) the middle and (c) the tip. Contact points near the top
of the drill-string appear to have very little influence. However, contact
points near the tip and middle of the drill-string are much more influ-
ential on the dynamics. In particular, contact points near the middle of
the drill-string appear to create additional torsional waves that interfere
constructively/destructively with the torsional waves created at the tip of
the drill-string leading to much larger changes in the angular velocity.
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Figure 5: A simulation of (7) with a small weight-on-bit. Torsional
waves can clearly be seen bouncing between the top and the tip. The
torsional waves were instigated by the initial conditions and eventually
die out. The panel on the right is a top-down view of the panel on
the left.

Figure 6: Simulations of (7) with contact points at the top, mid-
dle and tip (respectively). Note the scales on the axes. It appears
that contact points near the top have very little effect on the overall
dynamics. Contact points near the tip have much more of an effect;
however, it is contact points near the middle of the drill-string that
are of the most concern due to the constructive/destructive wave in-
terference.

(3.1.5) Other literature that may be of interest is the work by Gert van der Hei-
den (UCL) on the constrained buckling of drill-strings (again a Cosserat
approach but from the static perspective).

4 Coupled propagation of underreamer and drill

bit

We now describe a different aspect of the problem under consideration, namely the
coupling between the underreamer and the drill bit as drilling proceeds.
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4.1 Progression of the underreamer and drill bit

(4.1.1) One aspect of underreaming explored at the study group was the pro-
gression of the underreamer and drill bit through a geological formation
of varying resistance. The underreamer and the drill bit are both driven
forward by a combination of the thrust from the weight of the drill string
and the torque from the rotation supplied at the surface. These two as-
pects are both necessary when drilling through hard formation; rotation
without weight on the bit will not lead to successful drilling, neither will
merely pushing through the rock.

(4.1.2) Some mathematical modelling of drilling has been done in the past; see for
example Wojtanowicz and Kuru [5] on bit wearing. However, this earlier
work only considered an isolated drill bit, rather than a drill bit con-
nected to an underreamer. One opportunity for practical and interesting
mathematical modelling is to consider the progression through geological
formation of a drill bit connected with an underreamer. Both the under-
reamer and the drill bit require torque and normal force in order to cut
the formation, but the balance of forces between the underreamer and the
drill bit will change over time in a manner that should be amenable to
analysis.

4.2 Structure of the problem

(4.2.1) The underreamer is connected to the drill bit by a long (about 40 m) struc-
ture that contains various devices for steering the drill bit and performing
other important functions. Effectively, this structure can be treated as a
solid steel tube with an outer radius of about 10.8 cm. Steel has a Young’s
modulus of 2× 1011 Nm−2.

(4.2.2) The drill bit and the underreamer both contain smaller cutters that act to
chip away the formation. These cutters gouge into the formation and tear
off chips of rock that are then flushed/floated back to the surface. The
rate at which the drill bit and underreamer are able to progress through
the formation is naturally dependent on the sharpness and arrangement
of their cutters. For the rest of the work that follows, however, we will
ignore this finer structure and simply assume that the rate of progression
depends on the normal force acting on the surface of the rock and on the
speed of rotation.

(4.2.3) Moreover, we will assume that the weight that drives the underreamer and
drill bit through the formation can be treated as a simple pushing force
acting at the underreamer. That is, we assume that the force supplied by
the weight of the drill string is known at the underreamer and that the
weight of the structure connecting the underreamer with the drill bit is
comparatively small and able to be neglected. Similarly, we will assume
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that the rotation of the drill string can be modelled by treating the drill
string as a torsional spring of known length and rigidity attached to the
underreamer at one end and being rotated at constant velocity at the
other end. In a fuller model, some description of the dynamics of the
drill string would be required to supply the needed information about the
weight-on-underreamer and the rotation of the string.

(4.2.4) During the study group, we discussed two variations of the underreamer
progression problem. In the first simple model, we ignore torsion and
assume that the drill bit and underreamer both turn at a constant rate
that is sufficient for drilling. In the extended model, we also consider
variations in the rate of drill rotation. As the rotation-variation model
was not developed very far, we only discuss the weight-driven model in
this report.

4.3 Weight-driven progress

(4.3.1) We are interested in the progression of the drill-bit and the underreamer
through the formation with reference to some arbitrary starting point.
Let b(t) represent the distance drilled by the drill bit since t = 0. Thus,
b(0) = 0 and b increases with time. Similarly, let g(t) represent the length
of the structure connecting the underreamer with the drill-bit, so that
the location of the underreamer is at b(t) − g(t). If g is greater than
some natural length, g0, there will be elastic forces pulling the drill-bit
backwards and the underreamer forwards. Similarly, if g < g0, the drill-
bit will be pushed forwards and the underreamer pushed backwards.

(4.3.2) In the case where progress depends only on weight, we will assume that
the velocity of the drill-bit, b′(t) depends linearly on the difference between
the force at the drill-bit and some critical force that is needed for motion.
This critical force will depend on R(b(t)), a dimensionless measure of the
‘drillability’ (or inverse hardness) of the formation at the position b(t).
This leads to the following equation for the velocity of the drill-bit:

db

dt
= kbit

((
σwob − E

g(t)− g0

g0

)
Abit −W crit

bit R(b(t))

)+

, (8)

where kbit is a constant of proportionality that gives the velocity of the
drill bit when the force acting at the bit is known, σwob is the stress due
to the weight of the drill string, E is Young’s modulus for steel, Abit is the
area of the bit, W crit

bit is a typical critical weight required for drilling and
all other terms are as described above. The superscript + represents the
positive part function defined by

(x)+ =

{
x, x > 0,
0, x ≤ 0.

(9)
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(4.3.3) Similarly, the velocity of the underreamer is assumed to depend on the
difference between the force experienced at the underreamer and some
critical force of order W crit

reamer. This leads to an equation of the form

db

dt
−dg
dt

= kreamer

((
σwob + E

g(t)− g0

g0

)
Areamer −W crit

reamer R(b(t)− g(t))

)+

,

(10)
where kreamer is a constant analogous to kbit and Areamer is the surface area
of the underreamer.

(4.3.4) We can nondimensionalise b and g by scaling with respect to g0 and we can
nondimensionalise t with respect to g0

kbit W crit
bit

. This leads to the following

dimensionless system of first order ordinary differential equations:

db

dt
= (α− β (g − 1)−R(b(t)))+ (11)

dg

dt
= (α− β (g − 1)−R(b(t)))+

− γ (α + β (g − 1)− δ R(b(t)− g(t)))+, (12)

where the nondimensional parameters α, β, γ and δ are defined as follows:

α =
σwobAbit

W crit
bit

, β =
E Abit

W crit
bit

, γ =
kreamerAreamer

kbitAbit

, δ =
W crit

reamerAbit

W crit
bit Areamer

.

(13)

(4.3.5) It should be noted that all of these parameters require some information
obtained from empirical tests; they cannot be determined purely from
physical properties of the underreamer and drill-bit that can be measured
at the surface. We also note that a value of α that is too small could lead
to no progress being made.

(4.3.6) To illustrate the properties of this system of equations, consider the case
where all of the parameters are taken to be one and R(x) is given by a
periodic function, R(x) = 0.9 + 0.12 sinx. In this case, the resistance of
the formation occasionally creeps above the critical value of R(x) = 1,
preventing easy progress from being made until enough stress builds up in
the column connecting the drill-bit with the underreamer. The lurching
progress of the drill-bit and underreamer is depicted below in Figure 7.

(4.3.7) The reasons for this lurching can be seen more clearly by looking at g(t),
the length of the material connecting the drill-bit with the underreamer.
As shown in Figure 8, this ‘spring’ slowly extends over a large period of
time as the drill-bit moves through the formation faster than the under-
reamer. Eventually, the extension of the ‘spring’ builds up to the extent
that the tensile forces are able to overcome the resistance of the formation

11



Underreamer ESGI68

Figure 7: Progress of drill-bit (shown as continuous line) and un-
derreamer (shown as dashed line), when R(x) = 0.9 + 0.12 sin x and
all other constants are taken to be one. Note that the drill-bit and
underreamer become effectively stuck for large periods of time, before
breaking through the formation and continuing.

around the underreamer and the whole machine lurches forward, accom-
panied by a rapid decrease in the length of the material connecting the
drill-bit with the underreamer.

Figure 8: A plot of g(t) over time, showing the changing length of the
material connecting the drill-bit and the underreamer. This effectively
acts as a spring, moderating the forces between the drill-bit and the
underreamer.
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(4.3.8) Hence, this model is able to capture some aspects of the underreaming
process — specifically, the manner in which the progress through the for-
mation is jerky and uneven. One interesting extension to this model would
be to consider the case where the driving stress (as represented by σwob)
is able to be varied. This could lead to an interesting control problem
if there is an aim for the ideal speed of underreamer progress while the
resistance of the formation is unknown.

5 Conclusions

5.1 General

(5.1.1) Clearly this is a modelling problem with many interconnected elements,
and in this report we have begun to investigate some of the elements
that go to make up the whole, but have not attempted to integrate them
into a unified model. Nevertheless, some promising avenues for further
investigation have been opened up by this work.

5.2 Control

(5.2.1) In particular, we have seen that the progression of the bit and under-
reamer through the rock can exhibit lurching, i.e. a behaviour in which
the underreamer moves forwards in spurts, and this naturally could re-
sult in parts of the bore not being enlarged cleanly. To avoid this, some
sensor and feedback control mechanism will be needed, either controlling
the weight-on-bit or the rotation rate or both. Naturally, since the spa-
tial variation in the resistance of the geological formation is not known
beforehand, the control will have to be planned to cover the whole range
of expected hardness.
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