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Chauffeur braking

Problem presented by

Phil Barber and Huw Williams

Jaguar Land Rover

Executive Summary

An experienced driver will ‘feather’ the brakes so as to unwind the sus-
pension compliance and stop the vehicle with only just enough torque in
the brakes to hold the vehicle stationary on any gradient, or against the
residual torque from an automatic transmission’s torque converter. An
optimal stopping problem that minimises the total jerk was formulated
and solved. This model was extended by including a linear relationship
between the brake pressure and the acceleration of the car where the
coefficients are estimated by linear regression. Finally, a Kalman filter
estimates the state of the car using the tone wheel.
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1 Introduction

1.1 Problem Description

(1.1.1) An experienced driver will ‘feather’ the brakes so as to unwind the sus-
pension compliance and stop the vehicle with only just enough torque in
the brakes to hold the vehicle stationary on any gradient, or against the
residual torque from an automatic transmission’s torque converter. Once
stationary, the brake pressure can be increased significantly to hold the
vehicle against disturbances. The problem offered to the Study Group is
to provide a comfortable ‘chauffeur’ stop feature for a luxury vehicle under
full automatic longitudinal control.

(1.1.2) Four main parts to the problem were identified.

(a) Optimal control: Braking control must take account of initial con-
ditions, end conditions and possible disturbances.

(b) State estimation: Vehicle movement is detected by a ‘tone wheel’
attached directly to each of the vehicle’s road wheels. The tone
wheel has teeth that generate square waves in Hall-effect sensors,
which are then used to estimate vehicle speed. There are virtually
no other sensors available.

(c) Friction braking: The classical model of friction has sliding and
static elements. Brake materials are both adhesive and abrasive
and contain lubricants such as aluminium. Are there better (micro-
molecular) models at the stick-slip boundary?

(d) Braking dynamics: There is an unknown and changing offset and
gain in the (open loop) brake pressure control, owing to the brake
disk condition and the effects of gradient, engine braking and torque
converter creep.

The Study Group concentrated on the first three problems following advice
from Phil Barber.

2 Optimising comfort

2.1 Problem Formulation

(2.1.1) First of all, we need to define what is meant by a comfortable stop. For a
comfortable stop, Jaguar suggested that the magnitude of the acceleration
should be less than 3 m/s2 and the jerk (or change in acceleration) should
be less than 1 m/s3. However, the main cause of discomfort is the jerk so
as long as the acceleration is not too large, we wish to minimise the jerk.

(2.1.2) We define the discomfort J in terms of the velocity profile v(t) over the
stopping period 0 < t < T by

1
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J [v, T ] =

∫ T

0

(v̈)2 dt , (1)

and assume that the smoothest ride is given by the trajectory v(t) that
minimises J . We wish to stop the car as smoothly as possible, bringing it
to rest in a distance D from an initial velocity v(0) = v0 and acceleration
v̇(0) = a0. There are of course, other ways we could define the discomfort
of a car coming to stop but the time intergral of the jerk squared is what
we looked at during the week.

(2.1.3) We non-dimensionalise distances on D and times on D/v0. So the velocity
and acceleration scales are v0 and v2

0/D respectively. There is a single
non-dimensional parameter in the problem, which describes the initial
acceleration

α =
a0D

v2
0

. (2)

We also introduce a non-dimensional stopping time τ = v0T/D, in terms
of the real stopping time T . Since T is unknown, τ must be determined
as part of the solution.

(2.1.4) We wish to minimise the dimensionless discomfort, J [v, τ ] with respect to
variations in the velocity profile v(t) and the stopping time τ , subject to
the following conditions:

(a) The car starts from the given initial conditions at t = 0:

v(0) = 1 , v̇(0) = α . (3)

(b) The car comes to a halt at t = τ , and also has no acceleration at
this point. (For otherwise there would be an infinite jerk as the
acceleration instantaneously jumps to zero for t > τ .)

v(τ) = 0 , v̇(0) = 0 . (4)

(c) The car stops at the required distance from its initial location

∫ τ

0

v(t) dt = 1 . (5)

(d) The car never has to reverse:

v ≥ 0 . (6)

(e) We may also want to consider further restrictions, such as positive
acceleration never occurring once breaking has begun, and the stop-
ping point being reached within a specified time.
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(2.1.5) We introduce a Lagrange multiplier λ for the integral constraint (5) in the
usual way, and hence the minimisation problem is expressed as

minimise I[v, τ ] =

∫ τ

0

(v̈)2 − λv dt , (7)

with respect to variations in v(t) and τ , subject to v(t) ≥ 0 and

v(0) = 1 , v̇(0) = α , v(τ) = 0 , v̇(0) = 0 ,

∫ τ

0

v(t) dt = 1 .

(8)

2.2 Solution

(2.2.1) In appendix 5.1, we derive the appropriate Euler–Lagrange equations for
a system of the type (7)–(8). From (29), we find that v(t) must satisfy

d4v

dt4
=

1

2
λ for 0 < t < τ , (9)

for I to be minimal with respect to variations in v(t). The condition (30)
implies

d2v

dt2
= 0 at t = τ , (10)

for I to be minimal with respect to variations in τ .

(2.2.2) Equations (9) and (10) apply only at points where v > 0. At points where
v = 0 the constraint v ≥ 0 restricts the permitted variations. In the
interior we may find solutions which are piecewise quartic polynomials,
but have a discontinuity in v̈(t) at points where v = 0. At the end-point,
the boundary conditions mean that the point where v ≥ 0 is about to be
broken occurs when v̈(τ) = 0, so condition (10) always applies.

(2.2.3) Setting aside the v ≥ 0 constraint for the time being, we see that (9)
implies that v(t) must be a quartic polynomial in t. The five conditions
(8) uniquely determine the coefficients in terms of α and τ . We obtain

v(t) = A(τ − t)2 + B(τ − t)3 + C(τ − t)4 , (11)

where

A = −3(ατ 2 + 8τ − 20)

2τ 3
, (12)

B =
4(ατ 2 + 7τ − 15)

τ 4
, (13)

C = −5(ατ 2 + 6τ − 12)

2τ 5
, (14)

and λ = 48C.
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Figure 1: A plot of the α–τ plane. Each point in the plane cor-
responds to a stopping profile that minimises J subject to the given
stopping distance and time. The solid lines separate the numbered
regions 1–9 in which the solutions have different characteristics. In-
tersections of interest are labelled with the letters A–F.

(2.2.4) Figure 1 shows a plot of the α–τ plane. Each point corresponds to a
polynomial (11) that minimises I with respect to variations in v (but not
necessarily with respect to variations in τ). The lines divide solutions with
different characteristics. Sketches of these different types of solutions are
shown in figure 2.

(2.2.5) Only those in regions 1, 2 and 8 are physically reasonable. The others
involve either an increase in acceleration before breaking begins, a region
of negative velocity (reversing) or a region of acceleration after some initial
breaking.

(2.2.6) We must now consider how to choose an optimal solution for each α,
by selecting appropriate stopping time τ . The solution may be a single
polynomial, or made up of two or more polynomials that are followed
for different time intervals (the transitions occuring at points where the
constraint v ≥ 0 is only just satisfied).

(2.2.7) The rest of the analysis can be followed in the Appendix in section 5.2.
In the end, the solution can be divided into two cases:

Case 1: α ≡ a0D/v2
0 ≥ −3/4

In this case we adopt the single-phase solution, given by the polyno-
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Figure 2: Plots for the various characteristic solution types occurring
in the different regions in figure 1. Time is on the horizontal axis. Red
lines show the velocity v(t), and green lines the acceleration v̇(t).

mial (11) with τ set by the condition (32). This results in

v(t) =
(
4 + 2ατ

) (
1 − t

τ

)3

−
(
3 + 2ατ

)(
1 − t

τ

)4

, (15)

τ =
5

1 +
√

1 + 5α/4
. (16)

In figure 1, these solutions lie on the red line, at and to the right of
point B.

Case 2: α ≡ a0D/v2
0 < −3/4

Here the optimal solution comprises two phases. We first come to
rest in a shorter distance, before inching forwards arbitrarily slowly
to arrive at the required stopping point in an infinite time. The
first phase of the motion is given by an appropriate rescaling of the
solution at point B of figure 1. We have

v(t) =

(
1 − t

t∗

)3

, (17)

for 0 < t < t∗, where

t∗ = − 3

α
. (18)

The distance covered in this time is

d1 ≡
∫ t∗

0

v(t) dt = − 3

4α
< 1 . (19)
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(2.2.8) Observe that the solutions for both cases converge to the same trajectory
(namely the solution corresponding to point B of figure 1) as α → −4/3.
The full stopping profiles corresponding to points B and E in Figure 2 are
shown in Figures 3 and 4.
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v(t)
v̇(t)
v̈(t)

Figure 3: The dimensionless displacement, velocity, acceleration and
jerk as functions of time, for optimal breaking from an initial acceler-
ation α = −3/4. This corresponds to point B on figure 1.

2.3 Discussion

(2.3.1) Case 1 corresponds to a normal stopping event, and should be relevant to
most situations where stopping is required to occur. Case 2 corresponds
to an ‘over-breaking’ situation in which the car is already breaking too
rapidly given the required stopping distance. This is only likely to occur
in situations where the car was attempting to stop at a certain point
and then the situation changes and the stopping point is moved further
ahead of the car. Examples of this might include a red traffic light ahead
turning green, or a stationary car waiting to turn right making the turn
and clearing the road. In both cases, there could be another reason to
stop further along the road.

(2.3.2) Physically the optimal solution of crawling along infinitely slowly is not
much use. There are two sub-cases to consider:

Case 2a : The natural stopping point at d1 = −3/(4α) is close enough
to the required point, that it doesn’t matter. In which case, the car
should just adopt the first phase of the stopping trajectory and not
attempt to cover the remaining distance.
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Figure 4: The dimensionless displacement, velocity, acceleration and
jerk as functions of time, for optimal breaking from an initial acceler-
ation α = 0. This corresponds to point E on figure 1.

Case 2b : The natural stopping point at d1 is a significant distance before
the required stopping point. In this case the desired option is likely
to be to come out of the deceleration, continue at some “optimal’
speed for the road conditions for some time, and then execute a
stopping manoeuvre from a closer point. Apart from a possible large
initial jerk coming out of the deceleration (which is is pretty much
unavoidable) the rest of the manoeuvre will hopefully be sufficiently
smooth that it doesn’t matter that the jerk is not strictly minimised.
In this case, we are not initially in a ‘stopping regime’ and it is
the responsibility of the regular driving control system to determine
appropriate car speed behaviour until the breaking begins.

3 Optimal control framework

3.1 State estimation

(3.1.1) Any optimal stopping problem will require that we know the initial state
of the car. In reality, our model will be imperfect and so due to model
and parameter uncertainties, we will need to update our optimal control
as the car brakes. If we had accurate sensors available each feeding a
time series of information to the control system, this might not be such
a problem but the cars have limited bandwidth and space for sensors.
The Study Group concentrated on a solution with the speed sensor only.
The control strategy is to use the estimates of the current state of the

7
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vehicle to determine how to adjust the braking system of the car in order
to affect a smooth stop, following an appropriate optimal stopping profile
from Section 2.

(3.1.2) A Hall-effect sensor together with a tone wheel acts as a speed sensor for
the car. The tone wheel is a cog with 48 square teeth (see Figure 5) and
each revolution of the tone wheel corresponds to the car moving 2.101
metres. The velocity is calculated by looking at the time taken until the
next tooth of the cog passes the sensor. The teeth are imperfect so there
will be some error to the velocity calculation which increases when the car
is moving very slowly.

Figure 5: Picture of a tone wheel. (Courtesy of eHow.com)

(3.1.3) The solution method here is a Kalman filter which will provide state es-
timates of the car in between updates from the speed sensor. Let xt be
the state of the car at time t. The Kalman filter assumes we have a linear
dynamical system hence the true state of the system at time t, xt, satisfies

xt = Fxt−1 + But−1 + wt−1 (20)

where ut is the control applied to the system at time t and wt is the process
noise at time t which is modelled by Gaussian white noise with covariance
Qt. At each time step an observation of the true state, zt, is made which
satisfies

zt = Hxt + vt (21)

where vt is the observational noise modelled by Gaussian white noise with
covariance Rt.

8
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(3.1.4) For the simplified problem with no friction, we have for dt ‘small’

xt =

(
x
ẋ

)
F =

(
1 dt
0 1

)

B =

(
0 0
dt 0

)
ut =

(
at

0

) H =

(
0 0
0 h(t)

)
(22)

where h(t) = 0 when the tone wheel at time t is currently undetected by
the sensor, otherwise h(t) = 1. at is the optimal acceleration calculated
by the control system at time t.

(3.1.5) A simple simulation of the stopping problem with a tone wheel (with
simulated errors) was made. At each time step, the Kalman filter gave
the control system estimates of the state of the car. The control system
calculates the solution to the problem in section 2.1 for the next time
step until the car comes to a stop. Figure 6 shows the last section of the
simulation. The jumps in the curves indicate where new measurements
were received from the tone wheel and these updates become less frequent
as the vehicle slows down. The shaded area is 1 standard deviation away
from our estimate and our real position is within the shaded area for the
whole simulation.

Figure 6: Simulation results using the Kalman filter: The left graph
shows the actual (red) and detected displacement (blue) of the car
from the start point at 0 metres. The stopping distance was set at
20 metres. The right graph plots the speed of the car at the end of
the simulation. The optimal stop took approximately 43 seconds.

(3.1.6) Remarks:

9
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• Strictly, the errors come from the timings of the updates and not
from the readings themselves. However, the Kalman filter is designed
to operate in the presence of noise and hence it is very robust — it
should still work well in our problem.

• Because of the design of the sensor and the lack of an accurate ac-
celorometer, the control system doesn’t really know if the car has
stopped. There is the need for a higher level control system which
increases the brake pressure when an update has not occurred for s
seconds, at which the car assumes you have stopped.

3.2 Braking pressure model

(3.2.1) In reality, the control available to the chauffeur is the braking pressure and
not the acceleration of the car. The relationship between the two depends
on the gradient of the road, the brake condition, the coefficient of friction,
mass of the car and perhaps other parameters that are unknown to the
control system. This can all be approximated by a linear relationship

ẍ = δ + γp + ε (23)

where p is the braking pressure, γ and δ are constants and ε is an error
term. Assuming ε is zero-mean Gaussian, we can use linear regression to
estimate γ and δ using the state estimates from the Kalman Filter.

(3.2.2) This model assumes we have simple sliding friction only. If after tests we
see that the stick-slip boundary needs to be examined further, there are
some more sophisticated friction models in the Appendix in sections 5.4
and 5.5.

3.3 The control strategy

(3.3.1) We updated the control strategy taking into account the tone wheel and
the linear braking pressure model. A diagram for the algorithm can be
seen in Figure 7. At each time step, the state of the car is estimated
and an optimal acceleration is calculated. At the same time, the past
braking pressure and acceleration data will be used to estimate the braking
pressure model parameters. This is then combined to find the optimal
braking pressure for the car. This continues until the car is estimated
to have stopped by the Kalman filter. Unfortunately, there was no time
during the Study Group week to write a complete set of code to test this
framework.

10



Chauffeur braking ESGI68

Figure 7: Proposed optimal control strategy

4 Conclusions

4.1 Remarks

(4.1.1) When considering the ideal stopping trajectory, one should look at the
overall value of the discomfort, and the peak jerk. If these are lower
than some defined thresholds, it probably means you don’t need to start
stopping yet. You can continue at your current speed or what ever the
road conditions dictate (to arrive as quickly as possible) or possibly release
the accelerator to begin slowing down gradually (in order to save fuel and
brakes). The stopping procedure begins at some later point, determined by
when the optimal trajectory starts to exceed the set discomfort thresholds.

(4.1.2) While we chose to minimise the integral of jerk-squared, it is possible that
this could have lead to large peak values over small time-intervals – which
wouldn’t be physically desirable. However, this is found not to be the
case, as the solutions are all smooth polynomials, and in particular the
jerk is quadratic in time.

(4.1.3) When getting close to stopping, it would probably be sensible to optimise
the stopping not just over the stopping time, but also over the stopping
distance too. In the Kalman filter simulations, the largest ‘corrections’
are applied near the end. But provided a sufficient safety cushion is built
into the initial stopping position, it doesn’t matter if the car stops a few
centimetres in front or behind that point. It’s better to choose a smoother
trajectory than be exactly in the right place.

11
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4.2 Friction

(4.2.1) Friction will, unfortunately, be a cause of a certain amount of jerk in some
cases. Take a look at the example in Figures 8 and 9. Both friction and
gravity are in the same direction when the block is moving uphill. When
the block starts to stick onto the surface, the friction changes direction
rapidly causing jerk. What this tells us is that in certain cases, trying to
get the car to stop using the brake only may not work in all situations and
that a more sophisticated control mechanism using the engine is necessary.
However, the magnitude of the jerk can be reduced by a slower stop.

N

W
F

Figure 8: Uphill movement (sliding)

Figure 9: Uphill movement (stopped)

(4.2.2) However, the sliding friction model should still be updated in the future
if it is felt that the stick-slip boundary is the cause of some of the jerk.
Stick-slip is caused by the surfaces alternating between sticking to each
other and sliding over each other, with a corresponding change in the force
of friction. Typically, the static friction coefficient between two surfaces
is larger than the kinetic friction coefficient. If an applied force is large
enough to overcome the static friction, then the reduction of the friction
to the kinetic friction can cause a sudden jump in acceleration.

12
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(4.2.3) Andersson et al (6.1.1) recommend that where the final position is unim-
portant, one should use the combined Stribeck-tanh model. Where the
final position is important, we should use a combined Stribeck-Dankowicz
model. They note that the Coulomb model does not always represent be-
haviour in a contact set well but, other models are not much better and/or
share the same problems as the Coulomb model hence the Coulomb model
is still the preferred friction model by many.

(4.2.4) They propose that the combined model suitable for ‘small’ displacements
such as the Canudas de Wit model or the combined Coulomb, Stribeck,
viscous and Dankowicz model should be used in many cases. Whilst anal-
ysis of other models is given, no conclusions are drawn as to whether these
combined models are better. Their ability to model micro-slip and other
effects for small displacements could make them relevant. The models can
be seen in the Appendix in sections 5.4 and 5.5.

(4.2.5) Finally, the jerk when the brakes ‘bite’ is almost inevitable. The key to
minimizing this is to have an approach trajectory that means you velocity
and acceleration are both getting as close to zero as possible at the same
time (and hopefully somewhere near your desired stopping point).

4.3 Suggested further research

(4.3.1) Further work would include stress tests using a simulation which is then
followed by some real physical tests. It might be the case that the linear
relationship between the brake pressure and the car acceleration might be
a good enough model in reality and if not, this is when one could look into
including a more sophisticated model for friction mentioned in sections 5.4
and 5.5.

(4.3.2) To summerise, we constructed a control system that would be resistant to
uncertainties (that is, uncertainties to the control system of the car) and
that would in theory minimise the total jerk of the stopping procedure.
Simple simulation results show that the acceleration and jerk levels are
within the range of comfort specified by Jaguar Land Rover.

5 Appendix

5.1 Derivation of the Euler–Lagrange Equations

(5.1.1) Consider a functional

I[v, τ ] =

∫ τ

0

F (v̈, v̇, v) dt (24)

which we wish to minimise by varying the path v(t) and the time interval
τ , subject to the boundary conditions

13
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v(0) = A , v̇(0) = B , v(τ) = C , v̇(τ) = D . (25)

(5.1.2) We consider variations δv(t) and δτ . To satisfy the boundary conditions,
we find that the path variations must satisfy

δv(0) = 0 , δ̇v(0) = 0 , δτ v̇(τ) + δv(τ) = 0 , δτ v̈(τ) + δ̇v(τ) = 0 .
(26)

We define
δI = I[v + δv, τ + δτ ] − I[v, τ ] . (27)

Using integration by parts and applying the boundary conditions, we find
that

δI =

∫ τ

0

δv

[
d2

dt2

(
∂F

∂v̈

)
− d

dt

(
∂F

∂v̇

)
+

∂F

∂v

]
dt

+ δτ

[
F (v̈, v̇, v) − v̈

∂F

∂v̈
− v̇

∂F

∂v̇
+ v̇

d

dt

(
∂F

∂v̈

)]
t=τ

+ O(δv2, δ̇v
2
, δ̈v

2
, δτ 2) . (28)

For a stationary point with respect to changes in v and τ , we therefore
require that

d2

dt2

(
∂F

∂v̈

)
− d

dt

(
∂F

∂v̇

)
+

∂F

∂v
= 0 , (29)

[
F (v̈, v̇, v) − v̈

∂F

∂v̈
− v̇

∂F

∂v̇
+ v̇

d

dt

(
∂F

∂v̈

)]
t=τ

= 0 . (30)

5.2 Analyisis of the optimisation problem (continued)

(5.2.1) The solution to the optimisation problem in section 2.1 is obtained by
following the analysis continued in this section.

(5.2.2) The polynomials (11) minimise J between the initial and final conditions
conditions over the given time interval τ . We shall use them to construct
solutions including the additional constraint v ≥ 0, and allowing for op-
timsation with respect to variations in τ .

(5.2.3) The condition (10) to begin at a stationary point with respect to variations
in τ is v̈(τ) = 0 which implies A = 0. This gives a relationship between α
and τ :

ατ 2 + 8τ − 20 = 0 . (31)

(5.2.4) Examining figure 1, we see that for α > −4/5 there are two values of
τ satisfying (31). However, only the lower branch satisfies v ≥ 0. (The
polynomials in regions 3–6 have v < 0 for some values of t.) A check on
the values of J for each of the solutions shows it is always in increasing

14
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function of τ , so we might conclude1 that for α > −4/5, the minimising
solution is the polynomial (11) with τ lying on the lower branch of (31),
i.e.

τ =
5

1 +
√

1 + 5α/4
. (32)

(5.2.5) For α < −4/5 there are no polynomial solutions satisfying (31). Never-
theless, J is still an increasing function of τ , so it would be tempting to
increase τ as much as possible before violating a constraint: either (a)
v ≥ 0 or (b) v̇ ≤ 0. The former would put us on the upper boundary of
region 7 (v(t∗) = v̇(t∗) = 0), and the latter the upper boundary of region
8 (v̇(t∗) = v̈(t∗) = 0).

(5.2.6) However, at the point in the trajectory where the constraint is only just
satisfied, the Euler–Lagrange equations no longer apply.2 We are allowed
a discontinuity in v̈, and so we can switch from one polynomial solution
to another. We conclude that the solution must involve following one
polynomial solution until either (a) v(t∗) = v̇(t∗) = 0 or (b) v̇(t∗) = 0,
v(t∗) > 0, and then switching to a different polynomial solution from that
point on. In case (a), v̇(t) is continuous across the jump, so we must have
v̇(t∗) = 0 to prevent v(t) > 0 immediately after the jump. In case (b),
since v̈ can jump v̇(t) < 0 can be avoided even if v̈(t∗−) �= 0.

(5.2.7) The total stopping distance (which is 1 with our non-dimensionalisation)
must be partitioned as 1 = d1 + d2 between the two phases of the mo-
tion, and the optimal polynomial found for each phase. We must then
determine the optimal partition (d1, d2) and transition time t∗ in order to
minimise the total discomfort over both phases. Sketches of this parti-
tioning showing the two phases of the motion are shown in figure 10.

(5.2.8) The first phase of the motion 0 < t < t∗ involves getting from the initial
conditions to a situation in which v̇(t∗) = 0 with either (a) v(t∗) = 0 or
with (b) v(t∗) > 0, in a distance d1 < 1. These solutions can be related
to the polynomials (11). In case (a), they are just the same polynomials
but with α and τ redefined to take into account the shorter distance.
(Decreasing the distance corresponds to decreasing the magnitude of α
and increasing the magnitude of τ .) In case (b), we must also add a
constant v∗ = v(t∗) to the polynomial to obtain the non-zero velocity at
t = t∗.

(5.2.9) The second phase of the motion t∗ < t < τ starts from v̇(t∗) = 0, with
v(t∗) = 0 in case (a) and v(t∗) > 0 in case (b). Again the optimal solutions

1Actually, as we shall see below, this branch only applies for α > −3/4.
2This is because we are unable to perform arbitrary deformations to the trajectory at that

point, without violating the constraint.
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Figure 10: Sketches of possible split solutions in cases where one of
the constraints is only just satisfied at a point t = t∗ ∈ (0, τ). (a)
with the constraint v(t) ≥ 0, and (b) with the constraint v̇(t) ≤ 0.
The paths must be optimised over variations in t∗, τ , d1, d2 = 1− d1,
and in case (b) v∗ = v(t∗).

can be related by a simple re-scaling to the polynomials (11). In case (a),
the optimal solution for t > t0 corresponds to a point on the red line in
figure 1 with α = +∞. This solution takes an infinite time to cover the
remaining distance by creeping forwards very slowly from the initial point
of rest. While not particularly desirable physically, this solution makes
no contribution to the jerk integral. In case (b) the optimal solution for
t > t∗ corresponds to the point E on figure 1. This solution makes a
positive contribution to J proportional to v∗2 and is depicted in figure 4.

(5.2.10) In case (b) we see that, for a given (d1, d2), the contribution to J from
the second phase of the motion is minimised by taking v(t∗) as small as
possible. This is also found to be the case3 for the first phase of the
motion. Hence case (b) is reduced to case (a).

(5.2.11) For case (a), the second phase of the motion makes no contribution to J ,
so it is just a matter of choosing the distance and time for the first phase
to minimise J . This process is made easier by observing the behaviour of
the Lagrange multiplier λ = 48C. When λ < 0, there exists a solution
with a longer stopping distance and smaller J . When λ > 0 there exists
a solution with a shorter stopping distance and smaller J . Provided d1

doesn’t exceed the total (non-dimensional) stopping distance of 1, the
optimal solution therefore lies on the curve λ = 0. We find that the
optimal trajectory corresponds to the point B on figure 1. The distance
is given by d1 = −3/(4α), so this is acceptable as long as α ≤ −3/4. This
solution is is depicted in figure 3.

We also find that this two-phase solution has a smaller value of J than
the previously proposed single-phase solution for −4/5 ≤ α < −3/4, i.e.
whenever λ > 0.

3Details omitted here.
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(5.2.12) This leads us to the solution stated in paragraph (2.2.7).

5.3 An aside on self-similar stopping profiles

(5.3.1) We have seen that the solution from a given set of initial conditions that
minimised the discomfort over a given stopping time depended on two
non-dimensional parameters

α =
a0D

v2
0

, τ =
v0T

D
. (33)

(5.3.2) At any point on an optimal stopping profile, we may examine the current
conditions and re-calculate α and τ based on those conditions. The re-
mainder of the trajectory we are about to follow would be returned as the
optimal path for the new (α, τ) pair. It is therefore interesting to ask how
α and τ evolve as we follow a stopping trajectory, and in particular if any
trajectories (optimal or otherwise) are self-similar, in the sense that α and
τ remain unchanged as the trajectory is followed.

(5.3.3) Suppose we follow the path x(t) ≤ 0 to stop at x = 0. Then at any point
on the trajectory, we have

α = − ẍx

ẋ2
, τ =

ẋT

x
(34)

With α constant, we can integrate the first equation once to obtain

ẋ = C(−x)−α , (35)

for some constant C. A second integration yields

x(t) = −C ′|t − t0| 1
1+α , (36)

where C ′ and t0 are constants.

(5.3.4) There are now two possibilities:

(a) If 1+α > 0 then we stop in a finite time, and T = t0−t. Substitution
into (34b) yields the requirement

τ =
1

1 + α
(37)

(b) Otherwise 1 + α < 0 and stopping takes an infinite time. Then
T = ∞, and there is no additional requirement from (34b).

(5.3.5) The α–τ relation (37) for the self-similar solutions of type 1 is shown on
figure 1. We note that the self-similar solutions have the position x as a
power of t, and for integer values of τ the solution is a polynomial of order
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τ . For τ > 2 the self-similar solution also satisfies v(τ) = v̇(τ) = 0. Hence
for τ = 3, 4, 5 the solution is a polynomial of order at most 5, which
also satisfies the end-point boundary conditions. These three solutions
therefore coincide with the optimal solutions (derived above) at those
points.

(5.3.6) These three points (marked A,B and C on figure 1) are thus the only
stationary points in the α–τ phase plane. It may be shown that, when
following the optimal polynomial solutions, A (−4/5, 5) is an unstable
node, B (−3/4, 4) is a saddle point, and C (−2/3, 3) is a stable node.

(5.3.7) The evolution of α and τ for the optimal solutions described in section 2.2
is as follows. Case 1 solutions follow the red line in Figure 1 to the left
and converge to point B as t → τ . Case 2 solutions remain at point B
until the transition point.

5.4 Friction Models: Canudas de Wit Model

(5.4.1) Consider friction between two materials as contact between bristles. The
bristles from one surface are rigid whilst the bristles on the other surface
are flexible. Let the deflection, z, of bristles satisfy

dz

dt
= v

(
1 − z

g(v)

)
(38)

where v is the relative velocity between the two surfaces and g(·) > 0
is a function dependant on the properties of the two materials such as
temperature, lubrication etc.

(5.4.2) The friction force is described by

F = σ0z + σ1
dz

dt
+ σ2v (39)

where σ0 represents stiffness, σ1 is the damping coefficient and σ2 is the
viscous friction coefficient.

(5.4.3) The proposed form of g(v) which describes the Stribeck effect (i.e.lubricated
sliding contact friction decreases with increased sliding speed due to vis-
cous and thermal effects.) is

σ0g(v) = Fc + (Fs − Fc)e
( v

vs
)2 (40)

where Fc is the Coulomb friction, Fs is the maximum static friction and
vs is the Stribeck velocity.
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5.5 Friction Models: Combined Coulomb, Stribeck, vis-

cous, Dankowicz Model

(5.5.1) From Dankowicz, take friction represented by a first order differential
equation

ż = ẋ

(
1 − zẋ

δ|ẋ|
)

(41)

where δ is the micro-slip displacement before the main slip. This param-
eter would have to be determined experimentally.

(5.5.2) The combined model for friction takes the form

F =

(
1 +

(
Fs

Fc
− 1

)
e−(|ẋ|/vs)i

)
Fc

z

δ
+ kcẋ (42)

and allows for Coulomb, viscous, Stribeck and micro-slip effects. However
all parameters, δ, i, vs, Fc and Fs must be determined from dynamic
friction tests.
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