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Abstract

We study two fluid dynamical issues which are important in the manufacture
of thin glass fibers for communication networks and materials. Such thin fibers
are obtained by rapidly pulling molten glass through an array of successively
smaller holes. Through asymptotic analysis and physical modeling, we obtain a
quantitative description of the flow and structure of the glass fiber as it is being
pulled. We examine in particular the issue of whether initially planar cross sections
remain planar, and find that they do so approximately, but not exactly, even in the
absence of such factors as gravity, surface tension, and inertia. We also develop
a quantitative theory for the structure of the air flow near the fiber, which is an
important ingredient in determining how fast the fiber cools. In particular, we
develop a description for the structure of the boundary layer near a fiber which
has accelerating surface velocity and shrinking radius which is comparable or thin
compared with the thickness of the boundary layer. One novel feature is that the
accleration of the fiber surface velocity leads to a compression of the boundary
layer as it evolves downstream.
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1 Introduction and Overview

Thin glass fibers, with diameters on the order of tens of microns, are crucial materials
for high-speed communication [2, 8] and reinforcement of structural plastic and fabric
materials [11]. These fibers are typically manufactured through melting the glass, then
drawing it at high speed through a series of holes in “bushing plates” until it reaches its
desired radius [11]. A cartoon of the process is depicted in Figure 1. Preform molten
glass is supplied from the top through a nozzle of radius H0, and is pulled by a downward
force through a much smaller hole of radius H1 into a tube in which the glass cools and
solidifies into a hopefully uniform fiber. The emerging fiber is pulled at a high speed
U1, and the distance between the nozzle and final bushing plate is denoted by length L;
typical values for these fundamental geometric parameters are given in Table 1.

Table 1: Approximate values of physical parameters [2, 8, 11]
Initial nozzle radius H0 ≈ 1–10 mm,
Final fiber radius H1 ≈ 5–50 µm,
Length of neck-down region L ≈ 1–2 m,
Final fiber speed U1 ≈ 15–90 m/s,

In the workshop, we have analyzed two elements of this process which may help
inform improvements in the procedure. First, we have studied how the molten glass
fiber deforms in the neck-down region in Figure 1. We develop in §2 a mathematical
theory to describe its shape and the internal distortion within the fiber. In particular, we
have examined whether initially planar cross sections at the upper nozzle remain planar
further downstream. That is, suppose at an instant of time we dye a cross section of the
fiber that is just emerging from the nozzle. The question is whether this dyed region
will remain planar or will buckle as the fiber is drawn down to smaller radius. We
find that the thickness of the fiber decays according to an exponential law in the neck-
down region, and that planar sections do remain approximately, but not exactly, planar.
Numerical simulations have previously been performed to study this issue [2], finding
similar results, but the present work provides a mathematical theory which indicates
in a quantitative fashion how the fiber shape and distortion and depend on the various
physical parameters. Moreover, our analysis shows that the buckling of cross sections of
the fiber results simply from dynamical interaction with the evolving free surface. Other
factors, such as surface tension, inertia, gravity, temperature-dependent viscosity, and
radial temperature gradients can also influence the internal distortion of the fiber, but
there is also a basic distortion which cannot be attributed to any of these.

The second contribution from the workshop is the development of some basic theory
for the air flow near the fiber. This “boundary layer” air flow arises from the transfer
of momentum from the fiber to the air through viscous coupling. Because the fiber is
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Figure 1: Schematic diagram of process of drawing glass fibers. Figure is not drawn to
scale; the fiber is in reality much thinner and the neck-down region much longer; see
Table 1.
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accelerated to high speed, this air flow can become significant and will affect the rate of
heat transfer away from the hot glass into the surrounding atmosphere. In practice, one
would like to make this heat transfer very rapid, so that the thinly drawn glass fiber can
cool and solidify within a reasonably short distance. By better understanding how the
air flow depends on the physical parameters in the glass drawing process, one may be
able to design ways to draw the glass so that the cooling region can be made shorter.

Our boundary layer analysis borrows from the vast field of theory from fluid me-
chanics [4], but the standard theory requires some adaptation to the present application.
First of all, in the neck-down region, the fiber surface is rapidly accelerating as the fiber
is stretched into a smaller radius. Most boundary layer theory has been developed for
fluids flowing past boundaries which are rigid or at least moving with constant speed.
Recent work [1] has considered self-similar profiles of the air velocity in the boundary
layer near a flat stretching surface such that the surface velocity grows according to a
power law. Such flat surface analysis would be applicable for a situation in which the
boundary layer was thin compared to the radius of curvature of the fiber. Some simple
estimates presented in §3.1, based on integrated forms of the momentum equation, in-
dicate however that the boundary layer thickness for the typical data listed in Table 1
will be at least as large as the radius of the fiber. Consequently, we develop a theory for
the boundary layer in the neck-down region which is appropriate to situations where the
boundary layer can be comparable or larger than the radius of the fiber, though we still
assume that the longitudinal (streamwise) radius of curvature is large compared to the
boundary layer thickness. This assumption is shown to be consistent with the data in
Table 1. Our approach follows the classical path of searching for similarity solutions [4].
It turns out that the most interesting fiber shape for which we can find a nontrivial
similarity solution is precisely the one which is predicted by the theory in §2!

Another boundary layer analysis is developed for the air flow in the tube after the
fiber has been drawn through the final bushing plate. Here, the complication is the pres-
ence of the confining tube, which necessitates some return flow counter to the direction
of the fiber motion. In §4, we present a quantitative theory for the air flow throughout
this tube, using the method of similarity solutions, matched asymptotic expansions, and
integral balance ideas.

Concluding remarks and suggestions for future developments are offered in §5.

2 Quasi-one-dimensional model for a slender viscous

fiber

2.1 Governing equations

Consider an axisymmetric fiber of viscous liquid emerging from a nozzle at speed U0

and being drawn downwards at speed U1 > U0 a distance L downstream. We model the
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liquid as Newtonian, but with a nonuniform viscosity µ, since the viscosity of glass is
very strongly dependent on temperature. In terms of cylindrical polar coordinates (x, r)
(measuring, respectively, distance along and distance from the fiber axis) with velocity
components (u, v) and pressure p, the stress tensor therefore has components

σxx = −p + 2µ
∂u

∂x
, (1)

σrr = −p + 2µ
∂v

∂r
, (2)

σθθ = −p + 2µ
v

r
, (3)

σxr = µ

(
∂u

∂r
+

∂v

∂x

)
, (4)

σxθ = σrθ = 0. (5)

In terms of these, the steady Navier-Stokes equations governing the flow of liquid in the
fiber may be written as

∂(ru)

∂x
+

∂(rv)

∂r
= 0, (6)

∂(rσxx)

∂x
+

∂(rσxr)

∂r
+ ρgr = ρr

(
u
∂u

∂x
+ v

∂u

∂r

)
, (7)

∂(rσxr)

∂x
+

∂(rσrr)

∂r
− σθθ = ρr

(
u

∂v

∂x
+ v

∂v

∂r

)
, (8)

where ρ is the liquid density and g the acceleration due to gravity.
We describe the free surface of the fiber by r = h(x). On this surface we apply the

kinematic boundary condition and dynamic conditions that balance viscous traction
with that due to the surface tension γ:

v = uh′(x)

σxr = h′(x) (σxx + γκ)

σrr + γκ = h′(x)σxr




on r = h(x), (9)

where

κ =
1

h(x)
√

1 + h′(x)2
− h′′(x)

(1 + h′(x)2)3/2
(10)

is the curvature of the free surface. On the axis of the fiber we have to impose conditions
of continuity, namely

v =
∂u

∂r
= 0 on r = 0. (11)
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At the ends of the fiber, we specify the velocity, while the fiber radius is prescribed only
at the top, because of the kinematic condition (9a):

u = U0, v = 0, h = H0 at x = 0, (12)

u = U1, v = 0 at x = L. (13)

If the viscosity µ(x, r) is given, or found e.g. by solving a coupled heat-transfer prob-
lem, then these equations and boundary conditions comprise a closed problem that
determines the shape of the fiber and the velocity and stress fields inside.

2.2 Nondimensionalisation

We rescale the equations and boundary conditions as follows

x = Lx̃, r = H0 r̃, u = U0ũ, v =
H0U0

L
ṽ,

µ = Mµ̃, p =
MU0

L
p̃, h = H0h̃, κ =

1

H0
κ̃,

(σxx, σrr, σθθ) =
MU0

L
(σ̃xx, σ̃rr, σ̃θθ) , σxr =

MU0

H0
σ̃xr.

Notice that the two different lengthscales L and H0 are used to nondimensionalise x and
r, and that M is used to denote a typical viscosity.

There are five dimensionless parameters in the problem. The inverse aspect ratio,

ε =
H0

L
, (14)

measures the slenderness of the fiber, while the draw ratio is the ratio between the nozzle
and draw velocities:

D =
U1

U0
. (15)

The Reynolds, Stokes and inverse reduced capillary numbers,

R =
ρU0L

M
, S =

ρgL2

MU0
, C =

γL

MUH0
, (16)

determine the respective importance of inertia, gravity and surface tension compared
with viscosity.
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The dimensionless equations and boundary conditions are (dropping tildes)

σxx = −p + 2µ
∂u

∂x
, (17)

σrr = −p + 2µ
∂v

∂r
, (18)

σθθ = −p + 2µ
v

r
, (19)

σxr = µ

(
∂u

∂r
+ ε2 ∂v

∂x

)
, (20)

∂(ru)

∂x
+

∂(rv)

∂r
= 0, (21)

ε2 ∂(rσxx)

∂x
+

∂(rσxr)

∂r
+ ε2Sr = ε2Rr

(
u
∂u

∂x
+ v

∂u

∂r

)
, (22)

∂(rσxr)

∂x
+

∂(rσrr)

∂r
− σθθ = ε2Rr

(
u

∂v

∂x
+ v

∂v

∂r

)
, (23)

v = uh′(x)

σxr = ε2h′(x) (σxx + Cκ)

σrr + Cκ = h′(x)σxr




on r = h(x), (24)

κ =
1

h(x)
√

1 + ε2h′(x)2
− ε2h′′(x)

(1 + ε2h′(x)2)3/2
, (25)

v =
∂u

∂r
= 0 on r = 0, (26)

u = 1, v = 0, h = 1 at x = 0, (27)

u = D, v = 0 at x = 1. (28)

2.3 The slender-fiber limit

If the fiber is slender, in the sense that its radius is significantly smaller than its length L,
then the complicated two-dimensional free-boundary problem (17–28) may be greatly

7



simplified. Formally, we take the limit ε → 0 and seek the solutions as asymptotic
expansions of the form

u ∼ u0 + εu1 + . . .

(and similarly v, p, h, µ and the stress components). From the data presented in Table 1,
we see that ε . 10−3 so a small ε approximation should be excellent.

At leading order, (22) and (24b) imply that

σxr0 = 0 (29)

and, therefore, from (20),

∂u0

∂r
= 0 ⇒ u0 = u0(x). (30)

Since the axial velocity is uniform across the fiber, it follows that, to lowest order in ε,
plane sections remain plane.

Next we integrate (21) and use (26) to obtain

v0 = −r

2
u′

0(x). (31)

Then the kinematic boundary condition (24a) gives

h0

2
u′

0(x) + u0h
′
0(x) = 0 ⇒ d

dx

(
u0h

2
0

)
= 0

and hence, using (27),

u0h
2
0 = 1, (32)

which implies that the flux of liquid along the fiber is uniform.
Next, (23) leads to

∂p0

∂r
= −∂µ0

∂r
u′

0(x),

which may be integrated, applying (24c) to find the leading-order pressure:

p0 =
C

h0
− µ0u

′
0(x). (33)

We can therefore find all the leading-order stresses,

σxx0 = − C

h0

+ 3µ0u
′
0(x), σrr0 = σθθ0 = − C

h0

, (34)
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but we are unable to obtain to solve for u0 and h0 using the leading-order equations
alone.

It is therefore necessary to proceed to O(ε2), where (22) gives us

σxr1 =

{
Ru0u

′
0 − S − C

h′
0

h2
0

}
r

2
− 3

r

∫ r

0

∂

∂x
(µ0u

′
0) r dr. (35)

Now, by applying (24b) at order ε2, we obtain a second relation between u0 and h0,
representing a global stress balance in the x-direction:

d

dx

(
3µ̄0h

2
0u

′
0

)
= Rh2

0u0u
′
0 − Sh2

0 − Ch′
0, (36)

where µ̄0 is the cross-sectionally averaged leading-order viscosity:

µ̄0 =
2

h2
0

∫ h0

0

µ0r dr. (37)

If µ̄0 is a known function of x, then (32, 36) is a closed system for u0(x) and h0(x),
subject to the boundary conditions

u0(0) = 1, h0(0) = 1, u0(1) = D. (38)

2.4 Simple example — importance of the draw ratio

The simplest possible scenario is that of a fiber with constant viscosity, for which inertia,
gravity and surface tension are all negligible. This case is obtained by setting

R = S = C = 0, µ ≡ 1,

so that (36) reduces to (
3h2

0u
′
0

)′
= 0, (39)

which is readily solved with (32, 38) to give

u0 = ex ln D, h0 = e−x lnD/2. (40)

This has an interesting implication. Recall that the quasi-one-dimensional approx-
imation that led to (40) was obtained by taking the limit ε → 0. This amounts to an
assumption that the free surface of the fiber has small slope: dh/dx � 1 (in dimensional
variables). The condition ε � 1 arises from the estimate that h varies by an amount
of order H0 over a distance of order L; however, (40) implies that this actually occurs
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over a distance of order L/ ln D. It follows that the asymptotic expansions carried out
in §2.3 actually require that

H0

L
lnD � 1.

For the data in Table 1, this inequality is still satisfied, though less clearly at large draw
ratios (H0L/(lnD) ∼ 10−2–10−1).

In practice, this probably means that there may be a small two-dimensional region
near the top of the fiber where the theory of §2.3 fails, although it should be fine once
the fiber thins further downstream.

2.5 Do plane sections remain plane?

As previously pointed out, the fact that u0 is independent of r means that, to lowest
order, plane sections do remain plane. However, since

∂u1

∂r
=

r

2
u′′

0 +
σxr1

µ0
, (41)

we see that u1 does, in general, depend on r. Equation (35) implies that radial variations
in u1 may be caused by inertia, gravity or surface tension, or by having a nonuniform
viscosity. None of these is necessary, however, as we now illustrate by considering the
same simple regime as in §2.4.

In this case, (41) gives

∂u1

∂r
= −ru′′

0

and, without loss of generality, by absorbing an appropriate function of x into u0, we
may write

u1 = u′′
0

(
h2

0

4
− r2

2

)
= ln2 D

(
1

4
− r2

2
ex lnD

)
(42)

(using (40)). Hence we find that u1 is nonuniform across the fiber even for a viscous-
dominated Newtonian liquid.

We can use (21) to obtain

v1 = ln3 D
r3

8
ex ln D, (43)

and thus the velocity field in this simple case takes the form

u ∼ ex lnD + ε2 ln2 D

(
1

4
− r2

2
ex lnD

)
, (44)

v ∼ − lnD
r

2
ex lnD + ε2 ln3 D

r3

8
ex lnD. (45)
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Figure 2: A slender Newtonian fiber with draw ratio D = 10. The shapes of material
sections that started uniform at x = 0 are shown for ε = 0 (dotted lines), ε = 0.1 (solid
lines), ε = 0.2 (dashed lines).

This provides further illustration of the importance of the parameter ε lnD — the ex-
pansions appear to be uniform only when

ε lnD � 1,

which is generally satisfied by the data in Table 1. We can obtain the evolving shape of
an initially plane section by solving

dx

dt
= u(x, r),

dr

dt
= v(x, r), x(0) = 0, r(0) = s,

with (u, v) given by (44, 45). The solution is

x =
1

m
ln

{
ε2m2eT

[1 + (eT − 1)s2] [ε2m2 − (eT − 1)(4 − ε2m2s2)]

}
(46)

r =
s

εm

√
ε2m2 − (eT − 1)(4 − ε2m2s2), (47)

where m and T are used as shorthand for lnD and ε2m3t/4. Then a streakline, rep-
resenting a material section that started at x = 0, is obtained by fixing t and plotting
(x, r) for s between 0 and 1. We show typical plots in figure 2 for a fiber with D = 10.
If we set ε = 0, then the plane sections do remain plane, as illustrated by the dotted
lines. When ε is increased to 0.1, there is a noticeable deformation of the sections, and
this becomes quite dramatic after a further increase to 0.2.

At this point, we have developed a theory for how the shape of the drawn glass fiber
should behave as a function of physical parameters, and how the glass within the fiber
flows. In particular, the flow of the glass fiber in the neck-down region is described to
leading order by the equations (40), while the glass fiber in the tube behaves essentially
like a continuously drawn fiber entering from the final bushing plate and moving at
constant velocity U1 with constant radius H1. In the remainder of the report, we consider
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the structure of the air flow near the fiber, which is important in understanding the
transfer of heat from the fiber to the atmosphere. We examine the structure of the
boundary layer air flow in the neckdown region in §3, and in the tube in §4.

3 The boundary layer on the fiber in the neck-down

region

As shown in §2.4, a slender Newtonian fiber that flows from a nozzle (which we take to
be at position x = 0) with velocity U0 and radius H0, and is drawn at speed U1 through
a final bushing plate with aperture radius H1 located at x = L has radius h(x) and
surface velocity U(x) given approximately by

h(x) = H0D
−x/2L, U(x) = U0D

x/L, (48)

where D = U0/U1 is the draw ratio. Conservation of mass of the glass, along with the
incompressibility and near-uniformity of the velocity through a cross section, requires
that U1H

2
1 = U0H

2
0 . This determines U0 in terms of the other parameters which can be

set by design. It will be useful in what follows to identify the length scale

` = L/ ln D

over which the glass fiber properties vary. The typical values for this and some of the
other derived parameter values are summarized in Table 2.

Table 2: Approximate values of some derived physical parameters [2, 8, 11]. Primitive
physical parameters listed in Table 1.

Draw ratio D ≈ 104–106 ,
Fiber length scale ` ≈ 5–10 cm,
Initial fiber velocity U0 ≈ 0.1–100 mm/s,
Initial air Reynolds number Rea0 ≈ 1–1000 ,
Final air Reynolds number Rea1 ≈ 105–106 ,
Ratio of fiber radius to a ≈ 10−2–10−1

boundary layer thickness

We begin in §3.1 with some crude preliminary estimates for how the thickness of the
boundary layer should behave, and then use these estimates to motivate a more detailed
analysis of the boundary layer structure in §3.2.
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3.1 Integral Method Estimate for Boundary Layer Thickness

To help organize a mathematical analysis of the boundary layer in the neck-down region,
it is useful to get some idea of how thick the boundary layer should be. That is, we
seek to estimate to what distance about the fiber the air is noticably accelerated due to
momentum transfer from the moving glass fiber.

First, we estimate the Reynolds number of the air flow near the fiber. Since the
surface velocity of the fiber varies strongly in the neck-down region, we should consider
the Reynolds number of the air motion as a function of the distance along the fiber
Rea = Rea(x). (This Reynolds number is to be distinguished from the one defined in
(16), referring to the glass flow itself). The local velocity scale is clearly U(x), and the
appropriate length scale along the boundary is `. Therefore:

Rea(x) =
U(x)`

νa
=

U0`

νa
Dx/L.

Using the data from Table 1, we obtain estimates for the Reynolds number near the
initial nozzle Rea0 ≡ Rea(0) ∼ 1–1000 and near the final bushing plate Rea1 ≡ Rea(L) ∼
105–106. We see therefore in most situations, the Reynolds number is large over most
of the fiber, except possibly at the very beginning where the flow can be very slow.
Consequently, we expect to be able to use boundary layer theory from fluid mechanics [4],
which exploits the fact that at high Reynolds number the air flow varies on a much
smaller length scale in the direction normal to the boundary than it does along the
boundary.

To this end, we begin with the following approximate expression which is the basis
of many “integral method” analyses commonly used by engineers in computing the
properties of boundary layers [3, 9, 11]:

d

dx

(∫ ∞

h(x)

u2(x, r)2πr dr

)
= −2πh(x)νa

du

dr

∣∣∣∣
r=h(x)

, (49)

where νa = 0.15cm2/s is the kinematic viscosity of air. This equation is simply an inte-
grated form of the equation for momentum transfer along the streamwise (x) direction,
where viscous flux along this direction is neglected (since the streamwise gradients should
not be large). Also, there is no pressure gradient included because none is imposed on
the air flow in the neck-down region. We seek from the integrated momentum equation
(49) to estimate the thickness δ(x) of the boundary layer as a function of distance along
the fiber. One can make a precise definition for δ(x) in terms of radial integrals of the
velocity field [7, Sec. VI.4], but we shall only use it as an order of magnitude length
scale. By assuming that u(x, r) is characterized by an amplitude U(x) and only the two
length scales δ(x) and h(x), we obtain the following balance, which is only intended to
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indicate orders of magnitude (i. e., scaling with respect to the physical parameters):

d

dx

(
U2(x)δ(x)(δ(x) + h(x))

) ∼ νah(x)
U(x)

min(δ(x), h(x))
.

Solving this differential equation through an appropriate integrating factor, we obtain:

δ(x) ∼


√

νa
R x
0

U3(x′)h2(x′) dx′

U2(x)h(x)
if δ(x) . h(x),√

νa
R x
0 U (x′)dx

U (x)
if δ(x) & h(x).

Substituting in the particular exponential profiles for U(x) and h(x) from (48), we find:

δ(x) ∼
√

νa`

U(x)
.

In particular, the ratio of the boundary layer thickness to the length scale of variation
of the fiber is:

δ(x)

`
∼

√
νa

U(x)`
= (Rea(x))−1/2,

which from our estimates for the Reynolds number (Table 2) should be small for most
of the fiber, except possibly near the initial nozzle. Also,

h(x)

δ(x)
∼

√
U1H

2
1

νa`
, (50)

which from the data in Table 1, is on the order of 10−2–10−1 .
All told then, away from the initial nozzle, we expect the boundary layer of air

motion to be very thin compared to the length scale ` of variation of the fiber, and to be
considerably larger than the thickness of the fiber. The ratio between the boundary layer
thickness and the fiber thickness, however, is predicted to remain relatively constant over
the whole neckdown region. This means in particular that the boundary layer will, after
its intial development, become thinner as it proceeds along the fiber. This may seem
counterintuitive, but is quite plausible. The rapid stretching of the fiber accelerates the
air rapidly downstream, and this streamwise acceleration entrains surrounding air closer
to the fiber due to incompressibility of the air flow. This radial entrainment compresses
the boundary layer closer to the fiber.

We prepare now to develop a more detailed theory to describe the structure of
the boundary layer motion of the air. To do this, we will use the proper boundary
layer equations which result from the observation that the boundary layer is slender
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(δ(x) � `) at least away from the initial nozzle. We will treat the ratio between the
fiber radius h(x) and the boundary layer thickness δ(x) as an O(1) quantity, though the
data presented in Table 2 suggests that we might treat h(x)/δ(x) as a small quantity in
an asymptotic treatment. This would amount to modeling the fiber as an infinitely thin
line source, which creates a number of subtleties in the asymptotic analysis [5, 6, 12].
We opt therefore to retain a finite thickness for the fiber in our mathematical equations,
but note that the results remain uniformly valid even if the fiber thickness becomes very
small.

3.2 Detailed Structure of Boundary Layer near Fiber

We seek now to find the air flow in the boundary layer surrounding the fiber. We use
cylindrical polar coordinates (x, r), and denote the components of the velocity field of
the air motion by (u, v) in the same coordinate system. Note that we are using the same
symbols for the air velocity here as we did for the glass velocity in §2, but since we will
no longer refer to the internal glass motion, we indulge in this convenient recycling of
notation. Motivated by the crude estimate for the boundary layer thickness developed
in §3.1, we nondimensionalise variables as follows:

x = `x̃, r =

√
νa`

U0
r̃, u = U0ũ, v =

√
νaU0

`
ṽ,

Since we have argued that the boundary layer should be thin compared to the stream-
wise length scale of variation of the fiber `, we can work with Prandtl’s boundary layer
equations rather than the full Navier-Stokes equations. In our cylindrical geometry
(with no imposed pressure gradient), these equations read (dropping tildes)

ux +
1

r
(rv)r = 0 (51)

(uux + vur) = urr +
ur

r
, (52)

The corresponding boundary conditions are

u = ex, v = −a
ex/2

2
on r = ae−x/2, (53)

u → 0 as r → ∞. (54)

where

a ≡
√

U0H2
0

νa`
=

√
U1H2

1

νa`
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is the ratio between the fiber thickness and boundary layer thickness (compare with
(50)).

The boundary layer equations (51–53) are a little different than the standard bound-
ary layer equations because the fiber has width comparable (or smaller than) the thick-
ness of the boundary layer. The standard theory typically assumes the boundary layer
is thin compared to all length scales characterizing the fluid boundary, in which case the
“flat-plate” equations are appropriate in certain body-oriented coordinates [4]. The thin-
ness of the fiber requires the inclusion of the last term in (52) ([7, Sec. VIII.1],[11]). We
remark that boundary layer equations equivalent to (51–53) can be derived by work-
ing in a body-oriented coordinate system and carefully keeping the important terms
under the assumption that the boundary layer is thin compared to `, but of compa-
rable or larger width than the radius of the fiber. We stress that the boundary layer
equations (51–53) are valid for those regions of the fiber where Rea(x) � 1 (so that
δ(x)/` = (Rea(x))−1/2 � 1), and remain uniformly valid for small or order unity values
of a, the ratio of fiber and boundary layer thickness.

It is fortunate that this problem admits a similarity solution of the form

u = exf(η), v = ex/2g(η), η = rex/2. (55)

Substitution of (55) into (51) leads to

ηf +
η2

2
f ′ + g + ηg′ =

(
η2

2
f + ηg

)′
= 0.

The bracketed term must be a constant which (53) implies is zero and hence

g(η) = −η

2
f(η). (56)

Then (52) gives rise to an ordinary differential equation for f(η),

f ′′ +
f ′

η
= f2, (57)

with boundary conditions

f(a) = 1, f(∞) = 0. (58)

We use the transformation

f(η) =
4F (t)

η2
, η = aet, (59)

to turn (57) into the autonomous nonlinear ordinary differential equation

d2F

dt2
− 4

dF

dt
+ 4F = 4F 2, (60)
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with boundary conditions

F (0) = a2/4, F (t) = o(e2t) as t → ∞. (61)

The solution to this equation can be analyzed through phase plane methods [10] by
plotting trajectories for (F, G) where G = dF

dt
. We find an unstable source at (F, G) =

(0, 0) and a saddle point at (F, G) = (1, 0), and no other fixed points or limit cycles.
Any trajectory must either approach the saddle point (1, 0) along its stable manifold or
shoot off to infinity. Some further asymptotic analysis for when F becomes large shows
that trajectories which grow infinitely large do so in finite time. Consequently, the
solution to (60–61) must have limt→∞(F (t), G(t)) = (1, 0) in order to satisfy the t → ∞
boundary condition in (61). Local analysis near this saddle point shows moreover that

F (t) ∼ 1 ± e2(1−√
2)(t+t0) as t → ∞,

where the arbitrary translation t0 must be chosen to make F (a) = 1 and the ± is equal
to the sign of (a2 − 4). In fact, all solutions of (60, 61) can be written in terms of two
canonical solutions satisfying

d2Φ±
dτ 2

− 4
dΦ±
dτ

+ 4Φ± − 4Φ2
± = 0, (62)

Φ± ∼ 1 ± e2(1−√
2)τ as τ → ∞. (63)

These canonical solutions are simply a description of the trajectories which form the
two branches of the stable manifold of the saddle point (F, G) = (1, 0). The solution
F (t) to (60–61) is given by

F (t) =

{
Φ+(t + t0) if a > 2,

Φ−(t + t0) if a < 2,

where the translation t0 is chosen so that F (0) = a2/4. The canonical solution Φ− seems
most appropriate for the glass fiber drawing application, since a . 10−1. Numerical
solutions for Φ± are plotted in figure 3. We see that both are monotonic;

Φ− ∼ τe2τ as τ → −∞,

while Φ+ blows up at a finite value of τ :

Φ+ ∼ 3

2
(τ − τ ∗)−2

,

where τ ∗ ≈ −0.85.
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Figure 3: The functions Φ±(τ ) satisfying (62, 63).

Once F has been determined by the procedure outlined above, the velocity field is
given by

u =
4F

(
x
2

+ ln
(

r
a

))
r2

, v = −2F
(

x
2

+ ln
(

r
a

))
r

. (64)

We plot the flow field for three different values of a in figure 4. The middle plot is the
special case a = 2 for which F ≡ 1 and the flow is actually independent of x. There
is not a huge qualitative difference between the upper and lower plots, for which a = 1
and a =

√
20 respectively (so the former uses Φ− and the latter Φ+). It is noticeable,

however, that the ratio of the boundary layer to the fiber grows thinner as a increases,
as it should.

3.2.1 Search for general similarity solutions for boundary layer of stretched
fiber

In addition to solving for the boundary layer structure according to the particular fiber
shape laws (48) which arise for the present application, we considered as well the ba-
sic question of what types of fiber shapes and surface velocity profiles admit similarity
solutions. This inquiry is motivated by the great usefulness which similarity solutions
have enjoyed in various boundary layer analyses. Their mathematical utility is in the
reduction of a two-dimensional partial differential equation to a one-dimensional ordi-
nary differential equation which can be analyzed and numerically solved much more
easily. Since there does not seem to be much work on studying the boundary layers
near stretching fibers, we sought to find more general situations where the method of
similarity solutions may permit a quick analysis of the boundary layer structure.
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Figure 4: The flow field in the boundary layer past the fiber r = e−x/2; (i) a = 1,
(ii) a = 4, (iii) a =

√
20.
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Therefore, we consider the nondimensional system

[uux + vur] = urr +
1

r
ur, (65)

ux +
1

r
(rv)r = 0, (66)

subject to the nondimensional boundary conditions

r = h̃(x) : u = Ũ(x), v = h̃′(x)Ũ(x), (67)

r → ∞ : u → 0, v → 0. (68)

We do not here assume a particular functional form for Ũ(x) and h̃(x), but rather wish
to determine what types of velocity profiles Ũ(x) on the fiber boundary and what fiber
shapes h̃(x) permit nontrivial similarity solutions to (65)-(68). (Since these functions
are specified inputs, we put tildes on them to stress that these are to be represented as
nondimensionalized functions).

We introduce the transformations

u = s(x)z(ξ), v = q(x)w(ξ), (69)

where z and w are functions of the similarity variable

ξ =
r

g(x)
. (70)

Substitution of (69) into the equations (65)-(66) yields

s

([
s′z2 − g′s

g
ξz

dz

dξ
+

q

g
w

dz

dξ

]
− 1

g2

[
d2z

dξ2
+

1

ξ

dz

dξ

])
= 0, (71)

s′z − g′s
g

ξ
dz

dξ
+

q

g

[
dw

dξ
+

1

ξ
w

]
= 0, (72)

where
s ≡ s(x), q ≡ q(x), g ≡ g(x),

and the prime (′) designates differentiation with respect to x. In order for the equations
(71)-(72) and the similarity variable (70) to be nonsingular, the function g(x) must be
nonzero. Furthermore, nontrivial similarity solutions do not exist when s(x) or q(x)
vanish, as is easily checked. Upon substituting (69) into the boundary conditions (67),
we write

ξ =
h̃(x)

g(x)
: z =

Ũ (x)

s(x)
, w =

h̃′(x)Ũ(x)

q(x)
, (73)
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ξ → ∞ : z → 0, w → 0. (74)

The new dependent variables, z and w, are functions of ξ only. For similarity solutions
to exist the system for z and w, (71)-(74), must be independent of x. Elimination of
the x-dependence in the boundary conditions (73) necessitates

g(x) ∝ h̃(x), s(x) ∝ Ũ(x), q(x) ∝ h′(x)Ũ(x). (75)

For finite z at the boundary we must have s(x) 6≡ 0 (c.f. (73)). Thus, we cancel s(x) in
equation (71).

In our analysis of the resulting equation and equation (72), we consider first the case
in which s′(x) = 0, or s(x) is a constant. In this case the relations (75) reveal that Ũ(x)
is a constant, q(x) ∝ h̃′(x), and g(x) ∝ h̃(x). Elimination of the x-dependence in the
equations (71)-(72) is possible when

Ũ(x) ∝ 1, g(x) ∝ √
x, h̃(x) ∝ √

x, q(x) ∝ 1/
√

x. (76)

Thus, a constant velocity profile Ũ(x) and a fiber shape h̃(x) ∝ √
x, permit similarity

solutions to (65)-(68).
We now consider the case in which s′(x) 6= 0. Dividing (71) through by s(x)s′(x),

and dividing (72) through by s′(x) leads to[
z2 − a1ξz

dz

dξ
+ a2w

dz

dξ

]
− a3

[
d2z

dξ2
+

1

ξ

dz

dξ

]
= 0, (77)

z − a1ξ
dz

dξ
+ a2

[
dw

dξ
+

1

ξ
w

]
= 0, (78)

where

a1 =
g′(x)s(x)

g(x)s′(x)
, a2 =

q(x)

g(x)s′(x)
, a3 =

1

g2(x)s′(x)
. (79)

For similarity solutions to exist each of the coefficients a1, a2, and a3 must be constant
or must be multiplied by a term that equals zero. The latter possibilities (i.e., when
one or more of the terms multiplying a1, a2, or a3 vanish) yield no similarity solutions,
as can be checked. Next, we consider the former possibility in which the coefficients a1,
a2, and a3 are all constants. This fact, along with the information in (75), leads to the
two conditions

h̃′(x)

h̃(x)
∝ Ũ ′(x)

Ũ (x)
, h̃2(x) ∝ 1

Ũ ′(x)
. (80)
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The latter condition reveals that h̃(x) ∝ [Ũ ′(x)]−1/2, and hence h̃′(x) ∝ Ũ ′′[Ũ ′(x)]3/2.
Use of these relations in the first condition in (80) leads to the ordinary differential
equation

ŨŨ ′′ − c1

(
Ũ ′

)2

= 0, (81)

where Ũ ′ ≡ dŨ/dx, and c1 is an arbitrary constant. This nonlinear equation can be
separated and integrated as∫

Ũ ′′(x)

Ũ ′(x)
dx = c1

∫
Ũ ′(x)

Ũ(x)
dx. (82)

Performing the integration we obtain

ln |Ũ ′(x)| = c1 ln |Ũ(x)|+ C, (83)

where C is an arbitrary constant. Equation (83) admits general solutions of the form

c1 6= 1 : Ũ(x) ∝ (A1 + A2x)β, β ≡ 1/(1 − c1), (84)

c1 = 1 : Ũ(x) ∝ eA2x, (85)

where A1 and A2 are arbitrary constants. We recall that the latter condition in (80)
determines the corresponding form of h̃(x) for a given form of Ũ(x). We find that the
system (65)-(68) permits similarity solutions for velocity profiles Ũ(x) and fiber shapes
h̃(x) of the form

c1 6= 1 : Ũ (x) ∝ (A1 + A2x)β , h̃(x) ∝ (A1 + A2x)
1−β

2 , (86)

c1 = 1 : Ũ (x) ∝ eA2x, h̃(x) ∝ e−A2x/2. (87)

Overall, we have determined that the following types of velocity profiles and fiber shapes
permit similarity solutions to (65)-(68), without enforcing conservation of mass in the
fiber flow: nonlinear functions proportional to

√
x (76), powers of linear functions of

x (86), and exponential solutions (87). Note that many of these solutions are only
defined on a semi-infinite interval x ≥ x0, which is naturally associated to a fiber which
starts abruptly at x = x0 and continues indefinitely (or in practial terms, a substantial
distance) toward the right.

We now impose the additional constraint of fiber mass conservation. Assuming the
velocity profile within the fiber is relatively flat in the radial direction and that the flow
of the fiber is incompressible, we should expect the following linkage between the fiber
thickness and surface velocity:

h̃2(x) ∝ 1

Ũ(x)
. (88)
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Figure 5: Schematic drawing of a fiber being drawn through a cylinder.

The aforementioned class (76) consisting of the velocity Ũ (x) ∝ 1 and the shape
h̃(x) ∝ √

x, which pertains to the case s′(x) ≡ 0, does not conserve fiber mass.
The case s′(x) 6= 0 is more interesting. Fiber mass conservation, coupled with the

latter relation in (80), leads us to the condition Ũ(x) ∝ Ũ ′(x). Hence, h̃(x) ∝ h̃′(x)
by the first relation in (80). These facts reveal that, when fiber mass conservation is
enforced, only exponential forms of h̃(x) and Ũ(x) permit similarity solutions to (65)-
(68), i. e.,

h̃2(x) ∝ 1

Ũ(x)
: Ũ(x) ∝ eA2x, h̃(x) ∝ e−A2x/2, (89)

where A2 is an arbitrary constant. Happily, this is precisely the case in which we are
most interested!

4 The boundary layer on the fiber in the cylindrical

tube

4.1 Governing equations and nondimensionalisation

In this section we analyse the air flow past the fiber in the tube depicted in Figure 1.
To do this, we consider the model problem illustrated in figure 5, using cylindrical polar
coordinates (x, r). A cylinder of radius b is closed at x = 0. A fiber of radius a is pulled
at speed U along the axis of the cylinder through a hole cut in the plane x = 0. We
wish to determine the flow (u, v) in the air surrounding the fiber.

We assume that the flow is adequately modelled everywhere by the boundary-layer
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equations,

∂(ru)

∂x
+

∂(rv)

∂r
= 0, (90)

u
∂u

∂x
+ v

∂u

∂r
= −1

ρ

dp

dx
+

ν

r

∂

∂r

(
r
∂u

∂r

)
, (91)

where ρ and ν are the density and kinematic viscosity of the air and p(x) is the pressure.
The boundary conditions are

u = 0 on x = 0, a < r < b, (92)

u = v = 0 on r = b, x > 0, (93)

u = U, v = 0 on r = a, x > 0; (94)

in the boundary-layer approximation we do not expect to have to impose any down-
stream conditions.

We nondimensionalise as follows:

x = Lx̃, r = br̃, u = Uũ, v =
bU

L
ṽ, p = ρU2p̃,

where

L =
Ub2

ν
(95)

is the length scale over which we expect the boundary to develop until it fills the tube.
The resulting dimensionless equations and boundary conditions are (dropping tildes)

∂(ru)

∂x
+

∂(rv)

∂r
= 0, (96)

u
∂u

∂x
+ v

∂u

∂r
= −dp

dx
+

1

r

∂

∂r

(
r
∂u

∂r

)
, (97)

u = 0 on x = 0, ε < r < 1, (98)

u = v = 0 on r = 1, x > 0, (99)

u = 1, v = 0 on r = ε, x > 0, (100)

where

ε =
a

b
. (101)

The radius of the fiber is typically very much smaller than that of the cylinder, so we
will analyse the problem asymptotically in the limit ε → 0. Before doing so, it is useful
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to observe the following exact global mass conservation law. Integation of (96) with
respect to r and application of the boundary conditions on r = ε and r = 1 shows that
the mass flux must be constant and, therefore, equal to zero since it is zero at x = 0:∫ 1

ε

ur dr ≡ 0. (102)

4.2 The entry region

As the fiber first emerges from the hole, the boundary layer thickness is initially com-
parable to the fiber radius. In this entry region, the boundary layer doesn’t notice the
outer wall: it just sees a quiescent fluid at infinity. We examine this region via the
rescaling

r = ερ, x = ε2ξ, v = ε−1V, (103)

after which the leading-order problem becomes

∂(ρu)

∂ξ
+

∂(ρV )

∂ρ
= 0, (104)

u
∂u

∂ξ
+ V

∂u

∂ρ
=

1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
, (105)

u = 0 on ξ = 0, ρ > 1, (106)

u = 1, V = 0 on ρ = 1, ξ > 0, (107)

u → 0 as ρ → ∞, ξ > 0. (108)

It is worth noting that the boundary-layer equations are strictly applicable to this
region only if it is slender, i.e. if it is long in the x-direction compared to b. This gives
rise to the condition

ε2L

εb
=

εL

b
=

Ua

ν
� 1;

in other words, the flow must have a high Reynolds number based on the fiber radius.

4.3 The behaviour as ξ → 0

Even closer to the exit hole ξ = 0, where the boundary layer is much thinner than the
fiber radius, the flow resembles a classical Blasius boundary layer. To examine this,
suppose

ξ � 1, ρ = 1 + y, y � 1, (109)
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so that (104–108) become

∂u

∂ξ
+

∂V

∂y
∼ 0, (110)

u
∂u

∂ξ
+ V

∂u

∂y
∼ ∂2u

∂y2
, (111)

u = 0 on ξ = 0, y > 0, (112)

u = 1, V = 0 on y = 0, ξ > 0, (113)

u → 0 as y → ∞, ξ > 0. (114)

This system admits a similarity solution of the form

u = f ′(η), V =
1

2
√

ξ
(ηf ′(η) − f(η)) , η =

y√
ξ
. (115)

The function f satisfies the o.d.e. problem

f ′′′ +
ff ′′

2
= 0,

f(0) = 0, f ′(0) = 1, f ′(∞) = 0, (116)

which is readily solved numerically: it transpires that f ′′(0) ≈ −0.44375, f(∞) ≈
0.61613.

4.4 The behaviour as ξ → ∞
The similarity solution (115) gives the behaviour of the solution of (104–108) as ξ → 0.
Next we investigate the corresponding behaviour at large ξ. As ξ increases, the boundary
layer grows until it is much larger than the fiber radius. The boundary condition (107)
on ρ = 1 may then be replaced by a specified singularity in u at ρ = 0. The required
singular behaviour is obtained by performing an inner analysis for ρ close to 1 and
matching with an outer solution where ρ � 1.

The inner region may be examined by using an artificial small parameter as follows:

ξ =
ξ̃

δ2
, V = δ2Ṽ , (117)

where δ � 1. The equations and boundary conditions to be applied to the inner problem
are

∂(ρu)

∂ξ̃
+

∂(ρṼ )

∂ρ
= 0, (118)

δ2

(
u
∂u

∂ξ̃
+ Ṽ

∂u

∂ρ

)
=

1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
, (119)
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u = 1, V = 0 on ρ = 1, (120)

and the leading-order solution is

u ∼ 1 + A(ξ̃) log ρ, (121)

Ṽ ∼ −dA

dξ̃

1 + 2ρ log ρ − ρ

4
, (122)

for some (as yet) arbitrary function A(ξ̃).
The outer region is found via the further scaling

ρ =
ρ̂

δ
, Ṽ =

V̂

δ
⇒ V = δV̂ , (123)

after which the full boundary-layer equations are recovered,

∂(ρ̂u)

∂ξ̃
+

∂(ρ̂V̂ )

∂ρ̂
= 0, (124)

u
∂u

∂ξ̃
+ V̂

∂u

∂ρ̂
=

1

ρ̂

∂

∂ρ̂

(
ρ̂
∂u

∂ρ̂

)
, (125)

with

u → 0 as ρ̂ → ∞ and as ξ̃ → 0. (126)

The boundary condition on ρ = 1 is now replaced by a matching condition, namely

u ∼ 1 + A(ξ̃) {log ρ̂ + log(1/δ)} , as ρ̂ → 0, (127)

V̂ → 0 as ρ̂ → 0. (128)

This problem resembles some studied previously by Mike Ward and Joe Keller [6, 5,
12]. The idea is that, if the singular part of u is given, i.e. if

u ∼ A(ξ̃) log ρ̂ + R(ξ̃) (129)

and A(ξ̃) is specified, then the regular remainder R(ξ̃) may be determined by solving
(124–126). The problem is then closed by insisting that

R(ξ̃) = 1 + A(ξ̃) log(1/δ). (130)
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4.5 The fully developed flow

Thus far we have been considering the flow in a neighbourhood of the hole from which
the fiber emerges, where the outer cylinder has negligible influence on the boundary
layer. Next we examine the other extreme case, namely the fully-developed flow which,
presumably, is approached some distance downstream of the hole. If we set v = 0,
u = u(r) in (96–100), then we find that u takes the form

u = −p′

4

(
1 − r2

)
+

(
1 +

p′

4

(
1 − ε2

)) log r

log ε
, (131)

where the pressure gradient p′ is constant. To fix p′ we set the net mass flux to zero, as
dictated by (102), and hence find

p′ = − 4

1 − ε2

(
1 + 2ε2 log ε − ε2

1 − ε2 + (1 + ε2) log ε

)
. (132)

These expressions may now be simplified by using the fact that ε is small. It tran-
spires that the approximation

p′ ∼ 4n

1 − n
, (133)

u ∼
(

4n

1 − n

) (
r2 − 1 − log r

)
(134)

is accurate up to O(ε2) for all r, where n is used as shorthand for

n =
1

log(1/ε)
. (135)

Some typical velocity profiles are shown in figure 6. The general picture is of a loga-
rithmically singular velocity, due to the traction exerted on the air by the moving fiber,
with a weak return flow near the outer wall forced by mass conservation. The approx-
imation (134) is indistinguishable from the exact solution when ε = 0.01 and does well
for ε = 0.1, although the innaccuracy is significant at ε = 0.2, especially in the return
flow. Notice that the dashed approximate curves all pass through zero at the same value
of r = r∗, where

r2
∗ = 1 + log r∗ ⇒ r∗ ≈ 0.450764. (136)

4.6 The developing flow

Thus far we have examined (i) the flow in the entry region where the boundary layer is
comparable in thickness to the fiber and (ii) the fully-developed flow that is approached
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Figure 6: The fully-developed velocity profile for ε = 0.01, 0.1, 0.2. The solid lines
show the exact solution (131), the dashed lines the approximation (134).

some distance downstream of the entry hole. It remains to analyse the region between
these two, in which the boundary layer develops until it fills the tube. Here the flow is
governed by the full boundary-layer equations (96, 97),

∂(ru)

∂x
+

∂(rv)

∂r
= 0, (137)

u
∂u

∂x
+ v

∂u

∂r
= −dp

dx
+

1

r

∂

∂r

(
r
∂u

∂r

)
, (138)

with boundary conditions

u = 0 on x = 0, (139)

u = v = 0 on r = 1, (140)

and a matching condition, derived as in §4.4,

u ∼ A(x) log r + 1 +
A(x)

n
, v → 0 as r → 0, (141)
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Figure 7: The velocity profile ansatz (143) plotted versus ρ for σ = 1.25, 1.5, 1.75, 2.0,
2.25, 2.5, 2.75, 3.0.

for some function A(x) (recall that n = −1/ log ε).
Since the boundary conditions on r = ε have been shifted to r = 0, the flux condition

(102) is now approximated by ∫ 1

0

ur dr ≡ 0. (142)

Notice that the approximate expression (134) for the fully-developed flow is recovered
by seeking a solution of (137, 138, 140, 141, 142) in which v ≡ 0 and u is independent
of x.

4.7 Integral-balance solution in the entry region

Now we construct an approximate solution to the entry-region equations (104–108) using
an ad hoc integral-balance method. An analogous approach is applied to the developing
boundary-layer flow in §4.8 below. We pose the following ansatz, suggested by the
fully-developed flow (131), for the velocity profile:

u =


 1 − 2σ2 log ρ + 1 − ρ2

2σ2 log σ + 1 − σ2
ρ < σ(ξ),

0 r > σ(ξ),

(143)

where ρ = σ(ξ) denotes the boundary layer thickness.
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As shown in figure 7, this general form satisfies u = 1 on ρ = 1, while u and ∂u/∂r
are continuous across r = σ. It also ties in with the “inner-outer” picture found in §4.4
as ξ → ∞. After the rescaling

ρ =
ρ̂

δ
, σ =

σ̂

δ
,

the leading-order outer velocity takes the form

u ∼ 1 − 2σ̂2 log(ρ̂/δ)− ρ̂2

2σ̂2 log(σ̂/δ)− σ̂2
.

Now taking the limit ρ̂ → 0, we have

u ∼ 1 − 2 log(ρ̂/δ)

2 log(σ̂/δ) − 1
,

which is of the required form

u ∼ A log ρ̂ + 1 + A log(1/δ),

where

A =
−2

2 log(σ̂/δ) − 1
.

It remains to determine the scalar function σ(ξ), which we do by satisfying an inte-
grated form of the momentum equation (105), namely (c. f.(49)

d

dξ

∫ σ

1

u2ρ dρ = − ∂u

∂ρ

∣∣∣∣
ρ=1

. (144)

This reduces to a first-order ordinary differential equation of the form

d

dξ
[F (σ)] = R(σ), (145)

where

F (σ) =
(σ2 − 1)(5σ4 − σ2 + 2) − 12σ2 log σ(1 + 2σ2 log σ)

12 (2σ2 log σ + 1 − σ2)2 (146)

R(σ) =
2(σ2 − 1)

2σ2 log σ + 1 − σ2
. (147)

The solution is therefore

ξ =

∫ σ

1

I(σ′) dσ′, (148)
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Figure 8: The boundary layer edge ρ = σ(ξ) and the flow in the boundary layer.

where I(σ) =
F ′(σ)

R(σ)

=
σ

{−3(σ2 − 1)2(5σ2 + 1) + 2 log σ(σ2 − 1)(5σ4 + 17σ2 + 2) − 24σ2 log2 σ
}

12(σ2 − 1) (2σ2 log σ + 1 − σ2)2 . (149)

Equation (149) gives the shape of the boundary layer and hence, via (143), the flow
field, as shown in figure 8. The asymptotic behaviour may be determined as follows.
Near the inlet, σ is close to 1 and

I(σ) ∼ (σ − 1)

10
− (σ − 1)2

180
+ . . . ⇒ ξ ∼ (σ − 1)2

20
− (σ − 1)3

540
+ . . . ,

so that

σ ∼ 1 + 2
√

5ξ +
10ξ

27
+ . . . as ξ → 0. (150)

This may be compared with the small-ξ behaviour predicted in §4.3 as follows. With ρ
close to 1 and σ given by (150), the velocity profile (143) takes the approximate form

u ∼



(
1 − η

2
√

5

)2

η < 2
√

5,

0 η > 2
√

5,

(151)

where, as before, η = (ρ − 1)/
√

ξ. On the other hand, the similarity solution found in
§4.3 has u = f ′(η) where f satisfies the o.d.e. problem (116). In figure 9 we show that
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Figure 9: Velocity u = f ′(η) versus η = y/
√

ξ; (a) numerical solution to (116), (b)
integral balance solution (151).

the two approximations agree reasonably well. In particular, (151) predicts f ′′(0) =
−1/

√
5 ≈ −0.44721 which is encouragingly close to the value of −0.44375 found by

solving (116) numerically.
The asymptotic behaviour when σ is large is given by

I(σ) ∼ 5σ(2 log σ − 3)

12(2 log σ − 1)2
+ O

(
1

σ

)
⇒ ξ ∼ 5σ2

48 log σ
, (152)

and hence

σ ∼ 2

√
6

5

√
ξ log ξ as ξ → ∞.
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4.8 Integral-balance solution for the developing flow

In the developing flow we propose the following ansatz for the velocity profile that
incorporates both the boundary layer near the fiber and the return flow:

u =


 u1(s) = 1 +

C1(s)

n
+ C1(s) log r + C2(s)r

2 0 < r < s,

u2(s) = C3(s) log r + C4(s)(r
2 − 1) s < r < 1,

(153)

chosen to satisfy the no-slip condition (140) on r = 1 and the matching condition (141)
as r → 0. The four functions Ci(s) are determined from the conditions

u(s+) = u(s−) =

[
∂u

∂r

]s+

s−

=

∫ 1

0

ur dr = 0,

whence

u1 = n
{
(r2 − s2)(1 − s2) +

[
s2 − 3s4 + r2(1 + s4)

]
log s + 2s2 log s

−s2
[
2 − 3s2 + s4 + 2 log s

]
log r

}/
{
s2

[
(1 − s2)(2 − n − s2) + (2 + n − 3ns2) log s + 2n log2 s

]}
, (154)

u2 =
ns2 {(1 − s2) log r − (1 − r2) log s}

(1 − s2)(2 − n − s2) + (2 + n − 3ns2) log s + 2n log2 s
. (155)

The velocity profile ansatz (153) is plotted versus r in figure 10, with n = 0.1 and s
varying between 0 and 0.45. At small values of s, the velocity is confined to a narrow
boundary layer, outside which it is effectively zero. As s increases, the velocity decays
less sharply and the return flow becomes more significant. The maximum value of s is
r∗, as defined in (136), at which the expressions for u1 and u2 are identical and equal to
the fully-developed profile (134).

Finally an equation for the boundary-layer thickness s(x) is obtained by applying
global conservation of momentum both to the boundary layer and to the return flow.
Integration of (138) with respect to r between 0 and s and between s and 1 gives rise to

d

dx

∫ s

0

u2
1r dr = −s2

2

dp

dx
+

[
r
∂u1

∂r

]s

0

, (156)

d

dx

∫ 1

s

u2
2r dr = −1 − s2

2

dp

dx
+

[
r
∂u2

∂r

]1

s

, (157)
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Figure 10: The velocity profile ansatz (153) plotted versus r for n = 0.1 and s = 0.1,
0.2, 0.3, 0.4, 0.45.

which we write in the form

d

dx
[F1(s)] = −s2

2

dp

dx
+ R1(s), (158)

d

dx
[F2(s)] = −1 − s2

2

dp

dx
+ R2(s). (159)

This provides two equations from which to determine both the free boundary s(x) and
the pressure gradient. Elimination of dp/dx between (158) and (159) leads to a first-
order o.d.e. for s(x) whose solution, with s(0) = 0 is

x =

∫ s

0

I(s′) ds′, where I(s) =
(1 − s2)F ′

1(s) − s2F ′
2(s)

(1 − s2)R1(s) − s2R2(s)
, (160)

that is

I(s) = ns
{
(1 − s2)3

[
40 − 130s2 + 101s4 + 7s6 + n

(−60 + 185s2 − 143s4
)]

+(1 − s2)2 log s
[
2
(
60 − 155s2 + 17s4 + 125s6 − 5s8

)

+n
(−140 + 275s2 + 140s4 − 359s6

)]

+2(1 − s2) log2 s
[
2
(
30 − 55s2 − 56s4 + 92s6 + 21s8 − 2s10

)
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+n
(−30 − 55s2 + 299s4 − 121s6 − 153s8

)]

+4 log3 s
[−2

(
5 − 5s2 − 19s4 + 15s6 + 10s8

)
+n

(−15 + 70s2 − 47s4 − 108s6 + 94s8 + 18s10
)]

+8n log4 s
[
5 − 5s2 − 19s4 + 15s6 + 10s8

]}/
{
48(1 − s2)(1 + log s − s2)

[
(1 − s2)(2 − n − s2) + (2 + n − 3ns2) log s + 2n log2 s

]}
.

(161)

Some idea of the qualitative behaviour of the complicated expression (161) may be
obtained by examining its asymptotic behaviour. When s is small,

I(s) ∼ 5ns (2n log s + 2 − 3n)

12 (2n log s − n + 2)2 as s → 0,

or, if s = εσ, then

I(εσ) ∼ 5εσ (2 log σ − 3)

12 (2 log σ − 1)2 ,

which clearly matches with the large-σ expansion (152) of our entry-region approxima-
tion.

On the other hand, as s approaches its maximum value r∗, I blows up like

I(s) ∼
{

r2
∗n [(5 + 5r2

∗ − 4r4
∗) − n(15 − 13r2

∗ + 4r4
∗)]

48(1 − n)2

}
1

r∗ − s
.

If we substitute in the approximate value of r∗, we find that

I(s) ∼
{

0.02477n(1 − 2.1405n)

(1 − n)2

}
1

r∗ − s
. (162)

Since n is supposed to be a small parameter, we see that the coefficient in braces is a
numerically small constant. Thus, as shown in figure 11, I(s) remains small until s is
very close to r∗, where it rapidly blows up. This means that the boundary layer grows
quickly, not noticing the weak return flow until it is very close to the fully-developed
profile. The behaviour of s(x) corresponding to (162) is

s ∼ r∗ − const exp

( −(1 − n)2x

0.02477n(1 − 2.1405n)

)
as x → ∞.
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Figure 11: The integrand I(s) defined by (161) for n = 0.1; the inset shows the behaviour
at small s.
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Figure 12: The boundary layer edge s = s(x), the flow in the boundary layer and the
return flow outside; n = 0.1.
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Figure 13: The pressure gradient p′(x) in the developing flow; n = 0.1.

The boundary-layer thickness, determined by performing the integral (160) numer-
ically, is plotted in figure 12 along with the flow field. As predicted, the boundary
layer develops over a very small distance, while the flow converges rapidly to the fully-
developed profile. The velocity decays sharply away from the singularity at r = 0 and
the return flow is everywhere relatively weak. The corresponding pressure gradient is
shown in figure 13. The pressure gradient is initially zero, as assumed in the entry region
and, like the velocity field, evolves rapidly towards its constant fully-developed value

p′(∞) =
4n

1 − n
=

4

9
when n = 0.1.

5 Summary and Suggestions for Future Work

In this report, we have developed a mathematical theory to describe the flow of a drawn
glass fiber and the air flow near to it. We have presented equations and formulas
which indicate how these flows depend on the physical parameters characterizing the
glass drawing process. Further analysis of this information could help inform ways of
improving the glass fiber drawing process.

For example, further examination, such as a stability analysis, of the equations in §2
describing the flow of the glass could be useful in determining physical parameter ranges
for which the glass fiber would be more likely to adopt a uniform cross section. Also,
the development of a quantitative description of the air flow near the fiber in §3 and §4
could be used as an ingredient in a study of the rate at which the glass fiber cools as
it stretches. There are however, several steps which would need to be taken before the
theory would be practical at this level.
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First, because of the rather large Reynolds number near the thinnest part of the
fiber, we should consider whether turbulence modifies the boundary layer structure [3, 9].
Secondly, the strong temperature gradients between the hot fiber (near 1500 K) and the
surrounding air (300 K) will likely imply that the heat flux will modify the velocity field.
The heat flux itself is of course influenced by the convective effects of the boundary layer.
This leads to a difficult coupled nonlinear problem. Likely some large-scale numerical
computations will be necessary to resolve such a problem. Our intention here is merely
to get some basic understanding of how the geometry of the fiber-drawing process would
affect the air flow near the flowing fiber.
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