
Network design for urban light transport

Problem presented by

Martin Lowson

Advanced Transport Systems

Problem statement

The Urban Light Transport (ULTra) project is concerned with the
development of an on-demand transport system of driver-less taxis running
on their own dedicated guideway network. The network consists of a number
of stations together with a collection of one-way guideways linking them
up. The Study Group was asked to develop a tool that when given the
user demand, locations of the stations, the costs of building and the time
taken to travel along all potential links, determines which links to include in
the network. The objectives are to balance the benefit to users, in terms of
convenience, with the construction cost, and to satisfy topological constraints
determined by engineering considerations.

Study Group contributors

Z. Guo (Bao Steel)
R. Hoyle (University of Surrey)

D. Jefferson (Heriot-Watt University)
R. A. Leese (Smith Institute)

H. Mashhoudy (University of Coventry)
S. D. Noble (Brunel University)

S. Roper (University of Cambridge)
R. E. Wilson (University of Bristol)

Report prepared by

Rebecca Hoyle (University of Surrey)
Daniel Jefferson (Heriot-Watt University)

Robert Leese (Smith Institute)
Steve Noble (Brunel University)

Steve Roper (University of Cambridge)

A-1

1 Introduction

This report concerns the design of networks for personal public transport. It describes
the problem as presented to the Study Group by Martin Lowson of Advanced Transport
Systems, along with details of how we formulated our approach to the problem, and
discussion of preliminary results.

The Urban Light Transport project (ULTra) is concerned with the development
of an on-demand transport system of driver-less automatic taxis running on their own
dedicated guideway network. Advanced Transport Systems will build the first such
transport network in the world, in Cardiff city centre, within the next two years.

ULTra combines the advantages of mass public transportation (buses and trains) and
personal private transportation (cars). Its network of stations and guideways provides
personal public transportation when required, non-stop from any station on the network
to any other station on the network.

All the network links provided by the guideways are one-way, in that vehicles can
only pass along them in one direction. The orientation of a link cannot be changed. For
there to be two-way travel directly between two stations requires the construction of two
guideways oriented in opposite directions, thus incurring extra cost.

The broad question as posed to the Study Group was:

Given a (time-independent) origin-destination demand matrix, with elements equal
to the travel demand for journeys from each station to each other station, and given
also the costs of building guideways between each pair of stations, what network
should one build, taking account also of several specified design constraints?

We assume the following:

• The co-ordinates of the stations P1, . . . , Pn are fixed in advance. Furthermore for
all i and j the cost cij of building a link from Pi to Pj is prescribed, as is the
corresponding user demand per unit time, dij.

• Junctions between guideways may only occur at stations and take one of three
forms: two guideways merging into one, one guideway diverging into two or a
combination of a merge and a diverge. Except at junctions, no guideways may
cross, so consequently the network is planar.

• We do not consider the problem of capacity on the network.

• All vehicles travel at their constant top speed. Therefore the shortest travel time
between the stations occurs along the path of shortest length.

The question of how to dimension the network must then be answered. The network is
naturally modelled as a digraph, i.e. a set of vertices (representing stations) and directed
edges, often called ‘links’ (representing guideways). We wish to know:

• Where should one include links to minimise the appropriately weighted sum of the
total length of guideway built and the total lengths of journeys (weighted by user
demand)?

A-2

• What algorithms are useful for finding the answer to this question for arbitrary dij

and cij?

The outline of this report is as follows. In the next section we discuss our formulation
of the problem in detail and show that it is NP-hard. We next describe methods for
forming an initial feasible network and then how we apply the method of simulated
annealing to improve upon the solution. Finally we discuss possibilities for further work
based on our approach, and some results.

2 Defining the problem

In this section we describe the ULTra problem in detail. The problem is essentially
to choose which links to put into a digraph in order to satisfy various constraints,
imposed mainly by design considerations, and to minimise cost. We first describe the
constraints on the links in the digraph. These fall into three categories, to do with
topology, connectivity and planarity.

(i) The topological constraints restrict the set of links that may be
present at a station. Firstly they require that if there are links into a
station then there are also links out of the station and vice-versa. (This
is necessary for otherwise vehicles arriving at the station would have no
route out of the station and would be stuck there for ever.) Secondly
they ensure that any junction is not too complicated and consists of
either two guideways merging into one, a guideway diverging into two,
or a combination of both. Thus the following topological configurations
are possible at a station.

Figure 1: Possible configurations of track at a junction.

The solution to the problem has been implemented in MATLAB, and
currently uses a slightly simpler version of these constraints in that any
junction with in-degree two and out-degree two is allowed.

(ii) To describe the connectivity constraints, the following terminology is
useful. A digraph is strongly connected if for all pairs of distinct vertices
vi and vj there is a directed path from vi to vj. A strong component
is a maximal set of vertices forming a strongly connected subgraph.
Note that the strong components form a partition of the vertices of
the digraph. It is not necessary for the digraph corresponding to the
ULTra network to be strongly connected, because it may be that some
station would rarely be used and so it would not be cost effective to

A-3

build links to that station. Suppose however that it is possible to find
two disjoint sets A1 and A2 of stations so that there are paths through
the network beginning in A1 and ending in A2 but no paths beginning
in A2 and ending in A1. Then as passengers make journeys from A1 to
A2, vehicles will begin to accumulate within A2 and never be able to get
back to A1. This situation is clearly undesirable and to prevent it we
impose the constraint that there are no edges between distinct strong
components of the digraph. An equivalent condition is to ensure that
whenever there is a route from station Pi to Pj, there is also a route
from Pj to Pi. The strong components can be found in time O(n + m),
where m is the number of links in the network, using an algorithm due
to Tarjan [3]. For more information on connectivity in digraphs see [1].

(iii) Guideways that cross require the construction of either an additional
junction or a bridge, both of which are costly and in the case of a
bridge, unsightly, so these are forbidden. Consequently the digraph
constructed must be planar. However checking this constraint is not
currently implemented in the MATLAB code. Note that it is not too
difficult to check whether the guideway linking stations v1 and v2 must
cross the guideway linking stations v3 and v4. Write the equation of
the line joining v1 and v2 as �a1 · �x − b1 = 0 and the equation of the
line joining v3 and v4 as �a2 · �x − b2 = 0. Suppose the stations are at
positions �x1, �x2, �x3, �x4. Then the guideways cross if and only if both
(�a1 · �x3 − b1)(�a1 · �x4 − b1) and (�a2 · �x1 − b2)(�a2 · �x2 − b2) are negative.

2.1 The objective function

In the ULTra problem, design decisions are based on the evaluation of an objective
function that has two parts: a function C reflecting the infrastructure costs and a
function B representing the benefit derived by users from the system.

(i) The cost function C is taken to be sum of the costs cij of building
all the links in the digraph. If we let aij take the value one if the link
from station to Pi to station Pj is included and zero otherwise then
the digraph is determined by the adjacency matrix A = [aij]. The cost
C(D) of the digraph D with adjacency matrix A is given by

C(D) =
∑
ij

aijcij.

The values of cij could either be prescribed individually or simply
taken as (proportional to) the euclidean distance between the endpoints.
However the latter approach might be overly simplistic since the
presence of difficult terrain, lakes or rivers, for example, could severely
increase the cost of building a guideway between two stations.

(ii) The benefit function B is designed to capture the benefit, or ‘utility’,
that accrues to the users of the ULTra system. Such benefit is generally

A-4

called the consumer surplus in economics, and is often interpreted as
the additional price that passengers would be willing to pay in order to
receive the same service. We choose here to replace that willingness to
pay with a measure based on journey times. Explicitly, it is assumed
that the consumer surplus decreases linearly with journey time, to give
a benefit function of the form

B(D) =
∑
i→j

dij max{a − btij, 0}.

The summation in B(D) is over all pairs (i, j) with i �= j such that
there is a route from station Pi to station Pj through D. Furthermore a
and b are positive constants, and tij is the time taken to travel from Pi

to Pj on the shortest route, given by tij = d(i, j)/V where d(i, j) is the
distance travelled on the shortest path from Pi to Pj through D and V
is the speed of the vehicle. The constant a represents the utility that
passengers would derive from the ideal case of instantaneous transport
from origin to destination, and b is the value that passengers attach
to each unit of their own time (value that is lost as the journey time
increases). In this model, there is a maximum journey time a/b, beyond
which passengers derive no benefit.

So far, we have not mentioned the question of fares for travel on ULTra.
The ULTra developers are anticipating that a fixed fare will be charged
for each journey, regardless of distance, in which case a should be
reduced by the amount of that fare. Alternatively one could keep
the same value of a and change the interpretation of B(D) to be the
combined benefits of operator and passengers.

The cost and benefit functions are combined so that the overall objective function is
to minimise their difference, that is to minimise∑

i,j

aijcij −
∑
i→j

dij max{a − btij, 0}

subject to aij ∈ {0, 1} and the digraph D satisfying the topological constraints, being
plane and such that there are no edges between distinct strong components.

As a small example, consider 3 stations, arranged in an equilateral triangle. The cost
of all the links in either direction is then the same and we can call it λ. Then

cij = λ

0 1 1

1 0 1
1 1 0

 . (1)

We assume the demand is symmetric, i.e. as many people want to go from Pi to Pj

during the day as from Pj to Pi during the day. Then

dij =

 0 d1 d2

d1 0 d3

d2 d3 0

 . (2)

A-5

There are 64 possible digraphs for this three station arrangement. However,
symmetry can reduce the problem. Suppose the demands have rotational symmetry,
i.e.

dij = d

0 1 1

1 0 1
1 1 0

 . (3)

Now we expect the solution to have rotational symmtery, so we have the possible solutions
shown in Figure 2.

Figure 2: Possible solutions to the symmetric three-station example.

In the first possibility, there are no guideways built at all. We derive no benefit from
this digraph and incur no cost either. In the second possibility, there exsists a route from
everywhere to everywhere, with

tij =

0 1 2

2 0 1
1 2 0

 . (4)

The cost is 3λ and the benefit is 3d (2a − 3b) for this second instance. In the third
instance there exists a route from everywhere to everywhere and

tij =

0 1 1

1 0 1
1 1 0

 . (5)

The cost is 6λ and the benefit is 6d (a − b).
We can rescale the variables λ, d, a and b, by writing α = ad/λ, β = bd/λ, and

dividing the objective function throughout by 3λ, to give objective function values

O1 = 0 (6)

O2 = 1 − 2α

(
1 − 3β

2

)
(7)

O3 = 2 − 2α (1 − β) (8)

for the three possibilities, respectively. This allows an interesting comparison to be made.
Depending on the values of α and β, each of the three digraphs may be the optimum in
the sense of minimizing the objective function.

A-6

For example, take β = 2
3
; then for 0 < α < 3

2
the best solution is not to build any

links at all. This makes sense as α is proportional to demand and we expect that, given
a cost, unless the demand is high enough, it is not worth building a network. More
interestingly, suppose the demand is fixed so that α = 3, say; then

O1 = 0 (9)

O2 = −5 + 9β (10)

O3 = −4 + 6β. (11)

As β increases from 0 we have the optimum being to build a one-way system, then
switching to build a two-way system and finally not to build at all. Here, the constant β
is a measure of how consumers value their time. If consumers are prepared to wait, then
one can safely build a one-way system. As the value of their time increases one must
satisfy them by building a two-way system, and finally travel-time becomes so costly
that it is not worth building at all.

2.2 NP-hardness of the problem

It is not difficult to see that, as stated, the ULTra problem is NP-hard, implying that
calculating the exact solution is almost certainly computationally intractable in general.
This fact has led us to adopt a heuristic approach to the problem, which we discuss in
the next two sections. For background information on computational complexity, see [2].

To see that the ULTra problem is NP-hard, we give a Turing reduction from the
Symmetric Travelling Salesman Problem (STSP). An instance of the STSP consists of a
set {v1, . . . , vn} of points together with positive integers rij for each i, j with i �= j and
1 ≤ i, j ≤ n, satisfying rij = rji. The objective is to find a permutation π0 achieving the
minimum over all permutations π of

n−1∑
i=1

rπ(i)π(i+1) + rπ(n)π(1).

The problem is that faced by a travelling salesman who must visit n cities precisely once
and return to the starting location in the shortest possible time.

Given an instance of the STSP, let R =
∑

ij rij + 1 and construct an instance of the

ULTra problem with n stations v1, . . . , vn, a = 2Rn2, b = 0, dij = 1 for all i and j with
i �= j, and cij = rij + 2R. (This construction can easily be carried out in polynomial
time.)

We will assume that n > 1. First note that a solution to the ULTra problem
corresponding to a strongly connected digraph has cost at most −2Rn3(n−1)+2Rn(n−
1)+R, whereas a solution that does not correspond to a strongly connected digraph has
cost at least −2R(n(n− 1)− 1)n2. Comparing the two, we see that an optimal solution
to this instance of the ULTra problem must be strongly connected.

Secondly note that a strongly connected digraph with n edges has cost at most
−2Rn3(n−1)+2Rn+R, whereas a strongly connected digraph with more than n edges
has cost at least −2Rn3(n− 1) + 2R(n + 1). Since a strongly connected digraph with n

A-7

vertices must have at least n edges an optimal solution must have n edges and correspond
to a TSP tour. The cost of the optimal solution will be −2Rn3(n− 1)+2Rn+C, where
C is the cost of the shortest TSP tour. Hence the ULTra problem is NP-hard.

3 The starting configuration

The first stage in our algorithm produces an initial solution. This is a set of edges which
forms a feasible solution of reasonable cost. Note that a simple way to do this is to form
a TSP tour using one of the many construction heuristics, such as farthest insertion. The
method we use is a little more complicated but is essentially a greedy algorithm applied
in a careful way to ensure that the topological, planarity and connectivity constraints
are all observed.

Since links between stations that are a long way apart are likely to be costly, we
begin by restricting the set of possible links to those which join neighbouring, or close to
neighbouring stations. This means that the initial solution will contain only relatively
short links. We do this using a Delauney triangulation (a construction that MATLAB
can produce using an integral function), which may be thought of as follows. Given a
set of points, V = {v1, . . . , vn}, define the half-plane Hij to be the set of points for which
the distance from vi is at most the distance from vj. Let

Vi =
⋂
j �=i

Hij.

Thus Vi is the Voronoi region around vi. Now construct a triangulation on V by adding
an edge between vi and vj if Vi and Vj intersect in a line segment. This gives the Delauney
triangulation of V . In our initial solution we allow links between stations that are of
graph distance at most two in the Delauney triangulation (where every edge has distance
one) so let E2 denote the ordered pairs of stations satisfying this condition. Furthermore
let H denote the graph with vertex set V and links E2. Since the Delauney triangulation,
viewed as an undirected graph, is 2-connected and plane, by Robbins’ Theorem [1] it is
possible to orient a subset of the edges to give a feasible solution to the ULTra problem.

The main part of the procedure to construct an initial solution is as follows. We
choose a vertex v of V and form a sequence u1 = v, u2, . . . of vertices from V . From uj

we choose the next vertex uk from amongst the out-neighbours of uj in H in order to
minimise cjk +w(k− 1− tk), where w is a penalty function preventing us from revisiting
a recently visited vertex and tk = 0 if uk is unvisited but is equal to j if uk = uj. A
sensible choice for the penalty function is w(x) = δx−γ for suitably chosen δ and γ.

Since the graph is finite, eventually we reach a stage where uj = uk for some
j < k. When this happens, the links (uj, uj+1), . . . , (uk−1, uj) are inserted into the
initial solution.

We now delete from H any links that are not compatible with the links already present
in the initial solution. More precisely we delete any link which crosses a link in the initial
solution and any link which cannot be added without violating the topology constraints,
i.e. causing a vertex to have in or out-degree three, or causing a vertex to have in and
out-degrees both equal to two in a way that cannot be created as a combination of a
merge and diverge.

A-8

Now let U = {uj, uj+1, . . . , uk−1} and replace the vertices of U in H by a single
vertex v0. We add a link (v0, vi) if there is a link (u, vi) for some u ∈ U . The cost of this
link is given by the minimum cost of all the links from vertices in U to vi. Links (vi, v0)
are added similarly. We now start to repeat the procedure above choosing u′

1 = v0 as
our starting point and picking an out-neighbour u′

2 as before. We continue to construct
a sequence of vertices in the same way as before but with one proviso, which affects
the cost of a link closing the cycle by returning to v0 and ensures that such a link is
compatible with the first link chosen. Suppose that the minimum cost over links in H
from vertices in U to u′

2 was achieved by the link (u, u′
2). The cost of adding a link

(v, v0) is given by the minimum cost over all links in H from v to vertices of U that are
compatible with (u, u′

2).
The process is repeated until H becomes a single vertex. Once this has happened we

have a strongly connected digraph that can be used as an initial solution.

4 Combinatorial optimization

The problem of deciding on a good network design is an example of a combinatorial
optimization problem. This wide class of problems can be be phrased in a general way by
specifying a set R of configurations, a subset of feasible configurations S and an objective
function O : R −→ R. If we define O in such a way that a lower value corresponds to
a better solution, the problem is then to find s∗ such that Oopt = O(s∗) = mins∈S O(s).
There are various computational approaches available, depending on the precise nature
of the problem. Some problems are solvable in polynomial time, meaning that there are
efficient algorithms that find the minimum possible value of O, in time that increases
only polynomially with the size of the problem. The ULTra problem, in contrast, is
NP-hard and more akin to the travelling salesman problem, where no such algorithms
are known. Calculating the global optimum would take a time that grows exponentially
with the size of the problem, and so instead we use approximations or heuristics that
give near-optimum solutions in reasonable times.

4.1 Informal discussion

The issues involved in seeking the global minimum can be summarised with the aid of
a diagram and an analogy with mountaineering. Consider the mountain shown below
with some adventurers at the top, who wish to get to the bottom.

Figure 3: A mountain with local minima.

A-9

First, suppose that visibility is poor, so that the adventurers can see only the area
immediately around their current location. They also have little time to decide in which
direction to go. Their strategy is to set off from the summit, look around randomly
and make a move in the first direction that goes down the mountain. They may be
lucky and choose a path straight down the mountain, but they may also encounter one
of the holes, i.e. a local minimum, where their strategy tells them to stay put, since no
downward route is available. They have no idea how far away they are from the base of
the mountain. The outcome depends very much on where the starting point is. General
deficiencies of such iterative improvement algorithms are:

• When a minimum is reached there is no indication of proximity to the
global minimum.

• The solution depends heavily on the starting position.

• It is difficult to tell how long the algorithm will take to terminate.

Possible improvements are to extend the range of investigation before deciding on
the next direction in which to move, to try several different starting positions, to keep
information about previous descents, or to have the option of backtracking to previous
positions.

4.2 Simulated annealing

A general and widely applicable advance over iterative improvement algorithms is to use
simulated annealing. The simple approach of iterative improvement is supplemented with
some random steps that may increase the value of the objective function. The frequency
at which we make these random moves depends on a temperature, which decreases over
time according to a cooling scheme. This is the type of algorithm used to approach the
ULTra problem.

The name ‘simulated annealing’ is borrowed from the physical process in which the
temperature of a solid is raised so that it becomes liquid. The temperature is then
reduced, slowly enough so that the system is in thermal equilibrium. Done properly, the
solid arranges itself into a regular lattice, which is a lowest-energy state, corresponding
to the global minimum of the objective function in combinatorial optimization. If the
temperature is reduced too rapidly, the solid freezes with defects, corresponding to a
local minimum.

In our notation, the algorithm generally works in the following way:

• We begin at some temperature T and with some feasible configuration
s.

• For each temperature we generate new configurations. How many we
generate for each temperature depends on our cooling schedule.

• Suppose we have a candidate configuration t, chosen randomly from
the neighbourhood of s (the neighbourhood of s is the set of all
configurations reachable by applying one of the allowed local moves to
s). Then t is accepted with probability 1 if ∆Ost = O(t) − O(s) ≤ 0

A-10

and with probability exp (−∆Ost/kT) if ∆Ost > 0, where k is some
constant. This is called the Metropolis criterion.

• After a number of iterations, the temperature is reduced, again
according to our cooling schedule until some cut-off is reached at which
we terminate the algorithm.

For different choices of cooling schedule we can produce various bounds on the
probability that the global minimum is obtained and the expected time taken to find a
near-optimal solution. Further details can be found in [4].

5 Application to the ULTra problem

In the ULTra problem, the set R is the set of all possible digraphs given the various
station locations. The set S is the set of all digraphs which satisfy the constraints of
topology, connectivity and planarity and the objective function O, which, as described
elsewhere, depends on the user demand, the shortest path travel times between the
stations and how costly the links are to build. Dependence on the travel times along the
shortest paths means that removing single links from the digraph may radically alter
the current value of the objective function. Moving around the neighbourhood of the
current configuration s may produce variation in O on the scale of O(s).

5.1 Changing individual links

Before discussing the way the algorithm finds feasible moves, we need to define a
temperature function that gives the probability of accepting a bad move (i.e. to an
increased value of the objective function) at any particular step1. The function chosen
at the Study Group was

T (k) = c1(1 − tanh(c2k)).

Here k is the number of successful moves so far. The constant c1 is between zero and
one and is equal to the temperature at the start. The constant c2 is greater than zero
and controls the rate the temperature decays. The precise nature of the function is not
important. Any function of the same general form would serve the same purpose.

We also need to define a cut-off point at which the algorithm should terminate. This
is taken to be the point at which the value of the objective function falls below a certain
threshold, or the number of iterations of the algorithm exceeds a certain number.

The starting point for the algorithm is an initial guess, constructed according to
Section 3, which satisfies the topological constraints. The objective function is calculated
for this initial guess and the steps of the algorithm are as follows:

(i) Randomly choose a link, i.e. randomly choose a pair of stations.

1The notion of temperature used here differs from the notion previously described in Section 4.2.
There the probability of accepting a bad move, rather than being equal to the temperature, is a function
of the number of iterations, the change in the objective function and a temperature which decreases
every so often according to a cooling schedule. During the Study Group week a simpler approach to
cooling was taken.

A-11

(ii) Randomly choose between the following two options:

(a) Add the chosen link if is not already present or remove it if it is.

(b) If the chosen link is present, randomly chose between either
changing its beginning station or its end station.

(iii) If the chosen move violates the topological constraints, then reject it
and go back to step (i).

(iv) Calculate the objective function for the network modified by the chosen
move. If the objective function has decreased, accept the move. If the
objective function has increased, accept the move with probability T
(where T is the temperature). Otherwise reject the move and go back
to step (i). If the move is accepted, continue.

(v) Stop if the objective function has decreased below a specified threshold,
or a specified maximum number of iterations has been reached.
Otherwise continue.

(vi) Update the temperature T and return to step (i).

The details of the implementation of this algorithm are given in the flowchart in Figure 4.

5.2 Larger possible moves: ears

Potentially it is possible to improve the above algorithm by allowing it to make more
radical moves (which still satisfy the topological constraints) than the rather piecemeal
moves described above. One way to do this is to allow moves that involve the addition
or removal of whole chains of links, rather than individual links alone, in the following
manner. The idea here is to form an ear. A link is inserted which branches off the
existing network to an isolated station, and then successive links are added to form
a chain linking up currently isolated stations, eventually connecting back up with the
existing network.

Step (i) of the above algorithm selects a random link (a, b). We test whether this link
is the potential start of an ear, which will be the case if the link is not currently present,
its presence would not violate the topological constraints at a and if b is currently an
isolated station. If these conditions are satisfied, the ear-generating algorithm proceeds
as follows:

(i) Choose the nearest station to b other than a (and b itself). Here
‘nearness’ could be defined in terms of euclidean distance or cost. The
euclidean definition perhaps helps to maintain planarity. Call this
station b∗.

(ii) If b∗ is an isolated station insert the link (b, b∗) and repeat from (i) with
a = b and b = b∗. Otherwise continue.

(iii) If b∗ is not isolated and the presence of the link (b, b∗) does not violate
the topological constraints, insert it. This completes the formation of
the ‘ear’, and the ear-generating algorithm terminates. The effect of
this new route on the objective function is then calculated and the

A-12

Is link (a, b) present?

The insertion of link
(a, b) becomes the

candidate move

Is link (a, b) present?

Randomly choose
between the following
two options:
1) add/remove a link
2) move the beginning/

end of a link

Randomly choose
between
1) move the beginning
2) move the end

Does moving the
beginning violate

constraints?

Search randomly through
all stations a* ≠ a, b.
Chose the first (if any)
such that link (a*, b) is not
already present and its
insertion does not violate
the constraints.

Does moving the
end violate
constraints?

Was b* successfully
chosen?

Was a* successfully
chosen?

Search randomly through
all stations b* ≠ a, b.
Chose the first (if any)
such that the link (a, b*) is
not already present and its
insertion does not violate
the constraints.

Does candidate move
violate constraints?

The removal of link
(a, b) becomes the

candidate move

Accept move, update
objective function,
increment count of
number of moves

The removal of link
(a, b) and the insertion
of (a, b*) becomes the

candidate move.

Does candidate move
decrease objective

function?

Accept bad move with
probability = temperature

Has objective function gone
below specified threshold

or has specified maximum number
of moves been reached?

Decrease temperature

Randomly choose
two stations:

stations a and b.

Start with initial
guess.

The removal of link
(a, b) and the insertion
of (a*, b) becomes the

candidate move.

Hopefully
near-optimal

solution

Option 1) Option 2) Yes

No
No

Option 1)
Option 2)

Yes

Yes Yes

No
No

No No

No

Yes

Yes
Yes

Reject

Accept

No

Yes

No

Yes

Note: (a, b) denotes a directed link from
station a to station b.

Figure 4: Flowchart for the simulated annealing algorithm.

A-13

simulated annealing algorithm decides whether to accept it or reject it
(i.e. abandon the whole new route). Otherwise continue.

(iv) If the presence of (b, b∗) violates the topological constraints the whole
new route is abandoned and the simulated annealing algorithm tries
another move.

Clearly, ears can be added in the opposite direction, i.e. starting at the end of the ear,
in the same way. A similar idea can be used to delete existing ears.

5.3 Other factors

In the computer algorithm as implemented in the time available to the Study Group, the
issue of planarity (the avoidance of crossing links) has not been addressed. For the most
part, the algorithm seems to avoid nonplanar solutions automatically, probably because
such solutions are relatively costly (in terms of the objective function).

Another issue that has been avoided here is that of congestion. The above algorithms
do not involve any check on the possibility that the usage of certain links may become
unfeasibly high for particular networks. This could be addressed by imposing additional
constraints on moves. For example, we could require that along any particular route
there cannot be two successive merges with other routes without a divergence of routes
in between. Checking this type of additional topological constraint is straightforward
in principle, but might be complicated in practice. An alternative way to deal with
congestion would be to estimate the number of vehicles per unit time passing along any
particular link (using an approach similar to that used in the calculation of benefit in
the objective function). This estimate of usage could then be incorporated as an element
of cost in the objective function.

A further issue is that of robustness of the network. If one of the links were to be
unusable for a period of time, how would the network respond and would the resulting,
albeit temporary, network have the desired topological properties and give convenient
journeys to customers?

6 Some results

6.1 A small example

We illustrate the algorithm developed in this report by applying it to two examples. The
algorithm is rich and merits a deeper discussion than is possible here. The results of
running it on more examples would likewise merit further investigation.

Consider the demand matrix

dij =

 0 15 1

15 0 5
1 5 0

 . (12)

The three stations are located at the vertices of an equilateral triangle, with the same
travel times between all pairs of vertices. The constants a and b in the benefit function
are chosen so that a = 1, with b equal to either 1

10
, 1

3
or 1

2
.

A-14

The starting digraph for each run is the top digraph in Figure 5. For each different
value of b, the algorithm produces different solutions. Recalling the discussion of the
objective function in Section 2.1, we expect that for small b the solution to be a one-way
loop through all the stations. As we increase b, we expect more complicated solutions
to appear and finally for large b we expect that not building anything will be the best
solution.

Figure 5: Start position and solutions for b = 1
10

, b = 1
3

and b = 1
2
.

The bottom row of digraphs in Figure 5 are the final configurations for b = 1/10,
b = 1/3 and b = 1/2, respectively. We see that as the customers value their time more
and more, we have to build two-way guideways in order to minimise the cost incurred
from making long journeys. Eventually a point is reached where it only becomes feasible
to build the link with most demand. At b equal to approximately 3

4
the best solution is

not to build at all.

6.2 Bristol example

The Study Group had available data for a potential deployment of ULTra in Bristol, in
the form of a symmetric demand matrix, based on an analysis of peak hour car trips
between 16 different zones of the city. In the analysis of this data, a station was attached
to each zone and, in the absence of additional information, we took the cost of building a
link to be proportional to the euclidean distance between the stations. We can generate a
range of solutions, depending on the choice of parameters in the objective function. Two
possibilities are shown in Figures 7 and 8, both derived from the starting configuration
of Figure 6. The spatial coordinates of the stations have been rescaled to lie inside a
unit square.

The objective function in Figure 7 weights the user benefits more heavily, relative
to construction costs, than in Figure 8, and this is reflected in the inclusion of some
long, expensive links. However, both examples consist mainly of unidirectional loops,
rather than pairs of parallel guideways in opposite directions. Further increases in the
importance of the user benefit would be expected to lead to the appearance of more
parallel guideways and fewer loops. Note also that Figure 7 exhibits some violations of

A-15

the planarity constraints, since these have been omitted from the initial implementation
in MATLAB.

Figure 6: Starting position for Bristol data.

Figure 7: Final network configuration for Bristol data, with the objective function equal
to B(D) − C(D).

A-16

Figure 8: Final network configuration for Bristol data, with the objective function equal
to B(D) − 5C(D).

References

[1] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications.
Springer, 2001.

[2] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman, New
York, 1979.

[3] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[4] P. J. M. van Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory and
Applications. D. Reidel Publishing Company, 1987.

A-17

