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1 Introduction1

Thermal Ceramics is part of Morgan Crucible plc, and manufactures high temperature
thermal insulation, to operate at temperatures in the range 500◦C–1600◦C. The
insulating materials can be in the form of bricks, castables or fibres, of which fibres
are the largest and highest growth business. Thermal Ceramics are the equal world
number one in the production of high temperature fibrous insulation. Fibre insulation
is used in furnaces, aeroengines, domestic appliances, fire protection systems and other
applications. The fibre may be used as blanket, board, bulk materials, shaped pieces,
paper for seals and so on. Its advantages are the low thermal conductivity (0.05–
0.4 W/mK over the range 200◦C–1400◦C), the low thermal mass (50–300 kg/m3) and
the relatively low cost (£ 2/kg).

1This section combines the problem description circulated before the Study Group with the
presentation made on the opening day.
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In production, the melt is held at a temperature of 1650◦C–1950◦C, dependent on its
chemistry, and has a dynamic viscosity of 1–10 poise at this temperature.

Figure 1: Diagram of fiberisation process

The melt stream emerges from a circular orifice of diameter 5–15 mm, at a tap rate which
may be up to 500 kg/hour, falls about 2.5 m, and is fiberised by successive impacts on 2
contrarotating water-cooled steel spinning wheels with parallel horizontal axes as shown
in Figure 1, or enlarged in Figure 2. The wheels may be of various diameters; smaller
wheels can be spun faster. Generally higher tap rates require larger diameter wheels.
It is found that approximately 1

3
of the fiberisation occurs on the first wheel and 2

3
on

the second. After the second wheel, the material has cooled so far that adding a further
wheel would not produce more fiberisation. The gap between the wheels may be 3–
10 mm. The main activity occurs in the vertical plane through the orifice perpendicular
to the wheel axes. The fibres are blown away from this plane by air from a ring of blowers
or a slot (as illustrated on wheels A and B in the figures) producing an air flow parallel
to the wheel axes. Among the main parameters are:

• melt temperature, composition and depth,

• orifice diameter,

• orifice temperature,

• tap rate,

• drop height,

• melt stream impact angle,
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Figure 2: Diagram of wheel operation.
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• wheel A diameter, speed and cooling,

• wheel angle,

• wheel B diameter, speed and cooling,

• gap,

• air pressure and ring design.

The viscosity of the melt as a function of temperature is different from that of an ordinary
glass, and is roughly as illustrated in Figure 3.

Temperature1750◦ C

Refractory fibre

glass

Viscosity

Ordinary

Figure 3: Rough illustration of the contrast between the viscosity-
temperature curves for refractory fibre and ordinary glass.

The product from the process consists of the fibres that are the desired output, and also
unfiberised material, mainly shot particles, as illustrated in Figure 4.

The fibre diameters are typically between 0.1 and 10μm, with a log-normal distribution
and a mean of 2–3μm. Generally the unfiberised material is in the form of small spherical
beads of glass which the industry refers to as shot. Shot particle diameters can be
anything from a few microns to over 1000μm but are typically between 40–500μm,
with the largest contribution coming from the range 100–250μm. In practice Thermal
Ceramics find that there are few shot particles below 44μm in diameter, and therefore
measure (by sieving) the mass fraction of the product consisting of non-fibrous material
with diameter over 44μm, and define that to be the shot content. In production the shot
content is typically in the range 45–55%, which is higher than occurs for normal glasses.
The majority of the shot particle diameters fall in the range 75–250μm and this forms
up to 75% of the shot weight.
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Figure 4: Scanning electron micrographs of fibres and shot (top),
and mainly shot (bottom).

1.1 Importance of shot

Thermal Ceramics would like to reduce the shot content, because it is detrimental to the
product in two major areas:

(1) Shot increases thermal conductivity. If it were not there, the thermal conductivity
would at worst remain the same, but empirical data suggests that removing shot
reduces thermal conductivity. Fibre is generally sold as a needled blanket with
densities of the order of 100 kg/m3. Less material could therefore be sold for the
same insulating effect making costs lower and the price lower. One of the big
advantages of using fibre over bricks is the saving on thermal mass and therefore
any reduction in density will enable savings to be made by customers in their
applications.

(2) A growing area of fibre use is in the automotive industry, which requires clean
fibre with zero shot. Costs can therefore be improved if the initial shot can be

E-6



reduced. This maximises production of fibre for cleaning and will reduce the need
for investment in new expensive cleaning equipment as the market increases.

Work has been carried out on reducing shot content on-and-off for 25 years. Shot contents
below 45% were achieved on a small scale in the mid-1990s at Thermal Ceramics in
the USA, but this cannot be achieved in a controlled or sustainable way, let alone in
production. Attempts to move to larger tap rates and larger diameter wheels resulted
in shot contents reverting back to over 45%.

1.2 Experiments and modelling work

There is now a development line at Thermal Ceramics to try to improve control of shot
content. This has enabled shot content to be reduced, repeating the earlier findings,
and demonstrating that it is possible to reduce shot significantly in the process at low
tap-rates.

Thermal Ceramics need to explore how the melt transfers onto the wheels, what kind of
melt layer exists on them, and how this breaks up into droplets which are flung off to
become fibres. Then it will be possible to try to understand what happens as the wheels
are increased in size and the melt tap rate is increased, moving towards production
scale. The experiments are expensive and time consuming particularly at larger scales,
and there are problems associated with running trials in such an environment. In view
of this, and the problems with scale-up in the past, it is hoped that a mathematical
model will show what parameters are important, whether there is a gradual decrease in
effectiveness or a watershed, and so will help to reduce development time and understand
potential problems early.

The key points and questions that would help Thermal Ceramics are:

(1) to understand the spray from A onto B;

(2) to explore the melt film stability/instability on the wheels;

(3) to assess how the wheel speed and diameter influence the melt film;

(4) Is there is an optimum melt tap rate for each wheel size ?

(5) Is there is an optimum condition for fibre initiation sites on the wheels ?

2 Approach and notation

We shall approach the problem by studying each stage of the process in turn: the falling
melt stream from the furnace to wheel A, the impact on wheel A, the instability of
the fluid layer on wheel A, the spray to wheel B, the instability on wheel B, and the
fibre dynamics and cooling. We shall use a common set of notation and parameter
values, which are listed here. Further notation specific to each part of the study will be
introduced in each particular section.
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2.1 Values of known quantities

ρ = melt density = 2.5 × 103 kg m−3

γ = surface tension = 0.5 N m−1

Ta = ambient temperature = 300 K

Tm = temperature of melt = 2200 K

cp = specific heat of melt = 103 J kg−1 K−1

k = thermal conductivity of melt = 6 W m−1 K−1

a = radius of fibre = 10−6 m

ab = radius of blob = 1 × 10−4 m

μ = dynamic viscosity of melt = 0.1–1 Pa s (i .e. 1–10 poise)

Qm = mass flux = 0.07 kg s−1 (i.e. 250 kg per hour)

Qv = volumetric flux = 3 × 10−5 m3 s−1

κ = 2 × 10−6 m2 s−1

σ = 6 × 10−8 W m−2 K−4

H = fall height = 2.5 m

rn = nozzle radius = 3 mm

The viscosity is assumed to be μ = 0.1 Pa s unless stated otherwise.

2.2 Derived quantities

vn = speed of melt at nozzle = 1 m s−1

vj = speed of melt at wheel A = 7 m s−1

rj = radius of jet at wheel A = 1 mm

Hs = stable fall height

ωR = 100 m s−1

ν = kinematic viscosity = μ/ρ = 4 × 10−5 m2 s−1

δ(x) =
√

νx/(ωR)
x

R
= 0.02

WB = width of melt strip on wheel B = 1
5
R

h = coating thickness on wheel B = 2 × 10−5 m

λmax = 3 × 10−4 m

λ2
maxh = 1.8 × 10−12 m3

βmax = maximum growth rate = 400 s−1 (using μ = 0.1 Pa s)
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3 From the furnace to wheel A

A thread of molten ceramic leaves the furnace through a nozzle of radius rn = 3 mm. The
mass flux leaving the furnace is Qm = 250 kg hr−1 = 0.07 kg s−1, and the fluid density is
ρ = 2.5 × 103 kg m−3, so the volume flux leaving the furnace is Qv = 3 × 10−5 m3 s−1.
Assuming a uniform velocity profile, the speed of the thread on leaving the nozzle is
vn = Qv/(πr2

n) ≈ 1 m s−1.

This thread falls a distance of H = 2.5 m; by applying Bernoulli’s theorem (neglecting
viscosity) to the surface streamline we see that the fluid in the thread accelerates to a
speed of vj =

√
v2

n + 2gH ≈ 7 m s−1 in falling this distance. To conserve mass the thread
must thin; its radius rj at wheel A satisfies πr2

jvj = πr2
nvn = Qv, so that rj ≈ 1 mm.

The same argument gives the speed and radius of the jet after falling a distance z; for
large z we have v(z) ≈ √

2gz, and so r(z) ≈ (Q2
v/(2π

2gz))1/4.

In order to avoid uncontrolled splashing from drop impact on wheel A we require the
thread to remain coherent. This provides a constraint on the fall height; surface tension
will attempt to break the thread into droplets and the thread must hit wheel A before
surface tension manages to break the thread. We can obtain a very crude scaling for
this pinch off distance by supposing that surface tension is dominant only when the
thread radius is small enough compared with the capillary length (γ/(ρg))1/2, the scale
on which surface tension acts. In fact, suppose the condition is r < α(γ/(ρg))1/2. Then
to maintain a coherent thread as far as z = H, we need

H < Hs =
gQ2

m

2π2α4γ2
− v2

n

2g
. (1)

If we take α = 1
2
, that would correspond to assuming that the thread remains coherent

as long as its diameter exceeds the capillary length. If we assume this in the Thermal
Ceramics problem, we find that the critical height Hs calculated in this way is roughly
10 cm. This is considerably less than the drop height used by Thermal Ceramics, but
this crude theory is very sensitive to the precise pinchoff condition used, represented by
the parameter α. Also of course, the viscosity will reduce vj below the Bernoulli value
assumed here, and this will increase the thread radius at any given fall distance z.

This problem can be analysed in more detail; this long thin thread can be modelled with
lubrication theory. The governing equations, which can be derived from an asymptotic
analysis of the Navier-Stokes equations governing fluid flow, are

(r2)t + (vr2)z = 0 (2)

vt + vvz = −(γ/ρ)(r−1)z + g + 3ν(vzr
2)z/r

2, (3)

where r(z, t) is the thread radius and v(z, t) is the thread speed (see Figure 5 for a sketch
of the geometry). Note that all thermal effects have been ignored here, but since this
is a relatively thick thread this approximation is reasonable. Scaling the radius r and
vertical distance z on the capillary length (γ/(ρg))1/2, scaling time t on (γ/ρ)1/4g−3/4
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Figure 5: Sketch of geometry of falling thread

and scaling the speed v on (γ/(ρg))1/2(γ/ρ)−1/4g3/4 we derive the dimensionless set of
equations

(r2)t + (vr2)z = 0, (4)

vt + vvz = −(r−1)z + 1 + ε(vzr
2)z/r

2, (5)

where ε = 3νg1/4(γ/ρ)−3/4. In the Thermal Ceramics problem we find ε ≈ 0.13,
r(z = 0, t) ≈ 0.66 and v(z = 0, t) ≈ 4.75. A more detailed study of the breakup of
the falling thread would require the numerical solution of these equations, but would
provide the dimensionless constant α used in the prediction of the critical fall height Hs.

3.1 Comments

The processes here are amenable to both analytic and experimental study. The
extensional flow equations (4) and (5) provide the basis for a numerical investigation,
and an asymptotic analysis would also be possible. The high temperatures of the molten
ceramic are irrelevant to the physical mechanisms involved in the falling thread problem,
and accurate experiments, with safe fluids, seem very possible.

4 On wheel A

The purpose of wheel A seems to be to break the coherent thread of feed into droplets
and to throw these droplets onto wheel B in a controlled manner. The relatively slow
moving thread of feed lands on wheel A and spreads out in a layer. Viscous forces then
accelerate the fluid in this spreading layer up to the wheel speed. This flow is at high
Reynolds number — the Reynolds number based on thread thickness and wheel speed
is Re = ωRrj/ν ≈ 3000 — and is governed by the growth of a viscous boundary layer
into the nearly stationary fluid that lands on the wheel. As soon as inertial effects are
significant, or as soon as the fluid is accelerated to the wheel speed, the layer is thrown off
wheel A as a sheet. This sheet breaks up in flight, and impacts on wheel B as droplets.
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Figure 6: Sketch of geometry of accelerating layer on wheel A

To ensure that the sheet thrown off hits wheel B, it is necessary for the fluid layer to be
flung off wheel A very quickly. This condition provides a constraint on the system which
we study in this section.

The idea is that the fluid is accelerated by means of a viscous boundary layer that spreads
out from the wheel surface. After the fluid has travelled a circumferential distance x on
wheel A the thickness of this boundary layer is approximately δ(x) =

√
νx/(ωR). When

the fluid layer is fully accelerated the mass flux in this boundary layer matches that in
the thread, so that

Qv = WAδ(x)ωR, (6)

where WA is the width of the layer on wheel A. This gives a value for the circumferential
distance at which the fluid layer is fully accelerated:

xc

R
=

Q2
v

W 2R2ων
. (7)

Note that it is necessary to predict the width WA of the fluid layer; an estimated value
used during the week of the Study Group was WA ≈ 3rj. A more sophisticated argument
given in Section 4.2 predicts WA ≈ 3.6rj in this problem.

4.1 Some crude experiments in the car park

A number of crude experiments were performed to test this theory using water and
shampoo as test fluids. When water was used (shown on the left) the layer did not come
off as a sheet — a fine mist of spray appeared around the whole wheel. The shampoo
layer (shown on the right) was quickly thrown off the wheel, as desired in the Thermal
Ceramics problem. Both experiments had estimated values of rj ≈ 1 mm, vj ≈ 1 m s−1,
ω ≈ 300 rad s−1, and R ≈ 60 mm, with ν ≈ 10−6 m2 s−1 for water and ν ≈ 10−2 m2 s−1

for the shampoo.
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Supposing that the layer on the cylinder spreads to a width WA = 3rj, we find that

xc

R
=

Q2
v

9r2
jR

2ων
=

π2v2
j r

2
j

9R2ων
. (8)

For the water experiment we find xc/R ≈ 1 and for the shampoo experiment we find
xc/R ≈ 10−4, so that the findings of our experiments are in qualitative agreement with
this theory. For the molten ceramic we find that xc/R ≈ 0.25, so that the molten ceramic
thus occupies an intermediate range between well-behaved shampoo and poorly-behaved
water. In terms of operational parameters, we see that (if WA = 3rj)

xc

R
≈ πQv

√
2gH

9ωR2ν
, (9)

so that careful control of the wheel radius R, volume flux Qv, and fall height H is needed
to avoid moving into a regime in which very little ceramic is thrown onto wheel B. A
great deal of shot would be produced if the sheet thrown from wheel A failed to hit
wheel B.

4.2 Details of thread impact

The boundary layer analysis can be pushed a little further to understand more of the
details of the thread impact. We consider the steady flow of a circular thread with
volume flux Q travelling at speed V that impacts a flat surface at right angles and where
the surface is moving tangentially at speed U . To convert the results here to our wheel
problem, note that in the Thermal Ceramics problem Q = Qv, V = vj and U = ωR. In
this section we solve the general problem.

Diagrams of the problem considered are given in Figures 7 and 8, which are a plan view
and a side view respectively. We consider a coordinate system with z up the thread, y
pointing upstream on the moving surface from the thread impact point and x measuring
distance sideways across the moving surface from the thread centreline. We use r as the
radial coordinate on the moving surface. The curve where the fluid depth goes to zero
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Figure 7: A top view of the cylindrical thread impinging on the
moving surface

and there is no fluid remaining on the surface is taken to be y = f(x). This curve is
a free boundary which needs to be found. It also gives the position of the start of the
viscous boundary layer. Note that there is another curve (where y < 0 and shown with
the dotted curve in the figure) where the depth of the inviscid layer goes to zero but
the boundary layer is of finite thickness. Beyond this curve the fluid basically moves
with the velocity of the surface. We shall not consider this second curve in detail in this
section; a scaling for the important features of this curve is given in (7).

In the inviscid layer we note that the radial velocity is a constant V by Bernoulli.
Conservation of mass implies that 2πhrV → Q as r → 0, and that

1

r

∂

∂r
(rhV ) = vBL, (10)

where vBL is the vertical velocity of fluid drawn into the thin boundary layer.

In the viscous boundary layer we consider the boundary layer equations

∂u

∂y
+

∂v

∂z
= 0, (11)

u
∂u

∂y
+ v

∂u

∂z
= ν

∂2u

∂z2
, (12)

where u is the component of velocity in the y direction and v is the component of velocity
in the z direction. The boundary conditions are that u = −U and v = 0 on the moving
surface z = 0. In addition we require that u → 0 as z → ∞ since we are considering
the case V � U in which the inviscid layer appears nearly stationary to the viscous
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Figure 8: A side view of the cylindrical thread impinging on the
moving surface

boundary layer. Note that we have neglected any possible crossflow in the boundary
layer; this is justified by supposing that the flow is much wider than it is thick. Finally,
we suppose that the boundary layer starts on the curve y = f(x), at which the inviscid
layer has its maximal upstream extent.

We first aim to determine the flow rate into the boundary layer. This is simply given by
vBL, which is the limit of v as z → ∞. A standard scaling argument shows that we can
find a similarity solution in which

vBL =

√
Uν

f(x) − y
G∞, (13)

where to find G∞ we need to solve the Blasius equations

−η

2
F ′ + G′ = 0 (14)

−ηFF ′ + GF ′ = F ′′ (15)

with F (0) = 1, G(0) = 0 and F → 0 as η → ∞, where η = z
√

U/
(
ν(f(x) − y)

)
.

From this solution we can determine the value of G∞ using G∞ = limη→∞ G(η). Using
standard numerical boundary value software we find that G∞ ≈ −1.143; as required
there is flow into the boundary layer.

The resulting problem for the inviscid layer can now be put into nondimensional form.
We scale the coordinates x, y, r and f(x) with a length L, and we scale height h
with h0 = Q/(2πV L). It is then found that by choosing the natural length scale

L =
(
Q2/(4π2UνG2

∞)
)1/3

the problem becomes

1

r

∂

∂r
(rh) =

−1√
f(x) − y

, (16)
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with h ∼ 1/r as r → 0 and h = 0 on y = f(x).

The Reynolds number V h0/ν of the inviscid layer will be large if QU 	 ν2, while U 	 V
ensures both that the inviscid layer appears stationary relative to the boundary layer
and that the boundary layer thickness is small compared to the inviscid layer thickness
(h0 	

√
Lν/U). Finally we require L 	 h0 in order that the thin layer approximations

for the spreading inviscid layer are valid; this requires QV 3 	 (Uν)2. All of these
conditions are satisfied by the Thermal Ceramics problem.

We can integrate (16) using the boundary condition as r → 0 to get

h(r, θ) =
1

r

∫ r

0

−q dq√
f(q cos θ) − q sin θ

+
1

r
. (17)

We then impose the condition h = 0 on the curve y = f(x) by insisting that on the curve
r =

√
x2 + f(x)2, cos θ = x/r and sin θ = f(x)/r, and hence

0 =

∫ √
x2+f(x)2

0

−q dq√
f

(
qx/

√
x2 + f(x)2

)
− qf(x)/

√
x2 + f(x)2

+ 1 (18)

Changing the variables in the integral then gives us

1 =
(
x2 + f(x)2

) ∫ 1

0

q dq√
f(qx) − qf(x)

, (19)

a nonlinear integral equation for the function f(x). From this, we can easily find one
point on the curve by considering the point of symmetry x = 0. In this case the equation
reduces to

1 = f(0)2

∫ 1

0

q dq√
f(0) − qf(0)

, (20)

where we can readily evaluate the integral and hence find that f(0) = 62/3/4 ≈ 0.82548.
This then gives an expression for the maximum distance upstream of the thread impact
point reached by the fluid layer:

1
4

62/3

(
Q2

4π2UνG2∞

)1/3

, (21)

which in the Thermal Ceramics problem is approximately one thread radius.

Series solutions to the integral equation (19) can be readily computed using Maple,
giving

f(x) =
1

4
62/3 − 5

18
61/3x2 − 1

9
x4 − 91

6561
62/3x6

− 748

59049
61/3x8 − 28

2187
x10 − 9880

43046721
62/3x12 − . . . .

(22)
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Figure 9: The upstream boundary of the thread impact layer

This 12th order polynomial is plotted in Figure 9, together with its [6, 6] Padé
approximant. This approximant has simple poles at x ≈ ±1.25, possibly showing that
the downstream width of this spreading layer is 2L× 1.25 = 2.5L. Assuming that these
poles do give the layer width, and bringing back the physical lengthscales, we see that
the downstream width of the spreading layer is approximately 3.6 mm, which is roughly
3.6 thread radii. If this approach is used generally, then the parametric dependence of
the width WA of the layer on the wheel is not simply WA = 3rj but

WA = 2.5L = 2.5

(
Q2

v

4π2ωRνG2∞

)1/3

. (23)

4.3 Comments

The simple theory presented here is relatively crude, and a less crude theory is very
difficult. However, this problem is amenable to relatively simple experiments — the
high temperatures of the molten ceramic are irrelevant to the processes throwing the
fluid layer off wheel A. It is therefore possible to use safer fluids to study this process
more accurately; this should be done if more insight into the process is sought.

5 Spray onto wheel B, instability on wheel B

We assume that the melt arrives at wheel B with velocity ωR ≈ 100 m/s, and in droplets
with diameter of order δ(xc). The distance travelled from the contact point on wheel
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A to the contact point on wheel B is of order R. We expect the angle of spread (in
the plane perpendicular to that shown in Figure 2) to be about 10◦, since all turbulent
spread angles are 10◦, so the width of the melt strip on wheel B will be WB ≈ R/5.
(This agrees with observations by Thermal Ceramics of a strip of width 15 mm in a case
where R = 75 mm.)

The melt arriving on wheel B will then form a layer of thickness h given by

h =
Qv

WBωR
≈ 2 × 10−5 m. (24)

The influence of the angle of impact onto wheel B was not studied, but both this and
the assumption mentioned earlier about droplet size could be studied by high speed
photography of an equivalent cold experiment.

We now consider the layer of thickness h on wheel B, which will be unstable because
of the centrifugal acceleration ω2R, but with a stabilizing effect due to surface tension.
The combination of these will give a characteristic wavelength of the instability of order

λmax = 2π

√
2γ

ρω2R
≈ 3 × 10−4 m, (25)

and therefore the “volume of instability” will be of order V = λ2
maxh ≈ 1.8 × 10−12 m3:

the volume of melt in a square of size λmax of the layer of thickness h. If we assume this
either forms a shot particle or a fibre, than as shot, V is the volume of a sphere of radius
about 100μm, which is about right for the typical large shot particles. If alternatively
we write V as the volume of a fibre of diameter 2μm, then the fibre length is 56 cm,
again of the right order of magnitude. The rate of production of volumes V will be
qv/V ≈ 107 (fibres or shot particles) per second. Note though that these calculations do
not say what the shot : fibre proportions will be at all.

A further step is to compute the growth rate of the instability on wheel B. If the layer
thickness h is now regarded as a variable h(x, t), then it will obey

ht +

(
h3

3μ
(ρω2Rh + γhxx)x

)
x

= 0, (26)

and the maximum growth rate βmax will be of order

βmax =
h3(ρω2R)2

12μγ
≈ 400 s−1. (27)

The time taken for the instability to develop by a factor of order 1 is thus of order
1/βmax. Since the melt arrives on wheel B as droplets, we may assume the surface is
initially crinkly—these instabilities do not have to grow from zero—and we may assume
that in a time of order 1/βmax the layer has been flung off completely. Naturally, we
wish this to happen within one revolution, so we would like to ensure ω/βmax ≤ 2π. In

E-17



h

Centrifugal force

Figure 10: The drop before jet initiation

fact for the representative values we have computed, ω/βmax ≈ 5 so this condition does
hold.

If we now move on to consider the problem of jet initiation—how the shape of a droplet
will form during the process of it being flung off from wheel B—the simplest model is
to draw an analogy with pendant drops, with gravity being supplied by the centrifugal
force. The Laplace-Young equation needs to be integrated numerically as in [2] and a
calculation along these lines is included in Appendix A. This reveals that no steady shape
with finite radius of curvature could exist if the droplet depth h illustrated in Figure 10
is too large.

Even though no detailed droplet initiation calculation has been carried out, we shall
need an estimate of the initiation velocity vin with which material leaves the sheet on
wheel B, in order to try to understand the initial stages of fibre dynamics and cooling.
This initiation velocity is determined by the balance between the viscous stress of order
μvin/h and the inertial stress difference ρω2Rh across the layer of thickness h. Equating
these shows

vin ∼ ρω2Rh2/μ = ω2Rh2/ν ≈ 2 m/s. (28)

6 Fibre and shot dynamics

After the fibre has been ejected from the layer on wheel B, it flies through the air and
cools as it goes. In this section we think about the heat transfer processes and formation
of fibres and shot. In each calculation, we focus on determining order-of-magnitude
estimates, rather than solving models.

We show a schematic of the situation in Figure 11. We are interested in finding an
estimate for the radius, a, of the fibre and for the length, L, after which the fibre has
solidified. As seen in Section 5, the liquid leaves the wheel at speed vin ∼ ρω2Rh2/μ.
Providing the fibre remains liquid for long enough, conservation of mass implies that

ρω2Rh2

μ
πh2 = ωRπa2 i .e. a = h2

√
ρω

μ
≈ 1 × 10−6m, (29)
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Figure 11: Schematic showing the shot and fibre leaving wheel B

which is consistent with the observed fibre thickness.

A paradigm model for the temperature, T , in the fibre once it has formed is

ρcp

k

∂T

∂t
=

∂2T

∂z2
+

1

r

∂

∂r

(
r
∂T

∂r

)
, (30)

with

−k
∂T

∂r
= Eσ

(
T 4 − T 4

a

)
on r = a, (31)

∂T

∂r
= 0 on r = 0, (32)

T = Ts at z = L, (33)

T = T0 at z = 0, (34)

where ρ is the density, cp is the specific heat, k is the heat conductivity, E is the emissivity
of the surface, σ is the Stefan-Boltzmann constant, Ta is the air temperature, Ts is the
melting temperature and T0 is the temperature that the fibre leaves the wheel.

We nondimensionalise the system using

z = Lz′, r = a0r
′, t = τt′, T = TfT

′ a = a0a
′, (35)

where a0 is a typical fibre radius and Tf is the temperature of the fibre. The
nondimensional problem reads

Pe
∂T

∂t
= ε2 ∂2T

∂z2
+

1

r

∂

∂r

(
r
∂T

∂r

)
, (36)
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with

−∂T

∂r
= S

(
T 4 − T̄ 4

a

)
on r = a ,

∂T

∂r
= 0 on r = 0 , (37)

where Pe = ρcpa
2
0/kτ , ε = a0/L, T̄a = Ta/Tf , and S = EσT 3

f a0/k, where τ is to be
determined by balancing forces.

Firstly, we consider the timescale, τc, for transverse cooling, namely

τc =
ρcpa

2
0

k
. (38)

If we assume that fibres have radius 1μm and that shot have radius 0.1mm, the timescales
for cross-fibre and sphere cooling are

τc(fibre) = 4 × 10−7s, τc(shot) = 4 × 10−3s. (39)

As seen in Section 5, the fibres are flung off at a speed of 100 m s−1. Thus the distance
travelled by the fibre before its temperature is uniform across the fibre is of the order
of 50 μm. Similarly, we calculate that the distance travelled by the shot prior to the
temperature being uniform is 50 cm. We conclude that the molten fibre achieves uniform
temperature across its section very close to the wheel.

In order to gain an estimate for L, we need to know the sizes of Pe and S. For a 1μm
fibre, we calculate that S ≈ 8× 10−5, Pe ≈ 4× 10−7/τ and ε ≈ 10−6/L. We can relate τ
and L using τ ≈ L/U , where U ≈ 100 m s−1 is the velocity that the fluid is flung off, to
give that Pe/ε ≈ 40. Thus we find that we are operating in a regime where Pe = O(ε)
and S = O(ε). If we seek a power series expansion for the solution to (36) and (37), we
find at leading order that T = T0(z, t). At the next order in the equations and boundary
conditions, we find that

P dT0

dt
=

1

r

∂

∂r

(
r
∂T1

∂r

)
, (40)

with

−∂T1

∂r
= S (

T 4
0 − T̄ 4

f

)
on r = a , (41)

where P = Pe/ε and S = S/ε. We find that

a
dT0

dt
= −2

S
P

(
T 4

0 − T̄ 4
f

)
. (42)

Assuming that the temperature drop required to reach solidification is ΔT/Tf where
ΔT ≈ 400 K, we can estimate L by setting

ΔT

Tf

= 2
S
P , i .e. τ =

ρcpa0ΔT

2EσT 4
f

≈ 4 × 10−4 s , (43)
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and so

L = Uτ =
ρcpa0ΔTU

2EσT 4
f

≈ 4 cm. (44)

Thus, the fibre solidifies shortly after it leaves the wheel and the majority of the fibre
length is solid as it flies through the air. We can conclude that it is not possible to reduce
the volume of the shot during this stage of the process, since the solid fibre is unable to
draw any liquid out of the shot.

We note at this stage that, of course, our fibre radius changes as the fibre extends and
so our timescales are quite rough. A simulation of the fully coupled fluid flow and mass
transfer processes would be required to tie down the timescale more accurately.

Our final concern is whether the fibre will be coherent when it solidifies, or whether
a combination of inertial, surface tension and viscous forces can result in fibre rupture
before it solidifies. The equations governing the evolution of the fibre are

(a2)t +
(
a2u

)
z

= 0, (45)

ρa2 (ut + uuz) + γa2

(
1

a
− azz

)
z

= 3
(
μa2uz

)
z
, (46)

subject to boundary conditions

u = vin at z = 0, (47)

u = ωR at z = L, (48)

7 Thermal interaction of the melt with the wheel

The steel wheels on which the melt is deposited must withstand temperatures of up to
2200 K and are thus water cooled. This water cooling creates a layer of solidified melt
on the wheel. We now estimate the thickness of this layer, and consider its effect on the
spinning process.

We take the solidification temperature of the melt to be 1800 K, and so consider that
the melt forms solid and liquid layers on the wheel as illustrated in Figure 12. (The
solidification temperature may in fact be somewhat higher than this, but we shall use
this figure to illustrate the approach.) The solidified melt occupies a layer of thickness
lglass, and the liquid melt a layer of thickness h. The temperature of the surface of the
wheel is Ts, and we assume for the present that Ts ≈ 800 K.

When we apply the hot melt to the wheel the previously solidified material melts and the
solidification front xs(t) retreats from, and subsequently advances back into, the applied
liquid melt. If the melt remains on the wheel for too long it will completely solidify.
Equally drawing the liquid melt off into the fibres too quickly will take not only the
deposited melt, but also some of the remelted solid. If we assume that the system is in
equilibrium then the time taken for the instability to develop must balance the time t̂
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Figure 12: A diagram of the solidification of the melt onto the wheel.

taken for the layer h to cool from 2200 K to 1800 K by conduction through lglass, i.e. for
xs(t̂) ≈ xs(0). To be in equilibrium we thus require that

t̂ =
1

βmax

, (49)

where βmax is given by (27).

To estimate t̂ we consider the heat equation

ρcp
dT

dt
= −dq

dx
, (50)

where ρ is the density, cp the specific heat, T the temperature, and q is the outward heat
flux as given by

q = −k
dT

dx
. (51)

We see from (51) that the heat flux through lglass is O(1000k/lglass), and thus the time
taken for the fluid layer to cool by 400 K is

t̂ =
ρcp400hlglass

1000k
, (52)

which may be substituted into (49) to give an estimate for lglass. Taking ρ =
2.5 × 103 kg m−3, cp = 103 J kg−1 K−1, and k = 6 W m−1 K−1, with (from Section 5)
h = 2 × 10−5 m, and βmax = 400 s−1, we find that

lglass = 7.5 × 10−4 m. (53)

This is a very rough estimate for lglass depending on several ad hoc assumptions, most
notably that the temperature of the wheel surface Ts is equal to 800 K. To improve the
estimate we would require further information on the wheel cooling mechanism.
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To predict the position of the solidification front xs(t), and thus lglass, accurately we
must solve the heat equation in the wheel, in the solid phase, and in the fluid phase,
with appropriate boundary conditions applied at each interface. Suitable boundary
conditions would be that there is no heat flux across the liquid melt surface, and that
the temperature is continuous across the interfaces between the steel and solidified melt,
and between the solidified and liquid melt. Additionally we assume that the temperature
at the water cooled surface is fixed by the water temperature. The analysis is greatly
complicated as the interface between the solid and liquid phases is an unknown free
boundary xs(t). To complete the system and fix the free boundary xs(t) we must
further impose the Stefan condition [1], which relates the difference in the temperature
gradients on either side of xs(t) to the latent heat of the melt. The full calculation of
the temperature profiles and the position of xs(t) is thus a non-trivial calculation which
requires further physical parameter values.

8 Conclusions

We have studied each stage of the fiberisation process in enough detail to identify the
main governing parameters and constraints. These outline models agree with observed
values, lead to recommendations for making shot smaller, and suggest some bounds that
the operating values should be kept within. In particular the process has been broken
down into:

(1) Jet feed: Surface tension will always cause the jet to break up into droplets after
a certain distance, and we recommend that the drop height should be kept below
this distance, because jet break-up will cause splashing and droplet bouncing on
wheel A which will tend to produce more shot and less fibre.

(2) Speed-up on wheel A: We have studied the acceleration of the melt stream after
its contact with wheel A, and we recommend that the distance x over which the
layer reaches full speed should be kept below 0.1R.

(3) Flow onto wheel B: We have analysed the spray sheet onto wheel B, obtained
an estimate of the coating thickness, and analysed the centrifugally-driven surface
instability. This leads to predictions of the maximum shot size and typical fibre
size that are in good agreement with the observed values—but it does not predict
the shot:fibre ratio. This analysis also suggests ways of making shot smaller, either
by reducing the tap rate Qm, or increasing the linear velocity on the wheel ωR.
(Though of course, reducing Qm reduces the allowable stable drop height H, and
there are engineering constraints on wheel speed.)

(4) Fibre and droplet cooling: We have considered the cooling process when a
droplet and fibre leave the melt layer, and shown that the fibre will be solid by the
time it has separated by about 3 cm from the wheel.

(5) We have briefly considered the thermal interaction of the melt with the wheel, and
the thickness of the solid glass layer formed. This could be taken further given
more information about the construction of the drum.
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For the future we have suggested:

(1) Cold experiments: These can be easy and informative. In particular, suitable
cold experiments could be used to study

• the stable fall distance of the jet;

• the impact of the spray from wheel A onto wheel B (this would need high
speed photography of the cold experiment).

(2) A hot experiment, perhaps using molten sugar or candlewax, would be useful
to study the drawing of a solidifying fibre.

(3) Shot/fibre ratio: this is governed by the drawing, cooling and solidification
process, and needs further work, possibly through a PhD project.

A Stationary droplet in centrifugal force

With reference to Section 5, we are interested in the shape of a droplet on the surface
of a large cylinder of radius R, rotating with constant angular velocity ω, just before
the droplet breaks away from the surface, roughly as illustrated in Figure 13. This is

ω

h

A

z

f(z)

Figure 13: Diagram of liquid droplet in steady rotation on a large cylinder.

essentially the same problem as a droplet falling from a ceiling. While the droplet is
stationary, we have the equilibrium equation for the liquid inside the drop, balancing the
centrifugal force with the pressure gradient:

−ρω2r = −dP

dr
, R < r < R + h , (54)

where P (r) is pressure, and h is the height of the drop. Let z = r − R, so then

d

dz
P (z) = ρω2(z + R)

and

P (z) = p0 + ρω2

(
Rz +

z2

2

)
. (55)
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If we assume that there is a thin layer of liquid on the surface of cylinder to which the
droplet connects, as in Figure 13, then at the bottom of the droplet (z = 0) the pressure
is p0 = pa + γ/R, where pa is atmospheric pressure. We shall see later that this leads to
a difficulty, so we keep p0 general at present.

The jump of pressure across the surface of the droplet is therefore (p0 − pa) +
ρω2 (Rz + z2/2). This jump of pressure must be balanced by surface tension, thus

γ2H(z) = (p0 − pa) + ρω2

(
Rz +

z2

2

)
, 0 ≤ z ≤ h , (56)

where H(z) is the mean curvature of the surface of the droplet (that is, 2H = 1/R1+1/R2

where R1 and R2 are the principal radii of curvature). Thus

2H(z) =
p0 − pa

γ
+

(
ρω2

γ

)(
Rz +

z2

2

)
. (57)

This implies that the length scale L of the droplet is given by L2 = γ/(ρω2R) and for
our representative values this gives L ≈ 3× 10−5 m, so L/R ≈ 5× 10−4. Therefore when
we scale the droplet size with L, the cylinder appears approximately flat as far as the
droplet is concerned, and so we can then assume that the droplet is axisymmetric about
the axis Az in Figure 13.

If the profile of the droplet is given by a function f(z) as in Figure 13, its mean curvature
is given by 2H = −f ′′/(1 + f ′2)3/2 + 1/(f

√
1 + f ′2). If we rescale all distances with L

(so h/L, z/L, R/L are now called h, z, R) then we have

−f ′′

(1 + f ′2)3/2
+

1

f
√

1 + f ′2 = c + z +
z2

2R
, (58)

where c = L(p0 − pa)/γ. Really, it is inconsistent to retain the last term on the right
of this equation, since we are assuming R 	 1: if we wished to work accurately to
terms of order 1/R then we should assume a general droplet shape (which cannot be
axisymmetric about Az) and there would be terms of order 1/R in the expression for
the curvature that would have to be included. Nevertheless, the term z2/(2R) has been
retained in the calculations presented below.

At the top of the droplet we have f(h) = 0. Very close to the top, the surface is
approximately a sphere, and thus near the top

f(z) ≈ λ
√

h − z , λ(h) =

√
4R

Rc + Rh + h2/2
. (59)

Let s = h − z, and let y(s) = f(h − z). Then
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−y′′

(1 + y′2)3/2
+

1

y
√

1 + y′2 = c + (h − s) +
(h − s)2

2R
, (60)

with initial data near the top of the droplet given by

y(ε) = λ(h)
√

ε , y′(ε) = λ(h)
1

2
√

ε
. (61)

A solution of (60) and (61) exists up to a certain value smax > ε. For the drop of height
h to exist, we should have smax ≥ h. If smax < h, there is no solution of this height
which ends with a top, which means that either the droplet breaks off, or there is a jet
forming. We do not investigate here the jet solution, which is more complicated and will
involve finding velocities and pressure of the liquid.
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Figure 14: A plot of y(s) against s with (a) h = 2, (b) h = 4, (c)
h = 5, (d) h = 8.

Solving the ODE numerically in Mathematica with c = 1/R for R = 2000, and
h = 2, 4, 5, 8 (everything in units of L) provides the results shown in Figure 14. This
computation suggests that for h of order 10, the solution, which starts as a sphere, blows
up before reaching s = h. Also the solutions for h = 4 and 5 show places where y′(s) = 0
(for instance at sc ≈ 1). A droplet with this shape cannot be stable, because if the profile
is stretched in the s-direction by a small amount near sc, with consequent thinning there,
then the surface tension force across the plane s = sc will no longer be enough to hold the
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region s < sc against the centrifugal force. A further point to note is that the solution
for h = 2 does not in fact connect smoothly to a thin layer of liquid on the surface of the
cylinder at s = h in the way we supposed. It can in fact be shown that the assumption
of this connection (p0 = pa + γ/R or in dimensionless form c = 1/R) is not consistent.
Further work along these lines would therefore have to drop that assumption and use
values of c < 1/R.
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