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1 Introduction
The problems brought to the Study Group by Courtaulds Coatings concern the
electrostatic deposition of powder paints onto an earthed metal workpiece. The
process involves charging the paint particles as they pass through a 'gun'; they then
travel towards the workpiece under the influence of aerodynamic and electrostatic
forces. At present two types of gun are used, these are:

• the Corona gun in which particles are forced past a high voltage electrode
which ionises the surrounding air and hence particles are charged by collecting
ions (Paulthier Charging).

• the Tribo gun in which particles are charged in an earthed gun directly by
friction.

The main differences between these two types of gun are:

• when using a corona gun the electric field is set up not only by the space-charge
but also by the applied potential difference between the gun and workpiece.

• free ions constitute 99% of the charge in a corona system, whilst no free ions
are present when using a tribo gun.

As the corona gun involves many more complicated physical processes, it is the tribo
gun, with a single species of particle, which is considered in this report.

The main questions asked by Courtaulds were

• What factors affect deposition efficiency?

• How is deposition efficiency maximised?

The following report is organised into three main sections. Firstly, a tribo gun
model is presented and non-dimensionalised, revealing that electrostatic and aero-
dynamic forces are in balance, whilst particle inertia and gravity may be neglected
for the system in question. Then, a one-dimensional model is considered which gives
vital information about the orders of magnitude of relevant quantities at the work-
piece and the effect of charge saturation. Finally, a model is proposed for a narrow
'jet' of particles impinging on an earthed workpiece and it it shown that geometry
is by far the most important factor affecting deposition efficiency.
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2 A Tribo Gun Model
The motion of paint particles through the air, between the gun and workpiece, is
now considered. The forces acting on the particles are the electric forces, the Stokes
drag and gravity. It is assumed that the particles are small and spherical with mass
m, radius a and charge q. Further, it is assumed that a continuum approach can
be used to describe a dilute cloud of particles (although a particle model was also
considered during the study group). A simple force balance then gives

dv
m dt = -k(v-vg)+qE+mg,

where v is velocity of the powder cloud, Vg is the carrier gas velocity, t is time, q is
the charge of a single particle, E is the electric field and 9 is the gravitational field.
On the basis of the data given in Section (2.1) the appropriate Reynolds number
for a particle is less than 1, thus justifying the use of the Stokes drag assumption
k = 67r1]ga, where 1]g is the dynamic viscosity of the carrier gas. It is also required
that the number of particles is conserved and so the mass equation is

anat +v .(nv) = 0, (1)

where n is the particle concentration. The Poisson equation for the electric field
which is generated by the space-charge gives

V· (foE) = qn, (2)

where fO is the permittivity of air. The magnetic field may be neglected, and
Maxwell's equations imply that there exists a potential 4>such that

E = -V4>.
Finally, Euler's equations for the inviscid (the Reynolds number based on the work-
piece is lengthscale is 105), incompressible air flow are

dv
p dt =-Vp+nk(v-vg)+pg,

V· Vg = 0,

where p is the air density. These equations are to be solved in a region of size Lo in
which the particles have an observed velocity of O(vo) and residence time o (to ).

2.1 Scalings and Nondimensionalisation
The following data is used to nondimensionalise the above model,

a r- 1O-5m, m'" 1O-12kg, s> 1O-15C, k »- 1O-9kgs-1,

p'" lkgm-3
, g'" 10ms-2

, fo'" 10-11 As(Vmtl,
l:cl '" Lo '" 1m, t", io r- Is, Ivl "" vo '" Ims-1, Ivgl '" vo,

n '" no '" 109m-3, IEI "" qnoLo/fo '" 105Vm-1, 4>'" qnoL6/fo '" 105V.
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The scaling for the electric field is so chosen because it is generated solely by the
space-charge as opposed to any applied potential difference. Scaling all quantities
with these values gives the following nondimensional model:

(~) dv = -(v _ Vg) + (q2noLo)E + (mg),
kto dt kVOfO kvo

Lo an
(-)-8 + V . (nv) = 0,
voto t

V·E=n,
dv g _ V (knoto) ( ) ( tog )--- p+ --nv-v +-,dt p g Vo

V,vg = 0,

where the dimensionless constants have the typical values,

m "" 10-3, B == q
2n

oLo "" 1, mg "" 10-2,
kto kVOfO kvo

A == Lo "" 1, knoto < 1, tog '" 10.
voto P Vo

In this expression the constant B expresses the ratio of electrostatic to aerodynamic
forces. Hence, since B "" 1, it is clear that these forces are in balance whilst the
particle inertia and gravity may be neglected. Also, the momentum imparted to the
air by the particles (the so called ion wind, see Cross (1987)) will be neglected to
first order. In view of the size of knoto/ p, this is not a good approximation, but it
does allow for an enormous simplification and provides the first step in a possible
iterative procedure. Thus finally, the non-dimensional model becomes, to leading
order,

V = Vg + BE,
an

A at + V . (nv) = 0,

V·E=n,

(3)

(4)

where Vg (Ivgl '" 1) is assumed to be known and satisfy V . Vg = O.

2.2 Boundary Conditions
The tribo gun and workpiece are both earthed. However, it is important to note also
that although the charged particles adhere to the workpiece and 'shield' it as the
layer builds up, the potential difference across the layer is of the order qn1h2 / fO '"

103V, where ni "" 1015m-3 is the particle concentration in the layer and h "" 1O-4m
is a typical layer thickness. This calculation results from solving Equation (2) in
the layer. Hence, it becomes clear that the potential difference across the layer is
negligible in comparison to the potential in the powder cloud and so the boundary
potential is taken to have the constant value O.
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Another boundary condition is needed in order to close the system. The most
natural one is to specify n at the gun, although there are other equally convincing
candidates (such as specifying E at the gun). However, the dimensionless value of n
is typically of the order n '" 103 near the gun, since every second 1O-3kg of particles
are passing through the gun nozzle (of cross-sectional area 10-4m2) at a velocity
10ms-1. It will be shown in Section (3.1) that, to leading order, we can take this
boundary condition as n = 00 (the saturated limit).

3 Preliminaries

3.1 Integration Along Particle Paths
Since the air flow is incompressible (i.e.V. Vg = 0), we have

V .V = BV . E = Bn.

Hence,

V . Vn = -nV· V = -Bn2, (5)
or equivalently,

V • V(l/n) = B.
This equation has far-reaching consequences, namely that

1) l/n(s) = l/n(s = 0) + B(t - to) along particle paths, s being arc length and
t - to the time of the particle motion.

2) n decreases along particle paths.
From 1) we see that as n( s = 0) increases, the value of n( s) approaches a well

defined (saturated) limit which is given when n(O) = 00. This is due to the formation
of a space-charge cloud close to the gun. For small n(O) the value of n(s) (and hence
the number of particles close to the workpiece) increases as n(O) increases. However
for larger values of n(O), the value of n( s) saturates and the efficiency of the process
is not improved by increasing n(O). For the problem considered saturation occurs
at about n(O) = O.

In particular, the one-dimensional case reduces to

v = 1 + BE, (nv)y = 0, Ey = n,

where we recall the dimensional air velocity is taken to be vG, the gun is at y = 1
and the workpiece is at y = 0 (see figure 4.1 for the coordinate definition). For the
saturated problem appropriate boundary and integral conditions are

11 Edx = 0, n(y = 1) = 00.

This system has the solution

E = (-2+3~)/2B,

n = 3/4B~. (6)
This gives n(y = 0) = 3/4B. This value is used as data in Section (4).
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3.2 Potential Air Flow
If it is now further assumed that the air flow is also irrotational, so that the air flow
has a scalar potential, say Vg = V<1> where <1>is known, then by defining n = 4> + <1>,
the above model results in the familiar space-charge equation for n,

v . (Vn~n) = 0,

with boundary conditions which depend on <1>.There is an extensive literature
concerning the solution of this equation and hence this system can be solved (at least
numerically) as long as <1>is known (see Budd and Wheeler (1988) (1991) and Hare
and Hill (1991)). In particular it would be desirable to analyse a two-dimensional
needle plane geometry with a superimposed stagnation air flow.

4 Particle Deposition Efficiency
The problem of a two-dimensional inviscid 'jet' impinging on an infinite flat plate has
been considered by Milne-Thomson (1968, p.291). At the centre of the workpiece
the one-dimensional solution (6) can be used to describe the deposition. Hence, in
this section the region far from the jet, typically at a distance aLa (where a '" 1),
where particles flow in a thin layer will be considered (see figures 4.1 and 4.2).

As typical jets have width 20Lo '" 20cm (0 « 1), it is clear by mass conservation
that the thin layer will have width 8La. It is assumed that in the thin layer the air
velocity is parallel to the work piece and has constant value Vo (outside a narrower
viscous boundary layer of width Lo/ Re!{; rv 1cm). If we now scale y '" 8 in the
layer, then by (4) we must also scale E '" 0 (and so 4> '" (52). Hence, Equations
(3)-( 4)are reduced, to leading order, to

v = BE, u = 1,
o(nu) + o(nv) =0,

ox ay
Ey =n,

where E is the component of E perpendicular to the workpiece and v = (u, vf.
Thus equivalently, we have

Integration then yields

Ex + BEEy = f(x), (7)

where f( x) is an arbitrary function determined by consideration of the far field
behaviour. If we now consider the outer problem in the region above the line y = 8
in figure 4.2, then continuity of 4> gives that 4> '" 82 outside the layer. ..Hence, by
solving ~4> = 0 in the outer region with boundary conditions 4> "" 82 it becomes
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clear that E '" 82 also. Thus E = 0 is the appropriate matching condition on y = 1,
giving f = o. It now becomes apparent that the device is working efficiently as the
advection and electric field terms in Equation (7) are in balance. That is, particles
spread over the whole of the workpiece.

Now Ey = n, and hence using Equation (6), on y = 0 in the layer,

Ey = n ::: 3/4B,

or equivalently,

E = 3(y - 1)/4B. (8)

Clearly, this is not the correct boundary data for the problem and strictly we should
match with the fully two-dimensional region where the jet hits the workpiece. How-
ever, this is not a straightforward problem and will have to be done numerically,
when times permits. Thus, using (8), the solution is

E = vt B(x + 4/3).

Now, efficiency T is defined to be the proportion of particles deposited compared to
the number of particles arriving at the centre of the workpiece. That is,

T = N(x = 0) - N(x = a) ,
N(x = 0)

where N(x) = I~n(x, y)dy is the integrated concentration of particles contained in
the section of the layer at x. However,

N(x) = la1
Ey(x, y)dy = E(x,O),

and so

T = Ho .
Ho + 4Lo/3

(9)

Hence finally, this yields the key result that more particles are deposited if the gun
is held closer to the work piece. However deposition efficiency can only be weakly
dependent on other factors such as particle size, flow rate etc, as these terms do not
even enter into the lowest order formula (9).

5 Discussion

5.1 Turbulence

In this report, viscous effects have been neglected completely. However, it should
be noted that there are two regions in which turbulence plays a major role, namely
in the shear layers at the nozzle of the gun and at the edges of the workpiece. In
fact, some authors (see Hughes (1984)) claim that turbulence is as important as
electrostatic effects for achieving good 'wrap-around' deposition.
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5.2 Coating Recesses
For a convex geometry, the electrostatic force assists with particle movement and
deposition. However, the situation is reversed when coating recesses, as most electric
field lines terminate outside the recess (see Figure 5.1) resulting in minimal pene-
tration of particles to the inside surfaces of the workpiece. This is commonly known
as the Faraday Cage effect. For this reason, tribo guns are generally more efficient
at coating recesses than corona guns, which have a large electric field generated
by the potential difference between the gun and workpiece superimposed onto the
space-charge field.

It is clear that the only way to coat recesses is to use aerodynamic forces. Once
sufficiently far into recesses particles will be attracted to the workpiece by the elec-
trostatic force. As the only possible air flow in a recess (if the particles are not to
be blown off the workpiece) is a recirculating cell (see Figure 5.2), this clearly limits
the aspect ratio of recesses which can be coated.

5.3 Suggestions
The most obvious suggestion to improve deposition efficiency is to hold the gun
closer to the workpiece, although clearly there is a point when the jet starts to
actually blow the particles off the workpiece. Also, it is pointless feeding so many
particles into the system as it does not significantly increase the number of particles
at the workpiece but does increase the number of particles in the space-charge cloud.
Finally, it is generally felt that charging the booth with the same polarity as the
particles would increase deposition efficiency, as particles would remain airborne for
longer. However, this would most certainly be detrimental when coating recesses.
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