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Executive Summary

Core samples from rock formations respond to electromagnetic radiation
based on an effective permittivity, which depends on the conductivity
and permittivity of the constituent components of the rock, as well as
the geometric structure of these constituents and the frequency of the
radiation. This study analyzes the effect, for radiation of 1 to 100 Mhz,
of discrete inclusions having a different permittivity from the surround-
ing medium. The focus is on the effect of certain geometric features,
namely, the individual size of the inclusions, their overall volume frac-
tion, the presence of sharp edges, and their aspect ratio.

It is found that the volume fraction has the strongest impact on the
effective permittivity, linear at first but higher order at higher volume
fractions. The aspect ratio of the inclusions has a moderate effect, which
is exaggerated in the extreme case of needle-like inclusions, and which
can also be seen in a stronger nonlinearity. There is also a possibility that
some features in the shape of the inclusion boundaries may influence the
frequency dependence of the effective permittivity. Inclusion size and
sharp edges have negligible effect.
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1 Introduction

The proposed problems aim to enhance our understanding of the relationship be-
tween the polarized high frequency electromagnetic wave and the texture of the rock.
The texture means here the size and the shape of pores and particles dispersed in
the heterogeneous medium. These inclusions may have spherical, elliptical and/or
rhombic shapes; and may be represented by different size scales. The interaction of
the inclusions that may generate a secondary effect on the polarization outside the
inclusion will be investigated as well. The frequency range of interest here is from
1 to 100 MHz.

Therefore, the purpose of the problems that we will be discussing in the Study
Group is to understand how the high frequency EM waves behave with respect to the
rhombic shape with sharp edges and the needle effect of very long, narrow inclusions,
and also to determine if there is any inclusion size effect and any secondary effect
due to the coupling of polarization between inclusions.

2 Background

2.1 Maxwell’s Equations

Maxwell’s equations to describe the EM phenomenon are expressed in differential
form in Equation (1). The first equation represents Faraday’s law. The second
equation is Ampere’s law where we see the introduction of the displacement current.
The third and fourth equations represent Gauss’ law for the electric and magnetic
fields where the divergence of the electric displacement is equal to the charge density
ρe, and the divergence of the magnetic flux is zero.

∇×E(r, t) = −∂B(r, t)

∂t

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
∇ ·D(r, t) = ρe(r)
∇ ·B(r, t) = 0

(1)

2.2 Constitutive Equations

The electric displacement and the magnetic induction D and B are related to the
field intensities E and H via constitutive relations, where the form depends on the
material in which the fields exist. In these constitutive relations, we assume that the
medium is homogeneous and isotropic. ε̂r and µr are respectively the permittivity
and the permeability of the formation.

D(r, t) = ε0ε̂r(r, t)E(r, t)
B(r, t) = µ0µrH(r, t)
J(r, t) = σ̂(r, t)E(r, t)

(2)
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Figure 1: Two phase system with four inclusion shapes of complex permittivity ε̂p dispersed in
the background medium of complex permittivity ε̂a.

The third equation represents here, Ohm’s law to express the relationship be-
tween the electric current and the electric field through the conductivity property
σ̂ of the formation.

The constitutive equations of Equation (2) are defined in an homogeneous and
isotropic medium. However, in the inhomogeneous and anisotropic formation, there
is another term to be added to represent the induced polarization of the formation
as we can see in Equation (3) below.

D(r, t) = ε0ε̂a(r, t)E(r, t) + P (ε̂p) (3)

In other words, the presence of the inclusion with different material properties
from the background medium generates a new polarization term for the induced
electric field. This polarization is a function of the inclusion’s shape as well as its
material type. The size may also have an effect.

At the frequencies of intrest (1 to 100 Mhz), the wavelength is much longer than
size of typical inclusions, in the sequel we treat the external field as uniform. We
also treat it as static, except for a brief discussion of response times in Section 3.1.

3 Study Group Results

3.1 Inclusion size effect on the polarized high frequency EM
wave

In this section, we will investigate the effect of inclusion size on the polarized electric
field. Through the Study Group discussion, we concluded that the size of the iso-
lated inclusions may not have an effect on the polarizability of the overall medium.
Rather, the total volume fraction of the inclusions represents the dominant effect.
More details are provided in the sections below.
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Conducting (brine-filled) cavity in a uniform external field

The brine contains a free charge density ρ of positive ions, and likewise for negative
ions, see Figure 2. When a uniform external field is applied, the positive ions shift
with the field, until a layer of some thickness x0 has accumulated at the boundary
to form a surface charge density ρs. Negative ions shift likewise to the opposite side
(not shown).

Figure 2: Conducting cavity in uniform external field

Static case

Solution of Laplace’s equation gives the electric potential as well as the surface
charge density. For a spherical cavity of radius a, this is

ρs = 3ε0E0 cos θ. (4)

This is independent of the cavity radius, so the total surface charge q on the
positive side is simply proportional to the surface area. The dipole moment d of the
cavity is proportional to the product of q with the separation between the positive
and negative sides, which is proportional to a. This leads to the dipole moment d
being proportional to the volume V ,

d ∝ qa ∝ a3 ∝ V. (5)

For the sphere, it can be shown that the constant of proportionality is 3ε0E0. For
other geometries this will vary, but the dependence on (surface charge) × (charge
separation) will persist, so the dipole will always be proportional to `3, where ` is
some characteristic length of the cavity. That is, the dipole moment will always
be proportional to the cavity volume (unless the shape produces some extreme
relationship between surface area and volume).

For a collection of such cavities in a solid, the total dipole moment produced
will be the sum of the individuals (if they are sparse enough to have negligible
interaction), so the dipole moment density will be proportional to the amount of
cavity volume per unit total volume, i.e., the volume fraction of cavities.
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The total induced dipole moment density depends on the external electric field,
but if we factor that out we get the polarizability, which determines the electric
permittivity ε of the medium. The cavities therefore contribute to ε, and their
contribution depends on their volume fraction, but not on their individual size, and
only weakly on their shape.

Time/frequency dependence

When an external field is applied and the ions begin to shift, it takes some time for
the surface charge to build up and bring the system to a new equilibrium. We refer
to this as the relaxation time.

An estimate of this relaxation time is calculated (See Appendix A for details),
and we find that the charges drift toward their new equilibrium positions at a rate
that decays exponentially,

x = x0e
−t/τ , (6)

with relaxation time
τ = γ

ε0
µρ
, (7)

where ρ is the ionic charge density in the brine, µ is the ionic mobility, and γ
is a dimensionless factor related to how the geometry of the shape influences the
final (equilibrium) surface charge density. For shapes that do not have extreme
geometries, γ ∼ 1. Putting in some typical numbers we find τ ∼ 10−9s, just about
on the order of the period of the highest frequency waves of interest in this study.
(Note, though, that these figures are quite rough, and a factor of 10 or more might
easily show up in a more accurate calculation). This means that we may be able to
expect a significant drop in the effective permittivity toward the higher end of our
range, but it will depend only on the volume fraction.

The one thing we might hope for is that the relaxation dynamics could be af-
fected by complicated structure in the cavity boundaries, which might significantly
change the value of the geometric factor γ. Specifically, the approach to equilib-
rium is not uniform, but position dependent, and γ should actually have position
dependence, being affected by the charge density in the surface nearby. Therefore,
in areas with for example sharp corners or heavy reticulation, γ may be larger, and
this could increase the average (effective) τ for the whole cavity. This would in turn
reduce the frequency at which the permittivity begins to drop. More calculation is
required to explore this.

3.2 Secondary Effect: Interaction effect between inclusions

The secondary effect was demonstrated numerically. Figure 3 shows the effective
permittivity of the medium in which we insert different inclusion shapes. Each
cell/domain containing an inclusion type is surrounded by similar cells, so that a
periodic medium is formed. As can be seen, the effective permittivity response
curves depend linearly on the volume fraction of the inclusion (volume fraction =
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Figure 3: The secondary effect due to the interaction between inclusions is represented by the
curvature of the effective permittivity responses.

volume of inclusion / volume of periodic cell). However the curves are not strictly
linear, for as the inclusions fill more and more of their cells, the distortion each
induces in the external field begins to overlap with inclusions in neighboring cells.
The tangent of the curves (in black color) represents the response of the isolated
inclusion. The curvature seen in the plotted responses indicates the effect of the
interaction between inclusions, the so called secondary effect.

3.3 Sharp Edge Effect of Rhombic Inclusion

The purpose of this proposed problem is to investigate the effect of an inclusion
with sharp edges, such as a rhombic shape, and to characterize the needle effect.

Numerical simulations have been performed to investigate this problem using
the finite difference method. The electric potential field, in a periodic medium,
satisfies the equation: ∇ · [ε(x)∇φ] = 0. We only consider the real part of complex
permittivity in this study. The background domain has a real permittivity ε̂1. The
inclusion is represented by a higher permittivity ε̂2. The map of the potential field
calculated in a periodic cell with a square shape inclusion is shown in Figure 4.

The effective permittivity of the system is computed and plotted versus the
volume fraction (volume fraction = volume of inclusion / volume of periodic cell).
The results of effective permittivity of the medium versus the volume fraction for
the circle, square, diamond and ellipsoidal inclusions are displayed in Figure 5.

As shown, the effective permittivity linearly depends on the volume fraction of
the inclusion. In addition, at a given volume fraction, the effective permittivities
have almost the same response for the circle and the inclusions with sharp edges
such as the diamond and square. This means that there is no sharp edge effect and
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Figure 4: The computed potential field in a periodic cell with a square inclusion

Figure 5: Comparison of the effective permittivity responses of periodic cells with different
inclusion shapes. The effective permittivity of the background and the inclusion are, respectively,
ε1 = 1 and ε2 = 5. Four inclusion shapes have been selected: circle, diamond, square and ellipsoids
(with two aspect ratios r).
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the singularity effect is neutralized in the polarization from such shapes. However,
there is clearly an effect due to the aspect ratio of ellipsoidal inclusions, compared
with sharp edge and circle inclusions. A higher aspect ratio generates a higher
permittivity for a given volume fraction, as well as stronger second order effects.

3.4 Needle Effect: Slender Body Theory

In this section, the effective permittivity of a cell domain with an extremely elon-
gated ellipsoid, which may exhibit a needle effect, will be expressed analytically.
The slender body theory will be applied to express the electric potential and the
polarization outside the inclusion. The transverse polarization outside the inclusion
is neglected here and we only focus on the longitudinal one. A schematic repre-
sentation of the ellipsoidal inclusion is shown in Figure 6 (the actual aspect ratio
would be much greater). We show below the results for the electric potential and
the effective permittivity in this section. (See Appendix B for details.)

Figure 6: Elongated ellipsoid of permittivity ε2

The electric potential outside the inclusion is:

φ = E∞z cos θ − 1

4πε1

∫ L

−L

q(z′)dz′√
r2 + (z − z′)2

(8)

In the case of an ellipsoidal inclusion it can be shown that the potential inside
the inclusion is linear and axial, given by:

φ(z) = Ez (9)

where E is a uniform electric field.
After the coupled inside-outside problem is solved, the resulting effective per-

mittivity for a composite with a number density n of inclusions orientated randomly
is expressed by

ε∗ = ε1

1 +
4π

9
nL3 α2

ε1
ε2

+
(

ln 1
α

+O(1)
)
α2

 (10)
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where L is the length of the ellipse’s long semi-axis, and α is the aspect ratio.
While this was derived for an isolated slender body requiring nL3 � 1 (fibers

separated by more than L), the formula can be used for nL3 = O(1) by replacing

ln 1
α

by ln
fiber separation
fiber diameter

.

3.5 Effective Medium/Homogenization Theory

A homogenization study has been done for a periodic medium. An analytical ex-
pression of the periodic medium ε1 with an inclusion ε2 has been formulated in 1D.
In 2D, a computational solution is required for most inclusion shapes.

4 Conclusion

It has been found that the volume fraction has the strongest impact on
the effective permittivity, linear at first but higher order at higher volume
fractions. The aspect ratio of the inclusions has a moderate effect, which
is exaggerated in the extreme case of needle-like inclusions, and which
can also be seen in a stronger nonlinearity. There is also a possibility that
some features in the shape of the inclusion boundaries may influence the
frequency dependence of the effective permittivity. Inclusion size and
sharp edges have negligible effect.
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Appendices

A Relaxation time for brine-filled cavity in uni-

form field

The inner boundary of the accumulation layer is represented by x in Figure A,
with initial distance x0. Under the influence of an electric field E it will move with
the speed of the ions,

ẋ = −µE, x(0) = x0, (11)

where µ is the ionic mobility, a factor which determines the drift speed of the ions
in the field. All quantities here are scalar magnitudes, and the negative sign is
because x is decreasing as it approaches the cavity boundary. (Remark: we believe
that when E changes, the drift speed follows it with no significant delay, so we
ignore the time it takes to accelerate.)

Now E is the sum of the external field E0, which we take to be a step function,
and the induced polarization field Ep inside the cavity, E(t) = E0 + Ep(t), t > 0.
Furthermore, Ep is proportional to the amount of surface charge accumulated on
the boundary. If the external field is applied as a step function, then Ep starts
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at zero and reaches its maximum when the surface charge ρs has reached its final
(equilibrium) value ρsf , at which point Ep must be equal and opposite E0,

Ep(t) = −ρs(t)
ρsf

E0 =⇒ E(t) = E0

(
1− ρs(t)

ρsf

)
. (12)

The surface charge density is simply equal to the interior volume charge density
times the amount of thickness that has already accumulated, ρs(t) = ρ[x0 − x(t)],
but ρx0 just represents the surface charge density after the whole accumulation
layer has accumulated, which is ρsf . (Remark: there should actually be an angular
factor in the expression for ρs(t), but we’ll ignore that for simplicity). Therefore,
ρs(t) = ρsf − ρx(t), so that

E(t) = E0
ρ

ρsf
x(t). (13)

Substituting this back into the equation for ẋ we find

ẋ = −µE0
ρ

ρsf
x, (14)

with solution
x = x0e

−t/τ , τ =
ρsf
µE0ρ

. (15)

For a sphere we have ρsf = 3ε0E0cosθ. More generally, it will be γε0E0, where
γ is some dimensionless proportionality factor of order unity that depends on the
specific geometry. Thus, for simple shapes,

τ = γ
ε0
µρ
, γ ∼ 1. (16)

This depends only on the geometry and the ionic charge density and mobility, so
the relaxation time will not be influenced by cavity size.

If the salt concentration is 50kppm, in water having 3.3 × 1022 mlc/cm3, then
the charge density for doubly ionized ions is

ρ =
5× 104

106
× 3.3× 1022 mlc

cm3
× 2× 1.6× 10−19

C

mlc
= 5.2× 102 C

cm3
. (17)

A rough value for the ionic mobility of doubly ionized sodium ions in water is
(Plawsky 2010, p. 111)

µ = 2× 5× 10−4
cm2

V-s
. (18)

With ε0 ≈ 10−9 C
V-cm

, this leads to

τ ≈
10−9 C

V-cm

5× 10−4 cm
2

V-s
× 5× 102 C

cm3

= 4× 10−9s. (19)
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Figure 7: Slender body of permittivity ε2

B Needle effect – Slender body theory

In this section, we describe the slender body theory to calculate the effective per-
mittivity of a medium

The applied field is not perpendicular to the axis. The electric potential satisfies
∇ · [ε(x)∇φ] = 0 and φ

r→∞−−−→ E∞ · x assuming that the field is not perpendicular
to the axis.
Integral representation of potential outside the inclusion:

φ = E∞ · x−
∫ L

−L

q(z′)dz′

4πε1
√
r2 + (z − z′)2

(20)

Evaluate φ on boundary, φ(R(z), z). Singular integral, logarithmic case where main
contribution comes from R << |z − z′| << L,

φ(R(z), z) = E∞ cos(θ)z − 1

2πε1
q(z)

[
ln
L

R
+O(1)

]
(21)

Inside body have axial field:

ε2
dφ

dz
(22)

The flux inside the ellipsoid is:

Q(z) = πR2(z)ε2
dφ

dz
(23)

Divergence of flux inside equals flux/source into outside

q − ε1
dφ

dz

dR

dz
2πR = −dQ

dz
(24)

Hence coupled inside-outside problem

φ(z) = E∞ cos(θ)z −
ln L

R
+O(1)

2πε1

[
ε1
dφ

dz

d

dz
(πR2)− d

dz

(
πR2ε2

dφ

dz

)]
(25)
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[N.B. case ε1 = ε2 has solution φ(z) = E∞ cos(θ)z, q = 0]
Now interested in case with |ε2| � |ε1|, (mod sign because might be complex)

φ(z) = E∞ cos(θ)z +
ln L

R
+O(1)

2

ε2
ε1

d

dz

(
R2dφ

dz

)
(26)

See ε2 has very little effect unless very big,

ε2 = O

(
ε1
L2

R2

ln L
R

)
(27)

The case of an ellipse is simple to solve

R2

b2
+
z2

L2
= 1, i.e., R2(z) = b2

(
1− z2

L2

)
(28)

because clearly satisfied by uniform internal field E

φ = Ez, (29)

Ez = E∞ cos(θ)z +
ln L

R
+O(1)

2

ε2
ε1
− 2b2

L2
zE (30)

i.e.,

E =
E∞ cos(θ)

1 +
(
ln L

R
+O(1)

)
ε2b2

ε1L2

(31)

[Also can calculate O(1) terms for ellipse and find ln L2−z2
R2(z)

= ln L2

b2
.]

The effective modulus for a composite/dispersion with number density n of in-
clusions (number of inclusions per unit volume), and arbitrary orientation (〈cos θ〉 =
1/3), is

ε∗ = ε1 −
n

3

∫ L

−L
zq(z)dz

= ε1

[
1 + nL34π

9

ε2b
2

ε1L2

E

E∞

]
= ε1

[
1 +

4π

9
nL3 α2

ε1
ε2

+
(
ln 1

α
+O(1)

)
α2

]
(32)

where α ≡ b
L
≈ R

L
(the aspect ratio of the inclusion).
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