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Abstract

Wind farms produce a variable power output depending on the wind speed. For
management of power networks and for bidding for the supply of power, the future
power available needs to be predicted for time intervals ahead of a few minutes to
about 24 hours.

This project used data from a wind farm and three meteorological stations to
determine methods and ability to predict wind speed. Analyses using regression,
neural networks, and a Kalman filter were examined. Prediction using a combina-
tion of local wind measurements and meteorological data appears to give the best
results.

1. Introduction

Electrical power as such is not stored and hence generation must
match demand. Chemical or hydraulic energy storage and regenera-
tion is possible on a medium scale, but is inefficient and difficult on the
scale of a national grid. Wind power generation (and solar power) dif-
fers from most other large scale power generation in that the amount
of energy available is set by natural conditions rather than being under
manual control. This makes balancing supply and demand more difficult
particularly when, as is expected in the future, a large proportion of the
grid power is coming from such sources.

When wind power is used it is necessary to predict the amount of
power that will be available for future periods from five minutes up to
a day for both balancing load and for bidding for the supply of power.
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Wind power has minimal undesirable environmental effects and is ex-
pected to become of increasing importance. However it has been found
to be particularly variable and difficult to predict. Variations in wind
speed occur in the time scale of minutes due to local turbulence, up
to several days for typical meteorological structures, and at a scale of
months for seasonal variations.

The amount of power available from wind varies considerably with
wind speed. For low wind speeds the power available is related to the
cube of the wind speed (the energy is proportional to velocity squared
times the mass, and the available mass is proportional to wind speed
giving the cubic relation). Intermediate wind speeds give constant power
at the design rating of the generator, and high wind speeds require the
shut down of the generator for safety reasons and hence zero power is
generated.

Small amounts of wind power are absorbed into the normal variations
in demand. However as the proportion of wind power on a network in-
creases it becomes the major source of non systematic variation on the
power network. This then requires both good prediction of the amount
of power that will be generated and sufficient means to provide an al-
ternative variable amount of power to compensate for the variations in
wind power.

Load balancing (of electrical supply versus demand) is done on a five
or ten minute basis with the allocation of generation units being done
two hours ahead. Bids for the supply of power at a given price are
initially made 24 hours ahead and become final two hours ahead. In the
cases of wind power it is difficult to predict the amount of power that
will be available and hence be able to make firm bids for supply.

This project aimed to examine the prediction of the amount of power
available from a wind generations installation over the time scales of
interest for load balancing and bidding for supply. As there is a direct
relation between the wind speed and the power generated and details of
the available on power generation did not include individual turbines or
the number of turbines operating, the main emphasis was placed on the
prediction of wind speed.

There are three methods available for wind speed prediction. The
first uses past wind speed data taken at the site to estimate future wind
speeds. This data includes speeds measured right up to the time the
prediction is made. The second uses meteorological forecasts made from
data collected at a range of widely separated sites. This data is used as
the basis for a fluid dynamic simulation to predict future weather includ-
ing wind velocities. A third method is to use measurements taken up
wind of the generators (hence in several different directions) to provide



estimates of wind changes in advance of the change. No suitable data
was available to investigate this third method so this report concentrates
on the first two methods.

The Tararua wind farm supplied data on wind speed and power gener-
ation from their wind farm site. The industry sponsor, Transpower, ar-
ranged for forecast data from three sites (Masterton, Palmerston North,
and Wellington) to be made available for the MISG.

There is a considerable literature on the forecasting of wind speed,
most of which reports small improvements (typically 5% to 20%) over
the simple persistence method (i.e. the future wind speed is predicted
to be the current wind speed!). The European project ANEMOS has
produced a recent and comprehensive report on the state of the art
in short term prediction of wind power (Giebel 2003). This and the
references therein provides an excellent introduction to forecasting wind
speed.

2. Regression analysis of meteorological data

Meteorological data for Masterton, Palmerston North, and Wellington
were supplied for the period 1st October 2003 to 16th January 2004.
This data contains 864 measured instantaneous wind speed and direction
measurements at 3 hourly intervals, and 432 sets of forecast data. The
forecasts made every six hours, are for 3 to 24 hours ahead in 3 hour
intervals, and give wind speed and direction from an initial forecast and
from a statistically corrected forecast.

The first columns of table 1 give the standard deviation of the er-
rors in prediction for the persistence method (i.e. prediction is simply
the current wind speed), the meteorological initial forecast, and the cor-
rected forecast. In the case of Masterton this data is plotted in figure
1. The corrected forecast is more accurate than the initial forecast,
while the persistence method becomes less accurate as the prediction
time increases. The predictions at 24 hours ahead are more accurate
than the preceding predictions as there is a tendency for the wind speed
to be similar at the same time of day. Figure 2 plots the persistence
predictions against the measured values. It can be seen there is little
correlation between the observed and predicted wind speed after the first
few hours.



Masterton: Fitted standard errors (daily average fit 4.7)
Time Persistence Forecast Corrected Regression Reg+fore Reg+corr

3 4.6 4.9 4.3 3.8 3.5 3.4
6 5.4 5.4 4.9 4.1 3.7 3.7
9 6.4 6.0 5.4 4.3 3.9 3.8
12 6.6 5.8 5.6 4.5 4.1 4.0
15 6.6 5.5 5.4 4.5 4.0 3.9
18 6.2 5.7 5.4 4.5 4.0 3.9
21 5.9 5.5 5.1 4.5 4.1 4.0
24 5.9 5.4 5.2 4.7 4.0 3.9

Fitted standard errors (daily average fit 5.0)
Time Persistence Forecast Corrected Regression Reg+fore Reg+corr

3 4.1 4.9 4.3 3.2 3.0 2.9
6 5.3 5.5 5.2 3.8 3.4 3.2
9 6.7 6.4 6.1 4.4 3.7 3.6
12 6.9 6.6 6.4 4.4 3.8 3.6
15 6.8 6.4 6.2 4.7 4.0 3.8
18 6.6 6.2 5.9 4.7 3.9 3.7
21 6.0 5.9 5.3 4.8 4.3 4.2
24 6.0 5.7 5.1 4.8 4.0 3.8

Fitted standard errors (daily average fit 5.0)
Time Persistence Forecast Corrected Regression Reg+fore Reg+corr

3 4.3 7.2 5.2 4.0 3.7 3.7
6 6.0 8.1 6.4 5.0 4.3 4.5
9 7.1 8.7 6.9 5.7 5.0 5.1
12 8.0 9.2 7.7 6.0 5.1 5.4
15 8.2 9.4 8.0 6.2 5.4 5.5
18 8.5 9.3 8.1 6.2 5.2 5.5
21 8.5 9.3 7.8 6.3 5.5 5.7
24 8.9 9.3 8.0 6.4 5.3 5.6

Table 1. Fitted standard errors

Various linear regressions were examined. As there is a considerable
number of data points, terms that made very small changes to the ac-
curacy of the prediction were reported as being significant under the
standard statistical tests. In the interest of robustness only terms that
have both a noticeable effect on accuracy and a clear physical meaning
are recommended.

A simple regression from the current wind speed and a constant
showed the coefficient of the current wind speed decreased and that of
the constant increased as the time ahead of the prediction increased. In
other words the measured wind speed gave decreasing value to the pre-
diction as the time ahead increased, and the prediction trended towards
a simple constant.



Figure 1. Standard deviations of the errors for the different types of predictions for
Masterton.

A time of day variation was found (figure 3) and prediction using the
average for the time of day only was quite accurate (standard deviation
for Masterton: 4.7, Palmerston: 5.0, and Wellington: 6.4). From the
time of day figures the expected change in wind speed, between the time
at which the prediction is made, and the time for which the prediction
is made, can be calculated. This value can be included as a data column
in the regression, and tests showed it gave a noticeable improvement in
accuracy.

Instead of the regressions tending towards a constant value as the time
ahead increases, the regression was altered so that it could tend towards
the average for the time of day as the prediction time increased. This
term gave a small improvement in the accuracy of the predictions.

Thus the recommended regression prediction is a linear combination
of the current wind speed, the average wind speed for the time of day of



Figure 2. Persistence predictions (current wind speed) plotted against measured
wind velocity for Masterton (x axis).

the prediction, and the change in average wind speed between the time
of the prediction was made and the time of the prediction i.e.:

S(t + h) is predicted by: a1S(t) + a2D(t + h) + a3(D(t + h) − D(t))
where S(t) is the wind speed at time t, D(t) is the average daily wind

speed for time t, and h is the time ahead for which the prediction is made.
The coefficients a1, a2, and a3 are determined by linear regression which
is the minimisation of the squared difference between the predicted value
and the corresponding measured value.

All terms in these regressions were highly significant. The fourth
column in table 1 gives the standard deviation of the error for this re-
gression. For a prediction 24 hours ahead the prediction is essentially the
same as that of the daily average value. The coefficients (a1 to a3) for
each time interval are given in table 2. All the coefficients are positive
and have sufficient physical meaning to give confidence that the regres-
sion will be quite robust. As noted for the simple regression (wind speed



Figure 3. Variation of average wind speed with time of day.

and a constant) the coefficients change from at 3 hours a major reliance
on the measured wind speed, to at 24 hours ahead a significant bias to
the average wind speed term. It should be noted that the available data
covers only one part of the year and the average daily wind behaviour
may be different at other times of the year.

3. Inclusion of Meteorological Forecasts

The meteorological forecasts have the advantage of having significant
additional data, both in time and space, and are based on physically
based formula coded into a numeric prediction. However these fore-
casts do not exactly correspond to local measurements. By combining
the forecast value and the regression prediction in a second regression
we can develop formula that chooses the best combination of the two
values. As the two values (regression prediction and forecast) both are
predictions of the wind speed, a linear combination of them with posi-



Masterton: Regression coefficients
Time Measured TimeConst Adjust

3 0.591 0.411 0.592
6 0.483 0.521 0.489
9 0.376 0.624 0.373
12 0.266 0.735 0.268
15 0.250 0.750 0.246
18 0.262 0.740 0.261
21 0.220 0.782 0.203
24 0.258 0.711 0.000
Palmerston: Regression coefficients

Time Measured TimeConst Adjust
3 0.793 0.205 0.783
6 0.623 0.376 0.619
9 0.503 0.494 0.497
12 0.420 0.581 0.421
15 0.371 0.629 0.369
18 0.291 0.710 0.292
21 0.304 0.693 0.300
24 0.289 0.699 0.000
Wellington: Regression coefficients

Time Measured TimeConst Adjust
3 0.794 0.206 0.794
6 0.603 0.398 0.611
9 0.453 0.546 0.446
12 0.301 0.699 0.306
15 0.231 0.769 0.221
18 0.142 0.860 0.143
21 0.121 0.880 0.105
24 0.025 0.972 0.000

Table 2. Regression coefficients for measured wind speed, average wind speed for
time of day, and expected change in wind speed.



Masterton Regression + Corrected: coefficients
Time Regression Corrected

3 0.530 0.500
6 0.421 0.572
9 0.350 0.668
12 0.263 0.717
15 0.270 0.759
18 0.314 0.693
21 0.318 0.717
24 0.232 0.777

Palmerston Regression + Corrected: coefficients
Time Regression Corrected

3 0.634 0.428
6 0.390 0.670
9 0.324 0.763
12 0.206 0.881
15 0.241 0.860
18 0.153 0.939
21 0.317 0.792
24 0.083 0.996

Wellington Regression + Corrected: coefficients
Time Regression Corrected

3 0.689 0.359
6 0.554 0.509
9 0.462 0.625
12 0.500 0.579
15 0.479 0.606
18 0.461 0.627
21 0.452 0.637
24 0.419 0.682

Table 3. Coefficient for combining regression prediction and the corrected forecast.

tive coefficients should give a robust prediction. In particular it will still
give adequate service if the forecasts are improved (although the predic-
tion would be improved by recalculation of the regression coefficients).
Table 3 gives the coefficients for this regression based on the corrected
forecast. The coefficients weight towards the regression prediction at
low time intervals, and toward the meteorological prediction at longer
times.

Accuracies for the regression prediction, and the combined regres-
sion and corrected forecast prediction, are given in table 1 and shown
for Masterton in figure 1. A plot of the measured values and the pre-
dicted values is given in figure 4 which can be compared with figure 2 for
persistence only. It can be seen that the combined regression gives bet-



ter predictions than simple persistence, however there is still significant
scatter.

Figure 4. Predicted speed on the y axis and measured speed on x axis. Note how
the prediction approaches a constant as the time ahead increases.

An error distribution for the various predictions can be calculated.
Table 4 shows how the error distribution changes with prediction time
for persistence predictions, and table 5 shows the error distributions for
the combined regression and corrected forecast. It can be seen that quite
large differences between predicted and actual wind speed can occur even
for the shorter prediction times.

Comments on Linear Regression of the Meteorological Data
The best results were obtained using a combination of a local wind

speed prediction and the meteorological forecasts. The local prediction
dominated the short term predictions while the average values and fore-
cast values dominated the longer term predictions.

The method of combining a local prediction with that from a meteo-
rology forecast, can be applied to other local predictions as well as the



Masterton: Persistence: error distribution
time 1% 5% 20% 80% 95% 99%

3 -14.5 -7.0 -3.0 3.0 8.0 13.0
6 -13.0 -9.0 -4.0 4.0 9.5 12.0
9 -15.0 -11.0 -5.0 6.0 11.0 14.0

12 -17.7 -10.5 -6.0 5.0 11.0 13.7
15 -15.0 -11.0 -5.0 5.0 11.0 15.7
18 -16.0 -11.0 -5.0 5.0 9.0 15.7
21 -16.4 -10.0 -4.0 4.0 9.0 14.0
24 -16.7 -10.0 -4.0 4.0 10.0 14.7

Palmerston: Persistence: error distribution
time 1% 5% 20% 80% 95% 99%

3 -9.0 -7.0 -3.0 3.0 7.0 11.0
6 -12.0 -8.0 -4.0 4.0 9.0 13.0
9 -14.0 -10.4 -6.0 6.0 11.0 16.7

12 -16.0 -11.0 -6.0 6.0 11.0 15.4
15 -17.7 -11.0 -6.0 11.4 11.4 15.7
18 -15.7 -11.0 -5.0 6.0 10.0 15.0
21 -14.0 -10.0 -5.0 5.0 10.0 14.7
24 -13.0 -10.0 -5.0 5.0 10.0 14.7

Wellington: Persistence: error distribution
time 1% 5% 20% 80% 95% 99%

3 -9.7 -7.0 -3.0 3.0 8.0 11.0
6 -13.7 -9.4 -5.0 5.0 10.4 14.4
9 -16.7 -12.0 -6.0 6.0 12.0 16.0

12 -21.0 -14.0 -6.6 7.0 13.0 17.7
15 -19.7 -14.0 -7.0 7.0 13.0 17.7
18 -23.7 -15.0 -7.0 7.0 13.0 19.4
21 -21.0 -14.0 -7.0 8.0 13.4 19.7
24 -21.7 -15.0 -8.0 7.6 14.0 20.0

Table 4. Distributions of error in prediction for persistence method.



Masterton: Regression + Corrected: error distribution
time 1% 5% 20% 80% 95% 99%

3 -7.5 -5.1 -2.7 2.2 6.3 10.0
6 -7.4 -5.1 -3.0 2.4 7.3 11.4
9 -7.8 -5.3 -3.2 2.6 6.9 10.2

12 -7.2 -5.5 -3.1 2.5 7.9 12.1
15 -7.3 -6.0 -3.2 2.7 7.0 10.8
18 -7.0 -5.2 -3.1 2.4 7.5 12.4
21 -7.5 -5.6 -3.4 2.8 7.3 11.3
24 -7.8 -5.1 -3.2 2.6 7.8 12.1

Palmerston: Regression + Corrected: error distribution
time 1% 5% 20% 80% 95% 99%

3 -6.7 -4.4 -2.5 2.1 4.6 7.3
6 -7.2 -4.9 -2.8 2.4 5.2 9.1
9 -9.0 -5.2 -3.2 2.5 6.5 9.7

12 -7.3 -5.0 -3.1 2.9 5.7 9.4
15 -7.2 -5.3 -3.4 2.9 6.7 11.3
18 -8.3 -5.3 -3.2 3.0 6.0 10.4
21 -8.7 -5.7 -3.4 3.1 7.3 11.6
24 -8.8 -5.6 -2.9 3.1 6.3 10.4
Wellinton: Regression + Corrected: error distribution

time 1% 5% 20% 80% 95% 99%
3 -8.7 -6.0 -3.1 2.9 6.1 8.5
6 -11.0 -7.7 -3.8 3.4 7.0 9.2
9 -11.8 -9.2 -4.4 4.3 7.9 10.6

12 -12.6 -9.5 -4.8 4.9 8.6 11.0
15 -12.6 -9.3 -5.1 4.6 9.3 11.6
18 -12.4 -9.8 -4.8 4.7 9.4 11.1
21 -13.0 -10.1 -5.3 4.5 9.5 12.2
24 -13.3 -9.7 -4.7 4.8 8.8 11.3

Table 5. Distributions of error in prediction for combined regression prediction and
corrected forecast.



regression prediction demonstrated here, As the forecasts are based on
relevant data not available from local measurements this technique is
recommended to enhance predictions made using local data.

The wind speed measurements are instantaneous values rather than
an average as expected from the predicted and forecast values. It is
not at all clear how much of the variation is due to the measurements
and hence is inherent in the comparisons. Extrapolating the graphs (in
figure 1) back to zero hours indicates there may be a significant amount
of variation in the measurements, If this exists and is subtracted the
proportional changes in the prediction accuracies will be significantly
increased.

There are several possible options that might improve the regressions
to predict wind speed that have not been fully investigated. The wind
direction may provide a term that improves the regression. The regres-
sions could instead of predicting wind speed, predict the two components
of the wind velocity. A superficial investigation of these did not indicate
large gains.

The daily wind profile could be investigated further to determine pro-
files that correspond to different weather conditions and/or seasons. The
available data did not allow a detailed investigation of this.

Nonlinear terms such as powers or spline functions can be easily in-
cluded in the linear regressions. This was not tested, however the amount
of apparently random variation present indicates the gain from this may
be minimal.

Another possibility is to use log scales rather than linear scales, which
should make the error distribution more symmetric, but does not allow
for the zero speed values in the data.

4. Regression Analysis of Wind Farm Data

The wind farm data consists of 204721 ten minute average values of
wind speed, wind direction, and power generated over the period 12/3/99
to 2/7/03 (1574 days). About 10% of the values over this period are
missing from the data, and the wind speed and power values have been
normalised to the range zero to one. Information on the number of
windmills operating is not included, which limits the ability to predict
power output.

Table 6 gives the predictions using only persistence for selected time
intervals ahead. As expected the quality of the predictions reduces as
the time increases, and eventually becomes less accurate than prediction
by a simple constant which gives a standard deviation of 0.153. Table
7 gives the results for a simple regression using the current 10 minute



Hr:Min S.D. 1% 5% 20% 80% 95% 99%
0:10 0.0230 -0.06 -0.04 -0.02 0.02 0.04 0.06
0:20 0.0323 -0.09 -0.05 -0.02 0.02 0.05 0.09
0:30 0.0386 -0.10 -0.06 -0.03 0.03 0.06 0.10
1:00 0.0524 -0.14 -0.08 -0.04 0.04 0.08 0.14
2:00 0.0710 -0.18 -0.12 -0.05 0.05 0.11 0.18
3:00 0.0850 -0.22 -0.14 -0.06 0.06 0.14 0.22
6:00 0.1149 -0.29 -0.19 -0.09 0.08 0.19 0.30

12:00 0.1497 -0.38 -0.24 -0.11 0.11 0.24 0.39
18:00 0.1678 -0.42 -0.28 -0.13 0.13 0.28 0.42
24:00 0.1781 -0.44 -0.30 -0.14 0.14 0.30 0.44
48:00 0.1963 -0.47 -0.33 -0.16 0.16 0.32 0.48

Table 6. Standard deviation and error distribution for persistence method at different
time intervals.

Hr:Min S.D. 1% 5% 20% 80% 95% 99%
0:10 0.0229 -0.06 -0.04 -0.02 0.02 0.04 0.06
0:20 0.0321 -0.08 -0.05 -0.02 0.02 0.05 0.09
0:30 0.0383 -0.10 -0.06 -0.03 0.03 0.06 0.11
1:00 0.0516 -0.13 -0.08 -0.04 0.04 0.09 0.14
2:00 0.0691 -0.17 -0.11 -0.05 0.05 0.12 0.19
3:00 0.0816 -0.19 -0.12 -0.06 0.06 0.14 0.22
6:00 0.1064 -0.25 -0.16 -0.08 0.08 0.18 0.28

12:00 0.1305 -0.28 -0.19 -0.11 0.10 0.24 0.35
18:00 0.1401 -0.27 -0.20 -0.12 0.12 0.26 0.37
24:00 0.1446 -0.26 -0.20 -0.12 0.12 0.27 0.38
48:00 0.1502 -0.25 -0.20 -0.13 0.13 0.28 0.39

Table 7. Standard deviation and error distribution for simple regression (current
wind speed and a constant) at different time intervals

average and a constant and table 8 gives the coefficient values for this
regression. Again all the coefficients are highly significant (t-test values
above 30). Similar to the meteorological data the measured wind speed
becomes less important and the prediction tends towards a constant as
the time increases. The use of the previous two ten minute average wind
speed gave almost zero change in accuracy and weighted the regression
equations heavily towards the more recent ten minutes.

The average daily variation for the wind farm data (figure 5, note
the expanded scale compared with figure 2) is not as great as for the
three sets of meteorological data, possibly due to this data covering a
full year. Regression using the current wind speed, daily average for
the time for which the prediction is made, and the average change in
wind speed between the two times (as for the meteorological data) gave



Hr:Min Coef Constant
0:10 0.989 0.003
0:20 0.978 0.006
0:30 0.968 0.009
1:00 0.941 0.017
2:00 0.892 0.031
3:00 0.845 0.044
6:00 0.717 0.081

12:00 0.518 0.138
18:00 0.393 0.173
24:00 0.315 0.195
48:00 0.173 0.236

Table 8. Regression coefficients for current wind speed and a constant at different
time intervals.

Hr:Min S.D. 1% 5% 20% 80% 95% 99%
0:10 0.0229 0.03 0.02 0.01 0.01 0.03 0.04
0:20 0.0321 0.06 0.04 0.02 0.02 0.04 0.06
0:30 0.0383 0.08 0.05 0.02 0.02 0.05 0.09
1:00 0.0515 0.10 0.06 0.03 0.03 0.06 0.11
2:00 0.0688 0.13 0.08 0.04 0.04 0.09 0.14
3:00 0.0811 0.17 0.11 0.05 0.05 0.12 0.19
6:00 0.1055 0.19 0.12 0.06 0.06 0.14 0.22

12:00 0.1296 0.25 0.16 0.08 0.08 0.18 0.28
18:00 0.1396 0.28 0.19 0.11 0.11 0.23 0.34
24:00 0.1444 0.27 0.20 0.12 0.12 0.26 0.37
48:00 0.1499 0.26 0.20 0.12 0.12 0.27 0.38

Table 9. Standard deviation and error distribution for regression using the current
wind speed, the average wind for the time which is being predicted, and the change
in wind speed between the two times.

only a marginal improvement in accuracy as seen in table 9. Table 10
gives the coefficients from this regression. All the coefficients are highly
significant with t-test values greater the 7. Again the constant (TConst)
for the time for which the prediction is made becomes more significant
for the longer prediction times.

A Fourier analysis of the wind speed data has been undertaken. As
the data contained missing values this was done using regression of the
individual cos and sin components. This also allowed an exact period of
24 hours to be used. The resulting power spectrum is plotted at the top
of figure 6. Two clear peaks are seen and correspond to a 24 hour period
(the left peak) and a 12 hour period. There is a possible indication of a
small component with an 8 hr period. The bottom part of figure 2 is an
artificial sequence generated from:



Figure 5. Average daily normalised wind speed for wind farm data.

p(i + 1) = 0.99p(i) + N(0, 1)

where N(0, 1) is a Gaussian random sample. 219 elements of this se-
quence were generated and the power spectrum obtained by fast Fourier
transform. It can be seen that the random sequence is essentially the
same as the wind data except for the two peaks. It can be noted that
forward predictions for this sequence are made by taking a multiple of
the current value which reduces to zero as the time difference increases,
and for large time intervals the prediction goes to the mean value for
the sequence (which is zero in this case).

To examine the daily behaviour more closely clustering was used. To
reduce the number of variables in a day the data was converted to an
average hourly values and only data that was complete for the day was
used. This provided 1154 days of complete data. A simple K-means
clustering was used with the number of clusters being specified. The
distance measure used was calculated by first determining the factor
that brought the wind speeds for one day into closest agreement with
those of the cluster mean (by least squares estimation of the factor), and



Hr:Min Coef TConst Time diff
0:10 0.9886 0.0114 0.4193
0:20 0.9777 0.0224 0.7599
0:30 0.9681 0.0321 0.8456
1:00 0.9414 0.0588 0.9113
2:00 0.8926 0.1077 0.8896
3:00 0.8469 0.1536 0.8421
6:00 0.7212 0.2792 0.7151

12:00 0.5233 0.4771 0.5323
18:00 0.3965 0.6037 0.3997
24:00 0.3117 0.6878 0.0000
48:00 0.1690 0.8317 0.0000

Table 10. Coefficients for regression using the current wind speed, the average wind
for the time which is being predicted, and the change in wind speed between the two
times.

Figure 6. Power spectrum for wind data (top) and for a randomly generated se-
quence (bottom).

then determining the root mean square of the differences in the hourly
values. For these clusters no attempt was made to identify outlying data
that might allow better definition of the central part of the cluster.



Cluster S.D. Proportion
1 0.0476 0.0589
2 0.0606 0.0936
3 0.0671 0.3674
4 0.0644 0.4801

Table 11. Standard deviation of error in wind values when it is known which daily
cluster and scaling factor should be used. Also the fraction of days allocated to a
given cluster.

Different numbers of clusters were tried, up to seven clusters could be
identified however four main wind profiles clusters were thought to be
a reasonable choice. Figure 7 gives the means of the four clusters. The
standard deviations and fraction of days allocated to a given profile are
given in table 11. The standard deviations are significantly lower than
the data mean of 0.1525 and better than the regression predictions for
two or more hours ahead. Figure 8 shows the fit of the data after scaling
to the cluster means. These graphs still contain a significant amount of
unexplained or random variation.

Figure 7. mean values for four clusters that give different daily wind profiles.



Figure 8. Fit of daily wind profiles to the mean profile of the four clusters.

The prediction of wind speed could be considerably improved if it can
be determined which daily profile should be used. It is not known to
what extent meteorological information can provide information on the
best profile to use. Only limited meteorological data is included in the
current data set. Figure 9 shows the average daily wind vectors (ends of
the vectors giving speed and direction are plotted). Clusters one and two
are do not occur at low wind speeds, but otherwise the clusters overlap
on these diagrams.

The sequence of cluster occurrence has been investigated by calculat-
ing the probability of the transfer to a cluster on the following day, given
the current cluster. Table 12 gives these probabilities.

Taking into account the number of days (890) used in calculating this
table this is not far from the variation expected due to random variation
from the proportions for all the clusters combined (Chi-squared p-value
of approximately 0.84). It is thus considered that knowing the wind
profile from the previous day provides little information on the profile for
the current day. There may be advantage in using profiles for predictions
of less than a day ahead, however this has yet to be investigated.



Figure 9. Wind velocity vectors (origin to points marked +) for the four clusters.

Comments on Regression Analysis of Wind Farm Data
A simple regression (current wind and a constant) is better than the

persistence method, particularly as the time interval increases. This is
due to the regression being able to use a constant in the regression, and
thus transfer the prediction from relying on the current wind speed to
relying of a constant at longer time intervals.

Regressions using the daily average profile and the current wind speed,
as a correction gave only very minor improvements to the simple regres-
sion prediction.

Fourier analysis demonstrated a daily variation, and except for this
the remainder of the spectrum seems indicate random variation only.

Wind direction could be added to the regression, or the components
of the wind velocity used. This has not been tested in detail but is not
expected to have a major effect on accuracy.

It is not known how much combining meteorological wind speed fore-
casts with the regression will improve the forecast for the wind farm.
This is possibly the best regression option available to obtain better
predictions. Good results were obtained using the meteorological pre-



Current Probability in cluster next day
cluster 1 2 3 4

1 0.0449 0.2028 0.4038 0.3486
2 0.1063 0.1007 0.3117 0.4812
3 0.0393 0.0970 0.3492 0.5144
4 0.1105 0.0976 0.3707 0.4212

All 0.0589 0.0936 0.3674 0.4801

Table 12. Given the current day wind profile is in the cluster given by the rows the
columns give the probability of the wind profile on the next day being in the cluster
given by the columns.

ANN Persistence Improvement
Method by ANN

4-hour forecast Mean Absolute Error 0.1738 0.2007 0.0269 (13%)
12-hour forecast Mean Absolute Error 0.2592 0.3097 0.0505 (16%)

Table 13. Comparison of average forecast error.

dictions in regression as described in the section on the meteorological
data.

The data can be divided into four (or more) typical daily profiles.
Developing this further provides one promising approach. It is likely
that the full meteorological forecast information will give sufficient in-
formation to reasonably predict the wind speed profile for several hours
ahead, or the profile might be identified from previous wind speed and
direction values. Combining this with the local speed data should give
improved prediction.

5. The Artificial Neural Network (ANN)
approach to wind power forecasting

An Artificial Neural Network (ANN) (e.g. Herve 1999, Picton, 2000)
is a technique that is used to map any random input to a corresponding
random output without assuming any fixed relationship between them.
Neural Networks utilize past data in order to recognize a hidden pattern
so that it can be used to forecast future values. A ANN study with a
Multilayer Perceptron model was carried out to forecast wind power 4
hours and 12 hours ahead (figures 10 &11).

To compare the performance of the two methods in terms of the av-
erage forecasting error, all errors were summed up weighted by their
frequency of occurrence. The comparison of average forecast error is
shown in table 13.



Figure 10. A sample 4-hour ahead ANN forecast.

Table 13 shows that in 4-hour and 12-hour forecast, ANN reduces the
average forecast error by 13% and 16% in 4-hour and 12-hour forecasts
respectively.

It was suggested that the adoption of two different models, one for
daytime and one for night time could significantly improve the forecasts.

A similar ANN study utilizing a 3-layer perceptron was performed
to examine the forecast of wind speed 4 hours ahead. On average, the
predicted wind speed 4 hours ahead was about right, but there is a wide
spread around that average. 95% of actual values are within 0.2 of the
forecast. An evaluation was done using data not used in the modelling.
Figure 12 is the histogram of the residuals and figure 13 is the cumulative
frequency of errors.

6. The Kalman Filter

The Kalman Filter (Anderson 1979, Jazinski 1970) is useful in situa-
tions where at some time t the value of a variable may be predicted k



Figure 11. sample 12-hour ahead ANN forecast.

steps ahead, given its last N recorded values. If νt+k is at time t, the
predicted speed at time t + k, it can be written as linear combination of
the last N measured speed values:

νt+k = atkt + at−1kt−1 + ... + at−N+1 + νt−N+1

where the coefficients, at, at−1, ..., at−N+1, are generally variable in
time, and N is the order of the filter. The forecast may be one or more
steps ahead. The Kalman Filter is an algorithm whereby the coefficients,
at−i , are calculated from the previous at−i−1 , i = 0, 1, ...N − 1 , using
a relationship which depends on the latest measurements of ν.

As a demonstration a simple Kalman filter with only one term in the
prediction equation was tested. The results are given in table 14 and fig-
ure 14. It can be seen that a simple Kalman filter is capable of providing
reasonable predictions. It is expected that one or two additional terms
would make a marginal improvement to the prediction quality, but time
did not allow testing.



Figure 12. Histogram of the residuals.

7. Conclusions

The prediction of wind speed is known to be a difficult problem with
most methods giving only a limited improvement over the simple per-
sistence method.

The prediction of wind speed has the reputation of being the most
difficult of the meteorological variables to predict. The analysis above
indicates that there is a significant apparently random component to the
wind speed. Fourier analysis found only a daily systematic component
in the frequency spectrum.

There is a daily average pattern of wind speed, however its use pro-
vides only a marginal improvement in predictions for the wind farm
data. Several different daily patterns can be found within the speed
data and these, if it is known which applies, can assist in forecasting.
It is not clear how accurately meteorological conditions can determine
which pattern applies at a given time.

Regression techniques provide a clear description of the nature of the
prediction, but are dependent on having appropriate variables available
to make the prediction from. They have the advantage of being well
understood and being backed by a considerable amount of statistical
knowledge.



Figure 13. Cumulative frequency of errors.

Neural networks provide a black box method of using many possi-
ble inputs to the prediction and an automatic creation of a prediction.
However the logic behind the prediction is not available, and there is
the possibility that in some circumstances the prediction may be quite
unreasonable. It is very difficult to check all aspects of the behaviour
of a neural network with many inputs. The results obtained are not
directly comparable with the regression results, but do show that neural
networks can produce competitive predictions.

The Kalman filter is basically a regression technique placed on top
of a dynamic model, as opposed to a static model in simple regression.
The advantages of the Kalman filter rely heavily on the quality of the
dynamic model. It is not clear how appropriately the simple linear mod-
els often used with the Kalman filter apply to the forecasting of wind



Wind Speed Prediction Difference
0.4198 0.3092 0.1107
0.4018 0.4213 -0.0195
0.3976 0.4016 -0.0040
0.3258 0.3975 -0.0717
0.2904 0.3249 -0.0345
0.3353 0.2899 0.0454
0.3429 0.3359 0.0070
0.3310 0.3430 -0.0120
0.3447 0.3308 0.0139
0.3447 0.3449 -1.81E-04

Table 14. Sample output from a Kalman filter.

Figure 14. . Kalman Filter tracking of actual wind speed. 1 step ahead (1 step =
10 minutes).

speed. A forecasting model with input of meteorological conditions may
be a more useful approach.

The meteorological data made available was disappointing in the ac-
curacy of its wind speed predictions. Unfortunately the values recorded
were instantaneous wind speed, which undoubtedly added some addi-
tional random variation. It seems that local wind speed over short pe-
riods is not closely related to the larger scale of the forecast data. It is
believed that wind direction and rainfall are more reliably predicted in



forecasts than wind speed where turbulence apparently adds a significant
random component.

A combination of meteorological predictions and regression gave bet-
ter predictions than either value alone when tested on the meteorological
data. It was not possible to combine the meteorological data with the
wind farm data as they were taken at different times (as well as different
locations and different averaging).

The best approach to predicting the wind speed would seem to come
from using a combination of both local measurements and meteorological
data. The local measurements can be at the wind farm site, but there
would seem to be considerable potential benefit from measurements in
the region of the wind farm. The meteorological data could be used in
several forms. There is the direct prediction of wind velocity from the
numerical forecast, information from the pressure and wind direction
forecasts (isobaric charts) over the region, and/or a matching of current
conditions with those in a record of past weather. These alternatives
need to be investigated to determine which gives the best results.

Acknowledgements

The project coordinators wish to thank, the industry sponsors Conrad
Edwards, Greg Williams, and Brian Kirtlan for their support and en-
thusiasm, and the project participants Kaye Marion, Barry McDonald
(data preparation & initial regression), Ray Hoare, Zeke Chan, Timo-
thy Hong (neural networks), Boda Kang (Kalman filter), Bruce Craven,
John Cogill, Manju Agrawal, Ian Wright, and Andy Philpott. The work
of the organisers of the MISG and particularly of Graeme Wake is also
greatly appreciated.

References

Anderson, B.D.O., and Moore, J.B., 1979. Optimal Filtering, Prentice-Hall : New
Jersey.

Giebel G. 2003. The state of the art in short term prediction of wind power, Project
ANEMOS (http://anemos.cma.fr/), http://anemos.cma.fr/modules.php?name=Downloads&d op=viewdownload&cid=3

Herve, A., Valentin, D., and Edelman, B. 199. Neural Networks, Sage Puplications :
California.

Jazwinski, A.H., 1970. Stochastic Processes and Filtering Theory, Academic Press :
New York.

Picton, P., 2000. Neural Networks, Macmillan Press : New York.


