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Magnetic data stored on computer hard disk drives is read and written by small electromagnets on
read/write heads that pass over the surfaces of the spinning hard disks [7]. These electromagnets are
composed of magnetic alloy cores with wire coils wrapped around them. When an electric current
is sent to the coil, a magnetic field is induced in the ferrite core, and data is written to the disk by
changing the magnetization of data bits on the disk. One class of read-write heads, called thin-film
heads, uses a two-dimensional spiral path of conducting material on an insulating substrate as the
induction coil surrounding the horseshoe-shaped ferrite core (see Figure 1).

Figure 1: Schematic illustration of the induction coil surrounding the ferrite core in a thin film.write
head.

Increases in the speed and storage density of hard disk drives can be achieved by improvements in
the design and response speed of the read/write head. The speed at which data bits can be written
to the disk surface is limited by the electrical characteristics of the ferrite core and the induction coil.
A full simulation of the behavior of writing a data bit would involve computations of transient high
frequency behavior. We propose progress in the design of thin film induction coils by solving a steady



Figure 2: [Left] (a) The geometry of the free boundary problem for the coil shape. [Right] (b) Repre-
sentation of the problem for a coil with N turns in polar coordinates.

problem to minimize the resistance of the coil.
To achieve the desired induced magnetic field in the ferrite core, the induction coil must have a

certain number of turns, N, around the core. From classical electromagnetism [1, 6], the intensity of
the induced magnetic field is proportional to the product of the number of turns, N, and the current
in the wire, I. For a fixed given current and a fixed typical number of turns, N = 10, the power
consumption of the induction coil will be minimized by minimizing its resistance.

Electrostatic fields in homogeneous, isotropic conductors are given by solutions of Laplace's equation
[1]. Our problem for the design of a thin film induction coil with minimum resistance can be expressed
mathematically as a free boundary problem for Laplace's equation in an annular domain, 1), bounded
by the inner and outer curves rin and rout (see Figure 2a). The shape of the coil will be a simply
connected domain, 0 = ABCD, that will be determined as the solution of this problem. The coil
shape 0 is subject to several geometric constraints;

1. 0 must lie inside the annular domain 1)between rout and rin,

2. ao must include the segment AB of rout (a fixed connection to a current source),

3. ao must include the segment CD of rin (a fixed connection to a current sink),

4. 0 must make the desired number of complete turns, N, around rin•

5. An additional constraint on the shape of 0 is given by manufacturing and physical considerations.
Clearly, 0 should not self-intersect (to avoid short-circuits), moreover, the turns of 0 must be
separated in the plane by at least distance 8. This condition, called -a lithographic constraint,
defines the resolution of the process of depositing conducting material on the insulating substrate.
Below the scale of 8, the edges of 0 will not be well-resolved. Hence turns closer together than 8
may produce short circuits or other undesirable electrical coupling effects (like capacitance).



Physically, AB and CD represent the beginning and ending points of the coil, where it will be attached
to the rest of the electrical circuit elements in the read/write head. The region given by 0 will be
assumed to have a uniform conductivity, while the surrounding regions are all perfectly insulating.
Therefore, apart from AB and CD, the rest of ao will carry no flux of current. To define the electrical
resistance of the coil, we apply a unit voltage difference, and obtain the electrostatic potential field in
the coil, 4>(x, y) (see Figure 2),

\124>= 0

4>=1

4>=0
n·\14>=O

on 0
onAB
on CD

on the rest of ao
Given the domain Q, equations (1-4) specify a well-posed'problem with a unique solution. While
the formulation (1-4) does not specify the number of turns, N, this constraint can be made explicit
by expressing the problem in terms of polar coordinates, (r,O) (see Figure 2b). For a free-boundary
problem we need an additional equation to determine OJthis extra condition will be the maximization
of the current through CD,

I = max r n· \14>ds,
n leD

where the maximization is carried out over the set of O's that satisfy all of the geometric constraints
given above. By conservation of charge, the current I is also equal to the current into 0 through AB,
I = - JAB n· \14>ds. Using Green's first identity [10],

I = J kl\14>/2 dA.

For a coil composed of a long slender wire, we can estimate the magnitude of I from dimensional
analysis. If the length of the coil is L rv 211"N, and it has a uniform width W rv aW /N, where W is a
characteristic width between rin and rout, then

(1)2 W aW
I rv L LW = L = 211"N2'

The parameter a, 0 < a < 1, gives a measure of how much of the domain V is taken up by the coil,
a = area(O)/area(V). From (8), it is clear that the current can be maximized by using all of the
available area for the coil, up to the lithographic constraint, a = 1 - O(211"N6). As the number of
turns, N, is increased, the current is decreased, but for any fixed N there should be a coil design that
achieves a maximum current flow.

In practice, we approached the problem of coil shape optimization [8]- by minimizing resistance
instead of maximizing current flow. For a unit potential differenceacross 0, the resistance of the coil
is given by R = 1/ l, hence maximizing the current is equivalent to minimizing the resistance. By
treating each coil turn as a lumped circuit element with an effective resistance, R.;"i = 1,2, ...N, we
can obtain the total resistance of the coil from the turns connected in series, R = Rl + R2+ ...+ RN (see
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Figure 3: A boundary element method (BEM) calculation of the lines of constant potential in a one-turn
coiL This coil is near-optimal in the restricted two-parameter set of designs with piecewise constant
boundaries.

Figure 2b). For rectangular strips, the resistance is proportional to the ratio of the length to the width,
R = L/W. This expression for the resistance can be shown to generalize for all geometries through
the use of potential theory [2, 4]. The harmonic conjugate of <f>(x,y), t/J(x, y), makes the combination
f(z) = <f>(x,y) + it/J(x, y) an analytic function of a complex variable. t/J(x, y) also satisfies Laplace's
equation on 0 with the Dirichlet and Neumann boundary conditions interchanged, so '!/J = '!/JAC and
t/J = t/JBD on the lateral sides of the coiL Using conformal mappings [2], the curved domain 0 can be
transformed to a rectangular strip, with an expression for resistance in terms of generalized definitions
for length and width of the domain in the conformal variables,

<f>AB- </>CD "Length"R--------- '!/JAD - t/JBC - "Width"·

For a rectangular strip aligned with the axes, clearly, length and width can be defined by L = D..x and
W = D..y. As described above, by generating an appropriate conformal mapping, the boundaries of 0
are mapped onto level curves of the curvilinear coordinate system given by </> and t/J, thus L = D..</> and
W = D..t/J, where </> and t/J are locally orthogonal coordinates.

In the followingsections we present various solutions to simplified model problems based on several
different approaches, including potential theory, geometry and the calculus of variations, multi-scale
asymptotics, and finally, computations of a complementary boundary value problem.

3 Direct calculation of the shape optimization problem

One of the most efficient numerical techniques for direct solution of the mixed boundary value problem
(1-4) for a given, arbitrarily-shaped simply connected domain 0 is the boundary element method
(BEM) [9]. This method followsfrom the boundary integral representation of the problem,

I (a</> aG)-</>(ao) + Jon G an - <f>an ds = 0,



1
G(x, y, x', y') = --In J(x - x')2 + (y - y')2.

271"

For a discretization ofthe solution on the boundary, equation (10) is a system of linear equations for the
unknown values of the solution </J and its normal derivative o</J/on on the boundary. Using numerical
quadrature to evaluate the integrals and linear algebra to solve the matrix system, the solution can be
obtained at all points in the domain. Then, the current can be calculated from (5), and the optimal
coil shape [8] can be found by repeating this calculation over the set of all feasible domains n (see
Figure 3).

There are very few closed-form exact solutions for the coil resistance problem that can be obtained
from potential theory. We considered two models: (i) a coil composed of concentric circular shells and
(ii) an exponential spiral coil.

One geometric simplification that can be made for tightly wound coils is that each turn of the coil is
approximately a circular loop. From potential theory, using the function f(z) = logz, the resistance
to current flowing in a circular conducting shell with inner radius rin and outer radius rout is

271"R= ..
In(rout/rln)

We will assume that the details of the coil structure connecting successive turns do not significantly
change the resistance from (12). Given our assumption that the boundaries of the annular domain
V are concentric circles, rout: rout = 1 and rin : rin = r > 0 then the individual circular shells are
described by

rl?ut= r\n - d
I I ,

where the turn radii r~n(decreasing radii with increasing index), for i = 1,2, ...N, are unknowns to be
determined by minimizing the total resistance

Carrying out this minimization requires the solution of a system of N nonlinear equations. In general,
this process must be carried out numerically, but several insights can be drawn from the calculations:

1. If 8 = 0 (or the separation distance is negligibly small compared to the width of the coil turns),
then it can be shown that r~nshould be selected to give each turn an equal resistance, R;.=R/ N.
The turn radii are then given by a geometric series, with the total resistance of the coil given by

271"N2

R = In(l/r)' rout _ rin _ r-i/N
i-I - i - ,



2. More generally, for finite 8 > 0, computations show that the coil turns should have unequal
resistances, with resistance decreasing as the turn index increases (i.e. the innermost turns have
the lowest resistance). Compared to the equal resistance case for 8 = 0, the inner turns will
have relatively higher resistances while outer turns will have lower resistances and the whole
coil will have a higher total resistance. Somewhat counter-intuitively, in the optimum solutions
conducting material area is shifted towards the outer turns. This behavior can also be interpreted
as shifting area devoted to the lithographic constraint towards the center of the coiL

4.2 Exponential spiral

The geometric model of section (4.1) can be improved by using an exponential spiral for the shape of
the coiL The shape of the inner and outer boundaries of the spiral can be derived from the complex
function f{z) = (1- ib) logz,

From potential theory, these equations describe lines of current flow given by a superposition of a
vortex and a sink. In general, the separation between successiveturns of the spiral will be at least 8 if
the lithographic constraint is imposed at ()= 21rN, rout{21rN) = rin{21r{N -1)) - 8, or

Solving this equation numerically will yield the exact value for the spiral pitch exponent b, which for
the limit 8 -+ 0 approaches b -+ In{l/r)/[21r{N + 1)]. The general expression for the resistance of the
spiral is then

21rN2
R=-----.In{l/r) - 21rNb

For tightly wound spirals with b -+ 0, we see that the limit of the set of concentric loops is approached.
See Figure 4 for an exponential spiral with N = 5 turns.

The above model shows that the current can be viewed as a potential flowof charges in the domain
occupied by the coiL In particular, this potential flow and more general coil designs can be generated
by distributions of sources, sinks and point vortices, as in the study of problems in fluid dynamics [3].



Figure 5: A spiral solution given by equations (23, 24) for a coil with N = 5 turns, rin = 1, rout = e,
a = 0.1, and total resistance R ~ 5.85.

Motivated by the general principle that resistance of a curved domain is given by the ratio of the length
to width of the domain (9), we sought spiral domains satisfying this property. Assume that the inner
boundary of a very thin, tightly wound spiral coil is given by rin(8) = g(8) and the outer boundary is
given by rout(8) = g(8 - 271") - 8, then the resistance of the coil can be taken to be

r7fN ds r27fN J g2 + 9'2 dB
R = Jo ;; = Jo g(8 + 271") - g(8) - 8·

R", _1 r27fN
_g_(8_)_d8_

271" Jo g'(8) - a'

Using the calculus of variations [11],we derived the Euler-Lagrange differential equation for functions
g( 8) that minimize this integral,

For a = 0, the solutions of this equation are exponential spirals, g(8) = aexp(be). For small a, we can
do a perturbation expansion for a ~ 0 to obtain spirals as the expansion

for t in the range to ~ t ~ tl. The four constants, a, k, to, tl in this solutIon are determined by the
solving a system of four nonlinear equations for the boundary conditions,



Figure 6: Comparison of the geometric resistances of linear and exponential spirals as a function of the
scaled lithographic constraint a.

5.1 Resistance calculations for elementary spirals

While we have obtained a general solution of equation (21), the parametric representation of the solution
(23) and the nonlinear constraints on the constants (24) make insight into the general dependence on
design parameters difficult. As an alternative approach, we have also calculated the resistances of
simple analytic coil designs, r = g(8), from integral (20). These solutions will not globally minimize
the resistance integral, but they yield analytic formulas for the resistance that make the dependence
on the design parameters (N, the number of turns, and a, the scaled lithographic constant) clear. We
compared two spirals that satisfy the same boundary conditions, rout = g(O) = e and rin = g(2rrN) = 1.
These two models were the linear and exponential spirals on 0 ~ 8 ~ 2rrN,

e-l
glin(8) = 2rrN8+ 1,

Direct substitution into (20) yields

2 (e - 2rrNa)
Rlin = 2rrN In 1 _ 2rrNa ' 2( e+l )Rexp= 2rrN 2(e -1- 2rrNa) .

A plot of these two resistances, for a coil with a fixed number of turns N = 5, is shown in Figure 6 as
a function of the lithographic constant a. As can be seen for the graph, for a ~ 0, the exponential
spiral has the lower resistance, while for larger a, there is a transition and eventually, the linear spiral
has lower resistance for a given, sufficiently large, value of a.

6 Multi-scale asymptotic solution (Howell)

We now pursue a multi-scale asymptotic [5]solution of the free-boundary problem for Laplace's equation
(1-4). This approach formally derives the proper generalization of (9) in the limit of a very slender
tightly wound coil.

Consider the limit N ~ 00, with 0 = O(I/N). In this limit, the thickness of the strip tends to
zero (like I/N) so we can use a "thin layer" approach. Suppose the outer arm of the spiral is given by
r = g(8) (where {r,8} are plane polar coordinates). Then to make it match with the given inner and
outer boundaries of V, rin and rout, we require

g(8)
g(8)

= rin(8) + O(I/N),
= rout(8) + O(I/N),

8 E (0,2rr),
8 E (2(N - l)rr,2Nrr),

(27)
(28)



where rin and rout are given respectively by r = rin(O) and r = rout(O). (For example, we might set
g(O) = Rin(O)+ 60/(27r) for 0 < 0 < 27r and similarly on rout.)

At each point of the strip the inner part of the boundary is given by r = g(O) and the outer by
(say) r = g(O) - €h(O) where

1
€=N«l.

We can find an expression for h(O) as follows. Consider a plane curve given parametrically by r = ro(s).
Then the curve lying a distance 6 inside is given by rl = ro - 6n, where n is the outward-pointing
normal to the original curve (in fact the two curves have coincidental normals at corresponding values
of s).

For our problem consider the outer boundary of a spiral-shaped strip whose inner boundary is given
by r = g(O), i.e.

(
COSO)r = g(O) sinO .

Then the outer boundary is the curve a distance 6 inside that given by r = g(O + 27r). Now, here the
unit normal is

1 (gCOsO+gsinO)
n = Jg2 + (gl)2 gsinO - g' cosO '

so the outer boundary is given parametrically (with parameter a ~ 0 + 27r) by

r = g(a) (1_ 6 ) ( cosa ) _ 6g
l
(a) (sina) (29)

Jg(a)2 + g(a)2 sina Jg(a)2 + g(a)2 - cosa .

This can be written as r = (g(O) cosO,g(O) sinO), where

-2 ()2 62 Ug(a)2 (30)9 - 9 a + - ,
Jg(a)2 + g'(a)2

tan(8 - a) 6g(a) (31)-
g(a) [Jg(a)2 + g(a)2 - 6]'

U 62
g(O) +€h(O) = g(a) 1- --;:::::=:::;=== +--

J g(a)2 +g'(a)2 g(a)2'

a = 0 + 27r _ tan-1 ( 6g'(a) ) .
g(a) [Jg(a)2 + g'(a)2 - 6]



and then (36) becomes

[(g + €p)2 + (g')2] </>pp+ €(g + €p)</>p _ €g" </>p_ 2€g' </>p8+ €2 </>00= O.

We have 8</>/8n = 0 on the two edges of the strip and thus

g2</>p _ g'(€</>o-g'</>p) onp=O,
(g + €h)2</>p _ (g' + €h')(€</>o - g'</>p) on p = h.

(40)
(41)

We must proceed to higher order to find an equation for </>0. At O(€) we obtain

rg' </>'
</>1= A(9) + 2 o( ~)2'

go + go

where A is as yet arbitrary (again, higher-order terms must be considered to determine A). Finally, the
solvability condition of the inhomogeneous Neumann problem for <1>2 gives an equation for </>0, which
can be written in the form



We can identify the bracketed term in (44) as the current passing through the strip, and thus to
lowest order our optimization problem becomes

..12N1rg2 + (!Ic)2mm 0 0 dB,
o goho

with ho given by (35).
Now we pose a multiple-scale ansatz for g(B). The motivation for this approach is that successive

arms of the spiral are approximately equal, but that their shape must vary slowly between the shape
of rin and that of rout over many periods. Thus we set

go (B)
go (B)

= rin(B),
= rout (B),

B E (0,211"),
BE (2(N - 1)11",211"),

(48)
(49)

DJG2+G~
ho = 21rGe - G .

Note that, for any f(B, 8) with f(B + 211",8) == f(B, 8),

12
1r

/ E 1 121r121r
f(B, EB) dB '" -2 f(B, 8) dBd8.

o 1rE 0 0

min r21r r21r (G2 + G~) dBd8
10 10 GGe - uJG2 + Gf

where u = D/(211"), subject to the boundary conditions (50) on 8 = 0,211" and periodicity of G with
respect to B.

This is now a classical minimization problem. Using the calculus of variations, we obtain the
Euler-Lagrange equation for the function G(B, 8) which minimizes (52), although the equation is very
complicated in general. However, one can at least verify that it is uniformly elliptic (so long as the
spiral thickness h is positive), and thus well-posed as a boundary-value problem. For example in the
limit u -+ 0 it takes the relatively simple form

G~G80 - 2GoGeGoe + (G2 + G~)Gee= GG~.



Figure 7: [Left] Optimal circular spiral for number of turns N = 10, ratio of radii A = 5, scaled gap
thickness 0' = N8/(27r) = (a)O, (b)1/(27r), (c)l/7r, (d)3/(27r). White shows the conductor, black the
insulator. [Right] Spiral radius G versus scaled angle e = (J/N for N = 10, A= 5,8 = 0, 1/(27r), 1/7r,
3/(27r). 3/(27r).

Of course, it is alternatively very natural to solve (52) directly using finite elements.
The only hope of analytical progress seems to be when rin <,mdrout are concentric circles, say

where A> 1 is the ratio of the radii. In this case we can suppose that G is independent of (J and simply
minimize

[21r G(e) de
Jo G'(e) - 0'.

Since the integrand is autonomous, we can immediately find a first integral of the Euler-Lagrange
equation, and thus obtain a first-order ordinary differential equation for G(E»:



x = ± sinh-1 (Vi) =F sinh-1 (va) + 1 - a =F y'1(1 +1) ± y'a(l + a).

Setting 1(0) = a = l/(O"c), the constant a is related to 0" and A by

21TaO"= ±sinh-l(~) =F sinh-1 (va) + (A -l)a =F y'Aa(l + Aa) ± y'a(l + a). (59)

Now, since 0" = N&/(21T), we require 0" ::; (A - 1)/(21T), and this requires us to take the + branch in
(58, 59):

x - sinh-1 (Vi) - sinh-1 (va) +1 - a - y'1(1 +1) + y' a(l + a), (60)
21TaO" - sinh-l(~) - sinh-1 (va) + (A -l)a - y'Aa(l + Aa) + y'a(l + a). (61)

1= aG, x = O"ae.

When 0" = 0, (60, 61) simply gives an exponential spiral

G = Ae/(21r) when 0" = 0,

These results are consistent with the calculations of the geometric resistance of spirals (20) given in the
previous section. We show the variation of G(e) with 0" in figure 7. The graphs of G versus e are all
rather close; this is because (A - 1) is fairly small (the maximum difference between the two extreme
spirals is of order (A - 1)2/8). In Figure 7 we show what this optimal spiral looks like when N = 10,
A = 5 and four different values of & (whose maximum value here is 2/1T).

7 Solution of the conjugate boundary value problem (Kunyansky, Peterson,

Witelski)

Progress in the shape optimization problem of the minimum resistance coil can be made by considering
the boundary value problem for the conjugate field. The solution of problem (1-4) physically represents
the electrical potential throughout the coil. The equipotentiallines, like those shown in Figure 3, are
lines of constant voltage. Current flows along curves that are orthogonal to the equipotentials. The
boundary value problem for the streamlines of current flow is

\12'lj; = 0
'lj;=0

'lj; = 1
n· \1'lj; = 0

on n
on AD
onBC
on AB and CD

(64)
(65)
(66)
(67)

In this problem, the boundary conditions specify a fixed unit current flow, 1=1, and hence the energy
integral is proportional to the coil resistance, which we seek to minimize,

R = mini r 1V''lj;12 dA = r n· V''lj;ds.n ln lBG



The minimization is with respect to all possible domains 0 that lie within the annular region V
bounded by rout and rin, i.e. 0 C V. As described above, resistance will be minimized when the
area of 0 is maximized, using all possible area for conducting material. We now formulate a boundary
value problem on the annular region V that produces current streamlines with N turns that naturally
conform to the domain and minimize the resistance.

In our approach to the problem we make use of all of the area in the annular domain V for the
turns of the coil 0, "0 = V", and hence assume that the lithographic constraint is zero, d = O. Note
that 1/J is a Coo smooth harmonic function on the simply connected domain O. However, within the
doubly connected annular domain V, 1/J is not continuous - it has jumps of unit magnitude across the
boundaries of the coil's windings. To overcome this difficultywe will re-formulate the problem on V.
First, we connect points B and D by an arbitrary smooth curve S, and divide the doubly connected
domain V into singly connected sub-domains corresponding to the turns of the coil by adding new
boundaries S = SB = SE as shown in Figure 8a. This divides the coil into N open subdomains

Figure 8: Re-arranging the problem: [Left] (a) splitting the coil [Right] (b) boundaries of a single
winding of the coil

01, O2, •.•, ON, where N is the number of windings. Each subdomain Oi has a boundary consisting of
the four parts ao~g,a01nd,aoFter and ao~nner,defined as shown in Figure ... (b). The solutions
1/Ji(X) on each of subdomains Oi are harmonic functions satisfying boundary conditions

1/Ji(X) = 0,
1/Ji(X) = 1,

x E aOf!Uter
z ,

x E ao~nner.

We introduce a function u(x, y) defined by

u(x, y) = 1/Ji(X, y) + i
on each Oi. It is easy to see that, unlike 1/J(x)' function u(x) is continuous across the boundaries
of the coil windings. However, now u(x, y) is discontinuous across the ends of each turn, unlike
the original streamfunction 1/J; we will introduce jump conditions on u across S. The whole area
of the coil may be represented as the domain Ocomb = U~l Oi with the boundary defined by curves
aO'tter,aowner,sB,sE,AB, and CD. Since u(x) is harmonic in each of the subdomain and contin-
uous by construction, it belongs to the space H1(Ocomb). Now the optimization problem may be re-
formulated in terms of function u(x) and the domain Ocomb as follows: find a subdivision 01, 02, ... , ON



W1(fh,n2,· ••,nN) = II IVul2dn,
ncomb

u(x) = 0,
U(X) - N,

x E anrter

x E any;ner

aul aulan SB ::;:an SE'

au =0an '



If we can find a subdivision 01, O2, ... , ON for which function u(x) satisfies conditions (76), this sub-
division would be the optimal one. But, such a subdivision is constructed by setting the boundaries
aorter to be the contour lines u(x) == i - 1. Therefore, the (unique) optimal shape of the coil can
be found as the set of the constant level curves for the solution u(x) of the Laplace equation with the
boundary conditions (72-75).

The above derivation also provides a justification for the equiresistance principle for 6 = 0 stated
earlier in this Report. Indeed, since the current in the optimal coil is described by a function harmonic
in the whole domain, the derivative a'I/J/ an is continuous through the boundaries of the windings.
Therefore, the tangential derivative of the potential a'I/J/ an has the same value on the each side of
the winding boundary. Integrating along the boundary we see that the difference of the potentials in
the beginning and the end of each winding is the same for adjacent windings. This implies that each
winding has the same resistance, since the currents through each winding are equal.

Weconclude with a simplificationof the above procedure that yields our final solution technique. To
solve this problem it is necessary to introduce a branch cut, called S above, into the doubly connected
domain V. This can be done in a very standard way through the use of polar coordinates, as in
Figure 2b. In polar coordinates, an equivalent definition of u(x, y) in terms of'I/J is given by

u(x,y) = 'l/Ji(X,y) + [2:] ,
where [x] denotes the greatest integer function. As noted above, u must satisfy certain jump conditions
across the branch cut S (73, 74). The need for these conditions can be eliminated by introducing the
new function



where v(x, y) is now continuous everywhere inside 1). In fact, v(x, y) is harmonic on 1) since it is the
sum of two harmonic functions,

o
v(x, y) = 'l/J(x,y) + 211"·

Corresponding to problem (64- 67) the boundary value problem for v(x, y) describing an optimal coil
with N turns is

v2v = 0 on 1) (80)
ov 1 00 on AB (the current source) (81)on = 211"on
ov 1 00 on CD (the current sink) (82)on = 211"on

0 on rout - AB (83)v(x,y) = 211"
0

on rin - CD (84)v (x, y) = 211"+ N

where O(x,y) = tan-1(y/x) E [0,211"). The optimal coil design is then found by using the solution
v(x, y) to trace the contour giving the inner boundary of the coil, 'l/J= v - 0/(211") = 1. Approximate
optimal designs calculated with a BEM code, for N = 1 and N = 3 turns are shown in Figure 9.
The same domain 1) was used for comparison with Figure 3, the resistance of the design in Fig 9a is
less than half of the equivalent resistance of the earlier design.
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