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PROBLEM2

OPTIMALCONTROLOF A STEEL SLAB CASTER

1 • INTRODUCTION

BHP Steel International (Slab and Plate Products Division) currently

operates a conti nuous slab caster at Port Kembla, NSW. The company suspects

that the present operating practice for this caster may not be optimal. In

particular, a greater net production rate Is thought to be achievable by

better choices of casting speed and flow rates in the spray cooling system.

As a first step towards investigating this possibility, the company has

developed a simple one-dimensional heat transfer computer model of the caster.

The problem posed to the 1985 MISG was twofold:

i. To outline an optimal design/control model, incorporating this existing

heat transfer model, which could predict "optimal" settings for the cast-

ing speed, coolant flow rates etc.

ii. To indicate means of effectively solving the above model.

Three kinds of roles for an optimal deSign/control model can be identi-

fied:

a. optimal des t gn of the steady state (set up) process,

b. optimal design of the changeover frem one steady state process to another

(e.g. a change in the grade of steel being cast),

c. optimal response to short term disturbances in the process. Such distur-

bances could be scheduled (e.g. regular tundish changes) or unscheduled
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(e.g. system slow downs, cooling system blockages etc.).

Note that any analysis can be done off-line in the case of (a), (b) and

scheduled instances of (c), whereas unscheduled disturbances are more or less

unpredictable and so much of the analysis involved in (c) would need to be

done in real time.

The Study Group decided to concentrate on (a) only, as this seemed the

most basic application, and would provide a natural starting point for possi-

ble investigation of (b) and (c) at a later stage.

2. THE HEAT TRANSFER MODEL

The company has developed a one-dlmensional slice model of the (steady

state) heat transfer process in the caster. Only heat conduction through the

thickness of the slab is considered. The neglect of conduction along the

length of the slab is reasonable, given the relatively low longitudinal ther-

-1 3 -1mal gradient (15 Km , compared to 3X10 Km through the half-thickness).

Disregarding heat conduction across the width of the slab may be less r-eal t s-

tic; however, for slabs of signlficant width/thickness ratio, the aasunpt i on

may be justified, at least as a first approximation. For a billet caster

though, a true two-dimensional slice model wouid probably be needed. Other

physical inputs to the model include

i , a method of accountlng for the liberation of latent heat of solidifica-

tion,

11. a heat transfer boundary condition on the faces of the slab, both in the

mould and In the spray zones,

111. temperature dependence of both specific heat and thermal conductivity.
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To a large extent we shall treat the heat-transfer model as a "black

cient to take the following point of view:

box", and not enquire too much into its internal workings. It will be suffi-

length the respecti vely.

Let x,z be coordinates measured through the thickness and along the

Let Ozx,<. .<xk< •. <~ = T and
x

slabof

OzZ,< •• <Zl<"<1N ~ L be some points distributed along these axes. The output
z

from the heat transfer model is of quanti tiesa set

e~l], k=l , ... , Nx' 2.-', .. ,Nz' representing the temperature of the casting at

the point x-xk' z-z2. (or equivalently, the temperature at x-xk of a typical

slice as it passes z-z2.' (see Fig. n. For notational convenience, let e[l]

denote the vector wi th components et 2.] and wri te e for the matri x whose (k ,1)

entry is e~l]. From a purely formal point of view, the heat transfer model

can be thought of as a system of algebraic equations to be solved for e.

x=T " x,

CASTING
SPEED

y

z~ t-------------------~

Figure 1. Definition sketch for (~.z~).

- TYPICAL SliCE
PASSING Z=Zt
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The solution of the optimal design model will require many calls to the

heat transfer model. It is therefore important to have a computationally

efficient means of solving the heat transfer model. In this respect an Lmplt -

ci t timestepping method would almost certainly be superior to any explicit

method, particularly as the heat transfer model has only one space dimension

which will make the implicit system of equations relatively easy to solve at

each time level.

3. MATHEMATICAL FORMULATION OF THE OPTIMAL DESIGN MODEL

3.1 Control parameters

The dasting process is controlled by a number of parameters. These can

be varied, wi thin certain limi ts, by the operator. The optimal design problem

is to determine the "best" settings of these parameters. The only parameters

that shall be explici tly considered in this report are

v = casting speed

flow rates in each of the m

(independently controllable) spray cooling zones,

although additional parameters can easily be fitted into the framework that

will be described. Typical constraints on these parameters could be

aj:::iuj:::iAj,

where a. A. are the minimum and maximum possible flow rates in each of the
J, J

j=l, •• ,m (3.1)

spray zones. In addition, there may be a restriction on the total flow rate

through all sprays

b :::i (3.2)

Although the size of m is usually only of the order of 10 or so, it may

still be desirable in the interests of simplicity to reduce the number of
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independent control parameters that appear in the optimal design model. One

rather natural way of aChieving this is to make an assunption on how the flow

rates vary along the length of the caster. For instance, if the jth spray

zone is located at z = wj, we could assune that

j=', .. ,m

thus reducing the number of independent parameters to three: a, ,a2 and the

casting speed v. In terms of these parameters, the constraints (3.1) and

(3.2) become

j=' , •. ,m,

m
b ~ a, E Wj + ma2 ~ B.

j='
In particular, note that the constraints are linear in a"a2. If the asaunp-

tion <3.3) is thought too restrictive, one could instead assune a quadratic

relation

j=', •• ,m.

This would give four independent parameters: a"a2,a3 and v. The constraints

would now become

s 2 s Aj, j-l, .. ,rn,a. a, w. + a2 Wj + a3J J
m 2 m

b s a, E w. + a2 E w. + ma3 s B
j=' J j=' J

which are again linear in a, ,a2 and a3. Clearly other functional forms can be

used in place of <3.3) or <3.5) - cubic, exponential etc. Although <3.3) and

<3.5) restrict a priori the range of permissible parameter settings to less

than that which would be physically possible, they do not seem unreasonable

assunptions, as it is unlikely that the flow rates should vary errati cally

along the caster.

To be able to handle all the possibilities discussed above, we shall sup-
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pose that there are n independent control parameters

(3.6)

and that the casting speed v and flow rates uj can be expressed in terms of

these

j=l, .. ,m.

Furthermore, we shall suppose that (3.1) and (3.2) become m+l linear con-

straints

(i = 1 , •• ,m+1 ) •

3.2 The objective (net production rate) function

Optimal operation of the caster involves a trade-off between high gross

production rates on the one hand, and the cost of treating any resulting pro-

duct defects on the other. Perhaps the most crucial part of any optimization

model is to develop a realistic means of quantifying this trade off, given the

usually rather limited information that i8 available. We shall sketch a poa-

sib1e framework for doing this.

(A) Decide upon a number M of defect types that are to be considered.

For each of these defects, develop a cri teri a for its occurrence whi eh i 8

expressable in terms of the output of the heat transfer model (that is, in

terms of a, and also maybe v). The task of formulating such defect criteria

is chiefly of a metallurgical nature.

(8) For each defect type define a "degree of defect" measure

dj ,j=l, .. ,M where

1. d. = d.(a,v) is a smooth function of the temperature array a and the
J J

casting speed v.



19

11. d
j

> 0, if a defect of type j is present according to the criteria in (A)

d
j

- 0, if the defect is not present according to (A).

Example 1. A simple defect criteria could be: Defect j will occur if the

surface temperature of the slab exceeds T*. In this case a possible degree of

defect measure could be

d.(e,v)= EOp(eU']-t*)
J k,l k

where E 0 denotes a summation over all indices (k,l) for which (xk,zl) lies
(k, l)

<3.8)

on the surface of the slab, and p(.) is some smooth function with the property

p(t) o if t :> 0 and

p( t ) > 0 if t > 0

For instance, (see Fig 2a)

pet) 0, if t :> 0,

pet) se", if t > 0

where 6 > 0 and n = 2,3, are appropriate constants.

The function dj defined in (3.8) satisfies (I ) and (11) of (B). The

larger the numerical value of d., the more serious is the violation of the
J

defect criteria. As the defect criteria will probably only ever be appr-oxr-

mate, it seems natural to talk in terms of such a continuously varying measure

of the degree of defect, rather in terms of a Simple, defect present/defect

absent dichotomy.

Obviously there are many variants of <3.8). For instance, if it were

thought more serious for the surface temperature to exceed T* at some Loca-

tions along the caster than at others, then (3.8) could be changed to

d.(e,v) = E 0 Ykl p(e~l]-T*)
J k,l

where Ykl > 0 are weighting factors.
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Example 2. Another possible defect criteria could be: Defect j will occur if

at z=zR. the solidified shell of the slab is less than h* in thickness. For

this criteria a possible degree of defect measure could be defined by

where 'SOLis the solidus temperature, E* denotes the summation over all
k

indices k for which xk is within h* of the surface of the slab, and p(.) is as

in Example 1.

Example 3. As a final example, consider the defect criteria: Defect j will

occur if the surface cooling/reheating rate lies outside the interval Q- ,Q+.

For this criteria we could define

NZ a[R.] a[R.-1]

d. ( a, v) = E E 8kR.11 (v ~k__ -:k-,--_)
J R.=2 k=l,N

x
zR. - zR.-1

where 8kR. are weighting factors used to emphasize some surface points (xk ,zR.)

relative to others, and 11(.) is a smooth function satisfying

u Ct ) 0 if Q :l! t s Q+,

+ -
II( t ) > 0 if r > Q or r < Q ,

(see Fig. 2b) .

P

t

2 (a) 2 (b)

Figures 2(a,b). Illustrative sketches of the functions p(t),~(t).
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(C) Penalize each defect by assigning a "cost" c. to each defect type
J

j=l, •• ,m, so that c. d. is the cost per uni t length of cast slab if defect j is
J J

present with the degree of defect d.. This cost is measured in units of
J

equivalent "ideal" (defect free) production. Strictly speaking, the cj could

be incorporated into the definition of the d.; however, we separate the two
J

concepts since, in some sense, dj is a metallurgical quantity while cj is a

commer ci alone.

(D) Define a net production rate function J = J(d,v). This should be a

smooth function of d = d1,d2, .. ,dm and v , The reason for requiring J, as well

as dj in (B) to be smooth is that most optimization techniques work best with

smooth objective functions. Given that there is considerable uncertainty in

the definitions of J and d. anyway, it should not be too much of an imposition
J

to require some degree of smoothness for J and d ..
J

Example 4. Perhaps the simplest net production rate function would be

M
1: Cjdj)V

j=l

where Y is the "ideal" yield per unit length, aasunt ng no defects. This must

J = J(d,v) •• ey <3.9)

be discounted for the second term in <3.9). This assunes that the "costs" of

the different defects are additive. After multiplying by the casting speed v,

(3.9) therefore represents the nett production per unit time.

3.3 The optimization problem

The nett production rate J is, of course, ultimately dependent on the

control parameters a = (a1, •. ,an). More precisely,

J = J(d,v) (see (D) of §3.2),

but

d - d(a,v) (see (ii) of (B) of §3.2),

(see <3.7»,v - v Cc)
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and of course through the solution of the heat transfer model we obtain the

temperature array e as a function of a

e = e(a).

Let us denote by J(a) this dependence of J on a.

The optimal design problem can then be formally stated as:

maximize J(a) <3. lOa)

subject to the linear constraints (see §3.1)

,0=1, .. .m+t ) <3.10b)

As has been hinted at before, the definitions of the net production rate

function J and the degree of defect measures d. are perhaps the weakest links
J

in the approach that has been outlined so far. Therefore one should not accept

any purely mathematical solution of <3.10) uncritically. Furthermore, there

is probably little to be gained by solving <3.10) "exactly", rather than only

approximately.

4. SOLUTION OF THE OPTIMIZATION PROBLEM

Solution of optimization problems by a single, all purpose, method is

cumbersome and inefficient. Optimization algorithms are designed for particu~

lar categories of problems, where each category is determined by properties of

the Objective and constraint functions. Also, within each category, a range

of algori thms is often available depending upon the information that is ava i Lr-

able about the deri vati ves of the objecti ve and constraint functions. More

information (function values, gradients, Hessians) generally means that a more

efficient algorithm is available. The size (number of variables) of the pr-ob-

lem is also an important factor in the choice of a suitable algorithm.
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There are a number of general purpose optimization packages available

(see the NAGLibrary, Chapter E04, Gill et al. (1984b), and the IMSL Library

for example). These are libraries of Fortran subroutines, and are designed

for use on minicomputers (a VAX for example) or larger computers. Linear

algebra packages are available (through IMSL and MATLABfor example) on per+

sonal computers such as the IBM PC and PC~AT. However, software for optimiza-

tion problems is not widely available on personal computers. In principle

there is no reason why algorithms for small optimization problems cannot be

implemented on one of the large personal computers.

The problem (3.10) is an optimization problem almost in a standard form,

with a nonlinear objective function, simple bounds (3.1) on the variables and

linear constraints (3.2). The standard form for optimization problems is that

of a minimization problem. A maximization problem, such as (3.10), can be

converted into a minimization problem simply by changing the sign of the

objecti ve function. To be consistent with the references we shall discuss

optimization procedures in terms of minimizing J(a) s -J(a). Typically n (the

number of variables a) and m+1 (the number of constraints) are of the order of

10. This size of problem does not require an algorithm designed for large

sparse problems. As there are no nonlinear constraints, the key feature in

determining a suitable algori ttln is the amount of deri vati ve information

available for the objective function. This is especially true for problem

(3.10) as each evaluation of J(a) requires a solution of the heat transfer

model, which is likely to be computationally expensive. Optimization algo-

which use both the objective value Yea) and the gradient V Ja
- aaJ ,i=1, •.. ,n) are considerably more efficient than those which onlyai

use J(a). Thus it is very important to be able to evaluate VJ(a). The quan-

rithms

tities needed for the evaluation of J (a) are outlined in section 3.2. However

the evaluation of V J(a) is considerably more difficult, as one of the quanti-a
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ties required is VaB. To obtain VaB,access to the internal working, or even

modification, of the heat conduction model may be required. For now we shall

asaune routines for evaluating J(a) and V J(a) are available, and discuss somea

of the methods for solving (3.10).

4.1 Methods for linearly constrained problems

Optimization algorithms generate a sequence of points a(k) that converges

to the solution a* in the limit. A convergence test (see Fletcher (1980),

Gill et al. (1981) and the NAG library) is used to terminate the computation

when the current estimate of the solution is adequate. The sequence !a(k)} is

generated by

(4.1)

where the vector s(k) is the direction of search and f;(k) is the steplength.

- (k+1) - (k)The steplength is computed so J(a ) < J(a ), using a technique for one-

dimensional minimization. This step is called the line search.

The search direction s (k) is obtained using a quadratic model of the

obj ecti ve function, namely

the

- kqk(s) = J(a )

V2;](a)
a

(4.2)

If Hess i an ([v2;](a») ..
a IJ

If V2J(a)
a

evaluated then

cannot be eval uated, then B(k) is a

positive definite quas r-Nevt on approximation to V2;](a), which is updated usinga

the gradient differences V J(a(k+1» - V J(a(k» (see Fletcher (1980,1981) or
a a

Gill et al. (1981) for more details). It is very important that second order

2-(curvature) information is used, ei ther by evaluating or approximating VaJ(a),

if an algorithm is to be efficient.

The search di recti on s (k ) is obt ai ned by minimi zi ng (4.2) subj ect to the

linear constraints
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j-2, ... ,m+1, (4.3)

and

m+1 m+1 m+1
b ~ l: a~k):> l: s. s B ~ l: a~k) (4.4)

j-z J j-2 J j-2 J

obtained from (3.1) and (3.2). This quadratic programming subproblem can be

sol ved in a number of ways, ei ther using a quadratic programming routine or by

using an active set method directly (Fletcher (1981, Chapt. 11), Gill et a1.

(1984a». A feature of such methods is that if a(1) is feasible and f;(k) :> 1

for all k in (4.1), then a(k) is a feasible point on every iteration. Thus

even if the optimal solution has not been reached,a point, wi th lower r unc-

tion value than the starting point and satisfying. all the constraints, is

always available.

If, in equation (4.2), B(k) = \lJ(a(k», another strategy is to replace
a

the line search (4.1) by a trust region algorithm, in which the constraint

11511 s r(k) (4.5)p

is added to the constraints (4.3) and (4.4) in the subproblem determining

(k) 2 n 25 • If P = 2, so lis 112 - l: Si' then (4.5) represents a spherical trust
is1

region of radi us
(k)

while if p = so Ilsll", = max !lsil,i=1, ..• ,n},r , ..,
then (4.5) represents a box-Like trust region. The size of the trust region

is governed by r(k) which is updated according to rules based on the agreement

between J(a(k) + s(k» and the quadratic model q (s(k» (see Fletcher (1980),
k

Gill et al, , (1981) for more details).

Trust region methods are some of the moot efficient methods for nonlinear

optimization. However, they have the major disadvantage of requiring ,y2J(a)
a

to be evaluated. When only the gradient VaJ(a) is available, the most er r r-

. 2"":
cient method is to use a quas l+Newt on approximation to VaJ(a). If only the

function value Yea) can be evaluated, then the usual strategy is to use fini te
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differences to approximate V J(a) (Gill et a1. (1983» and then use thisa
approximation in a quasi-Newton method. This can be very expensive as at

least n extra function evaluations are required to evaluate V J(a). Thus ita

is essential that VaJ(a) is evaluated if possible.

5. SUHHARY

The suggested steps for developing a mOdel for the steady state problem

are:

1. develop criteria for the occurrence of defects in terms of the Lndepen-

dent parameters (section 3.1).

2. develop a net production rate function in terms of the independent param-

eters (section 3.2).

3. use optimization software to provide good values of the parameters (sec-

tion 4).

At each stage the models must be verified by comparison with industrial

experience and current operating practices, before they are used to I nves t.r-

gate the performance of the system under new condi tions.

Note that ini tially considerable advantage can be gained by reducing the

number of independent variables as discussed in section 3.1. The very small

number of parameters (3 or 4) so obtained would allow graphical investigation

of the net production rate function J(a). As a first step one could just look

at values of J(a) obtained for different parameter values, without using any

optimization software. The very small number of parameters would also make

finite difference approximations to VaJ(a) practical, so the current heat con-

duction model could be used in conjunction with efficient optimization

software. Further developments may well require modifications to the current

heat conduction model.
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