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Abstract

Earthquake damage in underground roadways and mine workings is considered,
with particular application to the mines operated by Solid Energy NZ Ltd., on the
West Coast of New Zealand’s South Island. The scenario considered is the effect on
the mine workings of an earthquake, of moment magnitude eight, being generated
by a rupture of the Alpine fault.

An empirical relation from the seismology literature is used to relate earthquake
magnitude, distance from the epicentre and the peak ground acceleration resulting
from the seismic waves. This relation is used to estimate the likely damage at the
mine site. Also, the decay scale for Rayleigh (surface) waves is calculated and the
implications for the mine workings considered.

The two-dimensional scattering of shear (SH) seismic waves from the mine work-
ings is considered. Analytical solutions relevant to various mine tunnel geometries
are presented with the stress and displacement amplification, due to scattering from
the mine workings, calculated and discussed.

1. Introduction

Solid Energy NZ Ltd operates a number a coal mines on the North
and South Islands of New Zealand (NZ), extracting more than three
million tonnes of coal each year. These include the Terrace and Spring
Creek mines sites, on the West Coast of the South Island, which are the
focus of this Mathematics in Industry Study Group (MISG) project.

The Alpine fault is one of the longest faults in the world. It is about
20km deep and extends from Marlborough to Milford Sound, a distance
of about 500km. The fault has a return period of 250-300 years with
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large earthquakes, of about moment magnitude eight, occurring in the
years 1100, 1450, 1620 and 1717. There is a significant chance, of about
40%, that the fault will rupture in the next twenty years resulting in an
earthquake of moment magnitude Mw = 8 or greater. As the Terrace
and Spring Creek mines lie close to the Alpine fault, Solid Energy NZ
Ltd. asked the MISG study group to investigate the likelihood of damage
to the mine workings, typically about 200 to 400m underground, from
a magnitude eight earthquake. This scenario represents a major earth-
quake. For example, the 1906 San Francisco earthquake was of moment
magnitude Mw = 7.9, caused by a rupture of the San Andreas fault,
while in 2002 a moment magnitude Mw = 6.7 earthquake devastated
Bam in Iran, which was within about 30km of the epicentre.

Dowding and Rozen? summarised the damage to various underground
mines from about 70 observations of earthquake damage in mines world-
wide. They used an empirical formula to estimate the peak ground ac-
celeration from the earthquake magnitude and the distance from the
epicentre. A strong correlation between damage and increasing ground
acceleration was found, with only minor damage occurring when the
peak ground acceleration is below 0.5g, where g is the acceleration due
to gravity. Sharma and Judd? added new observations to those used by
Dowding and Rozen? (about 150 observations in total) and found that
damage decreases with increasing depth of the mine workings, related to
the fact that Rayleigh waves decay with depth. They also found a strong
correlation between mine damage and increasing ground acceleration.

Both St John and Zahrah? and Hashash et. al.? comprehensively
reviewed the design and analysis of underground tunnels and structures
subject to seismic events. The papers concentrated on the damage due
to ground shaking with the peak ground acceleration and velocities gen-
erated by the earthquake considered to be key indicators of damage
caused to the structure. Mathematical models, developed using elastic-
ity theory, which estimate the stress (force) and strain (deformation) on
underground structures were reviewed. Both analytical and numerical
solution techniques were discussed as was the effects of ground-structure
interaction.

Pao? considered the scattering of compressive waves from a circular
cavity. Figures were presented of the stress amplification factor, which
is the stress on the cylinder’s surface, normalised by the maximum stress
resulting from the incident wave propagating in the solid with no cavity
present. Their results show a stress amplification of up to three can
occur at the cavity boundary with the maximum amplification occur-
ring for incident waves about 25 times longer than the cylinder radius.
Moon and Pao? considered the scattering of incident plane and spheri-



cal elastic waves from a spherical cavity. For a Poisson’s ratio of ν = 0.3
the interaction of incident plane waves and the sphere caused a stress
amplification of less than two at the cavity boundary.

In 2 the governing equations for seismic waves are presented and the
decay length scale for Rayleigh waves is estimated for the most energetic
wavelengths incident upon the mine-workings. Also, an empirical rela-
tionship is used to determine the peak ground acceleration of the seismic
waves incident upon the mine workings and the damage they are likely
to cause.

In 3 scattering of incident seismic waves from mine workings with vari-
ous geometries are considered. Analytical solutions are presented for the
scattering of two-dimensional shear (SH) waves. These analytical solu-
tions represent the scattering from some typical mine tunnel geometries
and allow the stress and displacement amplification to be estimated. 4
provides a summary of our conclusions and suggestions for future work.

2. Governing equations and empirical relations

In this section the equations governing the propagation of seismic
waves are briefly described and the properties of the waves incident upon
the mine workings are estimated. The decay scale for Rayleigh (surface)
waves is calculated and empirical relations are used to estimate the likely
damage in the Spring Creek and Terrace mine workings from a moment
magnitude Mw = 8 earthquake on the Alpine fault.

2.1. Governing equations

Assuming that the earth is an isotropic linear elastic medium means
that the seismic waves are governed by the partial differential equation

ρ0utt = (λ+ 2µ)∇2u + (λ+ µ)∇× (∇× u), (1)

where u is the displacement, ρ0 is the density of the medium, and
λ and µ are the Lamé constants (see p37 of Beford and Drumheller ?).
There are three main type of seismic waves, P-waves, S-waves and Rayleigh
(surface) waves. For one-dimensional compression waves, or P-waves, we
assume that the displacement has the form u = u(x, t)i, where u satisfies
the one-dimensional wave equation

utt = α2uxx, where α2 =
λ+ 2µ

ρ0
, (2)



and α is the P-wave speed. For one-dimensional shear waves, or S-
waves, the displacement has the form u = u(x, t)j and u is described
by

utt = β2uxx, where β2 =
µ

ρ0
, (3)

and β is the S-wave speed.
Rayleigh waves propagate along the surface of the Earth and have

compression and shear components. We assume that u = u1(x, z, t)i +
u3(x, z, t)k, where u1 = φx − ψz and u3 = φz + ψx The compressive, φ,
and shear, ψ, components satisfy the two-dimensional versions versions
of the P and S wave equations, (2) and (3), respectively. The solution
for the two components is

φ = Ae−hzeiθ, ψ = Ce−hszeiθ, θ = k1(x− crt), (4)

h2 = (k2
1 −

ω2

α2
), h2

s = (k2
1 −

ω2

β2
), (5)

where the x-axis is horizontal, along the Earth’s surface, and the z-
axis is vertical and points downwards. k1 is the wavenumber, cr = ω/k1

is the wave speed and ω is the frequency. The amplitude of the Rayleigh
wave decays with depth and h and hs are the decay rates for the two
wave components. Applying a zero-stress boundary condition at the
surface z = 0 gives the Rayleigh characteristic equation as

(2 −
c2r
β2

)2 − 4(1 −
β2

α2

c2r
β2

)
1

2 (1 −
c2r
β2

)
1

2 = 0,
β2

α2
=

1 − 2ν

2(1 − ν)
, (6)

where ν is Poisson’s ratio. Hence (6) is a transcendental equation for
cr/β, which depends only on the value of Poisson’s ratio.

2.2. Length scale for Rayleigh wave decay

As seismic waves propagate away from the earthquake epicentre they
undergo attenuation due to damping and geometrical effects. As the
damping is frequency dependent the spectral response of the site needs
to be determined. Abrahamson and Silva? have developed an empirical
spectral attenuation relationship based on several hundred recordings
from about sixty earthquakes around the world. The empirical model
predicts that the peak ground acceleration which occurs at a site de-
creases as the distance r from the epicentre increases. It also predicts



that the period of the seismic wave, for which the ground acceleration
is a maximum, increases as r increases. For r = 40km, which is the
distance of the Spring Creek and Terrace mines from the Alpine fault,
the most energetic waves have a period in the range T ∈ [0.2, 0.3]s.

To estimate the wavelength of the incident waves we assume that
ν = 0.25 and β = 2km/s, both of which are reasonable assumptions for
rock. Using a period of T = 0.25s gives the wavelength of the incident S
and P-waves to be λs = 500m and λp = 870m respectively. Using these
estimates in (4) and (6) gives the decay constants of the Rayleigh wave
as h = 23 and hs = 11. To determine the effect of Rayleigh waves on
the mine workings the depth at which the wave amplitude has decayed
to 10% and the energy to 1% of the surface values is calculated. For
the compressional component the depth is z = 100m while for the shear
component z = 210m.

Hence the Rayleigh waves have almost completely decayed away at
depths z > 200m, where the Terrace and Spring Creek workings are
located. Hence Rayleigh waves are unlikely to cause any damage to the
underground workings, which will be subject to incident S and P-waves
only. Sharma and Rudd (1991) examined 132 cases of earthquakes at
mine sites and found moderate or heavy damage rarely occurred below
100m. Hence, it seems Rayleigh waves cause the severe earthquake dam-
age in shallow mines and S and P-waves cause lighter damage only, in
the deeper mines.

2.3. Attenuation of the incident seismic waves

There exist many empirical relationships in the seismology literature
relating earthquake magnitude, distance from the the epicentre and the
peak horizontal ground acceleration, see Hu et. al.?, for a list of some of
these relations. The empirical relation used by Abrahamson and Silva ?

has the form

ln
a

g
= a1 + a2(Mw − c1) + a12(8.5 −Mw)2 (7)

+(a3 + a13(M − c1) lnR, R = (r2 + c24)
1

2 , (8)

where a is the peak ground acceleration, g is the acceleration due to
gravity, Mw is the moment magnitude of the earthquake and r is the
distance to the rupture site. The relationship (7) is valid for Mw < c1,
for Mw > c1 the coefficient a2 is replaced by a4. The coefficients are
found by fitting (7) to the observed earthquake data using a regression
analysis. See table 3 of Abrahamson and Silva? for a list of the regression
coefficients for different incident wave periods.
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Figure 1. The peak ground acceleration, scaled by g, versus moment magnitude
Mw, for T = 0.2s and r = 40km.

Figure 1 shows the peak ground acceleration versus moment magni-
tude for r = 40km and T = 0.2s. Shown is the empirical relationship
(7) using the regression coefficients of Abrahamson and Silva? corre-
sponding to a wave of period T = 0.2s. This period is near the peak of
the spectral response curve hence represents one of the most energetic
wave periods. The choice of r = 40km corresponds to the distance of
the Spring Creek and Terrace mines from the Alpine fault.

The peak ground acceleration is a monotone increasing function of the
moment magnitude. The curve has a slope discontinuity at the point
Mw = c1 = 6.4 because different regression coefficients are used for
small and large magnitude earthquakes. For a scenario of Mw = 8 the
estimate of the peak ground acceleration at the Spring Hill and Terrace
mine sites is a = 0.39g. Fig. 3 of Dowding and Rozen (1978) plots peak
accelerations versus mine damage. They showed that severe damage
occurs for a > 0.5g, while minor damage occurs when 0.2g < a < 0.5g,
and little or no damage occurs for a < 0.2g. Hence it is likely that only
minor damage will occur in the Spring Creek and Terrace mine workings
as a result of a moment magnitude Mw = 8 earthquake on the Alpine
fault.

The data used to obtain the empirical relationship (7) comes from
about sixty earthquakes of magnitudes ranging from 4.4 to 7.4. No data



on more extreme earthquakes, such as the Mw = 8 scenario considered
here, is included. Extrapolating the data to this scenario must be done
with caution, however, we believe that the empirical model gives a rea-
sonable “ballpark” estimate for the peak ground accelerations and note
that this estimate is well within the range of accelerations in which light
damage occurs.

3. Scattering of elastic waves from the
mine-workings

During a seismic event the mine workings will be subject to incident S
and P-waves as the mines are too deep to be affected by Rayleigh waves.
The incident seismic waves will be scattered by mine roadways, tunnels
and other workings. In this section we will investigate the increased
stress and displacement generated by the scattering of waves from the
mine-workings. If the increased stress is excessive, failure of the tunnel
or roadway may occur. Analytical solutions, for a number of mine-tunnel
geometries, are presented and the stress and displacement amplification
is discussed.

We ignore compressive waves and only consider shear (SH) waves
incident upon two-dimensional tunnels and cavities. This is done for
mathematical simplicity as incident shear waves generate only scattered
shear waves whilst the scattered wavefield from an incident compressive
wave has both compressive and shear components. Moreover, results
in the literature for compressive wave scattering (discussed below) are
qualitatively similar to those for shear wave scattering.

The displacement has the form u = u(x, y)e−iωtk and is governed by
the Helmholtz equation

∇2u+ k2u = 0, where k =
ω2ρ0

µ
. (9)

A boundary condition of zero normal stress is applied at the tunnel
or cavity surface. This gives

∇u · n = 0, (10)

where n is the normal to the cavity or tunnel. As the problem is linear
it is decoupled into incident and scattered components, u = ui +us. The
scattered wave must satisfy the Sommerfeld radiation condition on the
domain boundary,



lim
r→∞

r
1

2 (us
rr − ikus) = 0. (11)

There is a close analogy between the scattering of two-dimensional
shear waves and the scattering of acoustic waves.

The first scenario considered is the reflection or scattering of seismic
waves from a long roadway or tunnel located at x = 0. The solution is

ui = eik(x cosα+y sin α), us = eik(−x cosα+y sin α), (12)

where the wavefield u = ui + us satisfies a condition of no normal
stress at x = 0 and α is the angle the incident wavetrain makes with the
tunnel. The displacement (stress) amplification factor is defined by the
ratio of the displacement (stress) of the total wavefield u to the maxi-
mum displacement (stress) of the incident wavefield. Hence it represents
the amplification of the displacement or stress, due to scattering from
the tunnel. We calculate displacement u(0, y) and the tangential stress
τzy = µ∂u

∂y
(0, y) at the tunnel boundary and find that the stress and dis-

placement amplification factor at the boundary is two for all angles of
incidence α. The magnitude of the tangential stress at the boundary is
zero for waves normally incident upon the tunnel (α = 0), and increases
as α increases. Hence the maximum boundary stress occurs for incident
wavetrains propagating nearly parallel to the tunnel (α near π

2 ).
The second scenario is the scattering of seismic waves from a circular

cavity, which could represent the circular cross-section of a long tunnel
or be a two-dimensional approximation to a larger cavern within the
mine. Scattering from a circular cavity by plane waves is a classical
problem with an exact series solution, see Graff?. The solution has the
form

ui = eiky, us =
∞∑

m=−∞

amHm(kr)eimθ, am = −
J

′

m(k)

H ′

m(k)
, (13)

where Jm and Hm are Bessel and Hankel functions of the m-th kind.
The cavity has unit radius and its centre is located at r = 0. Note that
the wavenumber k is a non-dimensional quantity, as it has been scaled
by the radius of the cylindrical cavity.

Figure 2 shows the stress and displacement amplification factor versus
wavenumber k, at the cylinder boundary. This is found by calculating
the displacement u(1, θ) and the tangential stress τzθ = µ∂u

∂θ
(1, θ) at

the cylinder boundary by summing the series solution (13). Figure 2
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Figure 2. The stress (solid line) and displacement (dashed line) amplification factor
at the cylindrical boundary versus wavenumber k.

shows that in the long wavelength limit (k → 0) the stress concentration
factor is two while is it fairly steady at around 1.5 for shorter waves with
k ∈ [3, 10]. The peak of the stress amplification curve is 3.26 at k = 0.65.
The displacement amplification is unity in the long wavelength limit
(k → 0) while it approaches two in the short wavelength limit (k → 0).

For the Spring Creek and Terrace mines the wavelength of the incident
shear waves is λs = 500m. Hence the peak stress amplification, at
k = 0.65, corresponds to a radius r ≈ 50m. This dimension is larger
than the radius of a mine tunnel but might correspond to a larger cavern
or cavity in the mine. A mine tunnel has a cross-section with radius of
about four metres which corresponds to k = 0.05, or the large wavelength
limit. In this limit the stress amplification factor is two.

Figure 2 is qualitatively similar to those in Pao?, who considered the
case of the scattering of compressive waves from a circular cavity. For
incident compressive waves the results of Pao? show that the peak stress
amplification of about three occurs at k = 0.25, which corresponds to a
cavity of r ≈ 35m in our scenario. Moon and Pao? considered the three-
dimensional extension to Pao?, that of the scattering of compressive
waves by a spherical cavity. In this case the peak stress amplification of
1.95 occurs at k = 0.95.



The third scenario considered is the two-dimensional scattering of
seismic waves from a thin semi-infinite tunnel. Consideration of this
scenario allows the displacement and stress amplification at the end of
the tunnel to be determined. This is important as development headings
(tunnel dead-ends) are areas of substantial human activity in mines.

The incident wavetrain has the form

ui = e−ik(x cos α+y sin α), (14)

hence the incident waves make an angle α with the positive x-axis.
The tunnel is located along the negative portion of the x-axis, hence the
stress-free boundary condition becomes

uy = 0, −∞ < x ≤ 0, y = 0. (15)

This is the classical Sommerfeld diffraction problem, and the solution
for the scattered wavefield is

us(r, θ) = ∓
iei

π

4

π
1

2

[e−ikr cos(θ+α)F (p2) − e−ikr cos(θ−α)F (p1)], (16)

where p1 = (2kr)
1

2 cos((θ − α)/2), p2 = (2kr)
1

2 cos((θ + α)/2),(17)

F (v) =

∫ ∞

v
eit2dt, (18)

see Graf?. The function F (v) is related to the Fresnel sine and co-
sine integrals and is simple to calculate numerically. The two solution
branches correspond to the solution for y positive (minus sign) and y
negative (plus sign).

Figure 3 shows the displacement of the wavefield u = ui + us versus
−kx, along the surface of the tunnel, y = 0. The angle of incidence
α = π

2 , hence the seismic waves are normally incident upon the tunnel.
The upper curve shows the the displacement along along the upper edge
of the tunnel while the lower curve shows the displacement along the
lower edge of the tunnel. The upper edge reflects the incident waves
so on this side of the tunnel the solution consists of both reflected and
diffracted components. As −kx→ ∞ the displacement approaches two,
the appropriate displacement amplification factor for reflection from an
infinitely long tunnel. The peak displacement of 2.35 is greater than
that for a infinitely long tunnel, hence the diffracted wave from the tip
of the tunnel increases the displacement slightly. The lower edge of the
tunnel is in the shadow zone so the solution here represents a diffracted
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Figure 3. The displacement versus −kx for α = π

2
. The upper (lower) curve is the

displacement along the upper (lower) edge of the tunnel

wave only. As −kx → ∞ the displacement approaches zero, again the
correct value for an infinitely long tunnel. The peak displacement in the
shadow zone is u = 0.34 at −kx = 2.35, hence the diffracted wave does
not cause a large displacement on the lower edge of the tunnel.

Taking the limit as x → 0 gives us → cx
1

2 , where c is a constant.
Hence the tangential stress, which is proportional to us

x, is singular at
x = 0. So for a tunnel of zero width, the stress at the end of the tunnel is
infinite. This result indicates that the stress at the end of a real tunnel,
with finite width, is likely to be very large.

The presented solutions indicate that stress and displacement ampli-
fication, due to wave scattering, is limited to a factor of two or three.
In general this amplification is unlikely to be sufficient to be the cause
of extensive damage. However, sharp corners, bends and development
headings in the mine tunnel network are locations where larger stresses
will occur and are points of possible failure during an earthquake.

A possibility not considered in this section is mine damage due to the
focussing of seismic waves. This may occur if the mine lies in a band
of rock with spatially varying material properties. A numerical study
using a finite-element package would be the most suitable approach for
investigating this.



4. Conclusions and recommendations

The study has considered the likely impact of a moment magnitude
eight earthquake, from a rupture of the Alpine fault, on the Terrace
and Spring Creek mines. The decay length scale for Rayleigh waves has
been identified and it is shown that the underground mine-workings are
too deep to be affected by Rayleigh waves. Observations of earthquake
induced mine-damage also indicate that deep mines are largely protected
from earthquake damage.

An empirical relation is used to estimate that peak ground accelera-
tion at the mine-sites and it is found that a magnitude eight earthquake
is only likely to cause light damage within the mine. Analytical so-
lutions are used to estimate the stress and displacement amplification
which results from the scattering of shear waves from the mine tunnels
and workings. It is found that the stress amplification is generally lim-
ited to a factor of only two or three and hence is unlikely to cause serious
damage. However, sharp corners, bends and development headings have
been identified as possible failure points in the mine tunnel network.
Consideration should be given to reinforcing or lining the tunnels at
these locations to prevent damage.

For the Terrace and Spring Hill mines, it is concluded that serious
damage is unlikely to occur to the underground workings, located at a
depth below 200m, as a result of a magnitude eight earthquake on the
Alpine fault. However, Rayleigh waves from the earthquake are likely to
cause extensive damage to the surface-based mine operations and mine
portal area. This may mean that unharmed mine-workers are unable to
exit the mine due to damage to the mine portal. Moreover, earthquake
damage to the mine ventilation system may have serious consequences
for any miners trapped below. Hence earthquake proofing the mine
portal area and ventilation system is very important and represents a a
good topic for future investigation and study.
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