
The Selas furnace is part of the metallic coating process used by BHP Coated
Products Division. Sheet steel, typically,...., 1mm thick and,...., 1m wide is passed
continuously through the furnace and thereby annealed to its required temper-
ature and cleaned of surface contaminants. A typical strip speed is 100m/min.
Gas-fired burners inset into the furnace walls produce hot combustion products,
which transfer heat to the strip via radiation and forced convection. The heat
transfer can be controlled by varying the fuel rate supplied to the burners, as
well as by turning burners on or off. A schematic of the furnace is shown in
figure 1.

CPD have developed a steady state model of the furnace operation, which
can be used to determine optimum operating conditions. However, there is a
significant amount of time when a furnace is not operating in steady state, due
to a change of product, or to some problem further downstream which may cause
the strip speed to change. lIenee it is desirable to develop a transient model of
furnace operation. The aim is to use such a model to formulate control strategies
that will minimise wastage due to incorrect heating of the strip when a transient
occurs.

3. \Vhat are the dominant effects (terms in the equations)?

4. How long does it take for an introduced transient to disappear?
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The steady-state model is based on consideration of heat transfer in the
furnace. It assumes that the gas flow is upwards and is turbulent, so that it
is well mixed across the furnace. Then all gas properties are dependent only
upon the height variable x. All longitudinal radiation is ignored, so radiation
is considered to be in a direction normal to the strip. The furnace walls are
assumed to be adiabatic, so any heat absorbed by the wall is radiated back into
the furnace. The combustion products of the burners are calculated to have a
density and composition corresponding to the adiabatic flame temperature of the
combustion process. Thermal conduction longitudinally in the strip is neglected
and conduction through the strip thickness is ignored, because it is so thin. The



dTs Qgs (1)
dx insCps
dTg M(had - hg) - Qgs (2)
dx ingCpg

ding
M(x) (3)

dx
Bw - Bgw - qwc 0 (4)

Equations (1-2) represent heat balances in the strip and gas respectively and
equation (3) is a mass balance on the gas. Equation (4) is the wall heat balance.
Ts and Tg are the strip and gas temperatures at height x in the furnace, ing

is the total mass flow rate of gas and if(x) is the input gas flow rate; Qgs is
the rate at which heat is absorbed by the strip, due to both convection and
radiation, ins is the downward mass flow rate of the strip and Cps is its specific
heat; had is the enthalpy of the gas at its adiabatic flame temperature and hg
is the enthalpy of the gas in the furnace; Cpg is the gas specific heat; Bw is the
wall "radiosity", i.e. the radiative flux emitted by the wall, Bgw is the radiative
flux transferred from the gas to the wall and qwc is the heat flux transferred to
the wall by forced convection. Equation (4) is a fourth order polynomial in Ts,

Tg and the wall temperature Tw.

The above set of equations comprises three o.d.e.'s and an algebraic equa-
tion for the 4 unknowns Ts, Tg, ing and Tw (which is related to Ts and Tg by
the adiabatic condition (4)). They are nonlinear, due to the radiation terms.
Three boundary conditions are required to complete the model specification.
The boundary conditions chosen by CPD were

Ts(l) = Tsl

Ts(O) = Tg(O)

ing(O) = 1ngo

Here, Tsl and 1ngo are known constants, and represent the strip temperature at
the top of the furnace (x = l) and a leakage flow of gas into the bottom of the
furnace. The boundary condition (6) is based on the assumption that there is
only a small amount of gas at the bottom of the furnace, which will equilibrate
with the strip temperature.

The set of equations and boundary conditions that comprise the above steady
state model have the problem that if the leakage flow mgo is zero, then the equa-
tions are singular at x = O. Consequently, the numerical solution is difficult. In



order to remove the singularity, it was suggested that the numerator in equation
(2) be set to zero at x = 0, i.e. replace boundary condition (6) with

and set mgo = O. Equation (8) is actually an algebraic equation relating Ts,Tg
and Tw, but Tw can be eliminated using equation (4). A shooting method is
required to solve this system, because the gas temperature at the bottom is
unknown. A typical numerical solution for Ts and Tg is shown in figure 2. This
result was obtained using a modified version of the original boundary conditions.
If the original boundary conditions were used, the numerical solution exhibited
the expected singular behaviour near x = 0, with the result that solution was
difficult to obtain. However, the solution away from x = 0 seems fairly insensitive
to the behaviour near x = o.

It is interesting to note that an attempt was made to linearise the steady
state equations, assuming that the gas inflow if is a constant, so from equation
(3) ing varies linearly with x. The result, obtained by eliminating Tg, is the
following 2nd order o.d.e for Ts

where the primes indicate diffferentiation with respect to x and h, 14, kl, k2
and k3 are constants, which were not evaluated. Equation (9) is an example
of Kummer's equation, which has confluent hypergeometric function solutions
(Abramowitz & Stegun, 1965). The equation has a regular singularity at x = O.
It has one solution which is finite at x = 0 and one which has a logarithmic
singularity at x = O.

By using similar assumptions to the steady state model, it is fairly straight-
forward to derive transient model equations for the strip, gas and wall temper-
atures and the gas mass flow rate. They are

oTs V oTs Qgs
fit - s ox PswsdsCps
oTg V oTg .M(kad - kg) - Qgs + QgW
nt + 9 nx d CU U pgWg 9 pg

omg odg
ox = 111 - pgWg ot

In these equations Vs is the strip speed, Vg is the gas speed and is given by

m
'~(x, t) = 9

pgwgdg
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Figure 2: Strip and gas temperatures from steady state model (solid lines) and
linearised model (dashed lines). Note the two different axes.

p, wand d are the density, width and thickness respectively of the strip (subscript
s) and the gas (subscript g). The final term in equation (12) allows for the
possibility that the strip thickness ds may vary, and hence the thickness of the
gas flue dg must also vary, since ds + dg is constant.

It is possible that heat conduction through the furnace walls is not negligible
during a transient phase, so an additional term, Q9W where

has been included in equation (11), which represents the heat flux from the
wall to the gas via conduction. Pw is the perimeter (i.e. surface area) of the



walls. Conduction in the walls may be assumed to be one dimensional, neglecting
longitudinal conduction, so the appropriate equation is

a2Tw aTw (
Il,w ay2 = at 13)

with the boundary condition at the inside of the wall (y = 0, say) being

a~ (- kw ay = Bgw - Bw + qwc 14)

Here, Kw is the thermal diffusivity of the wall and kw is its thermal conductivity.
It is also necessary to have an equation of state, for which the ideal gas law,
with constant pressure, is appropriate, namely

The above model results in a set of coupled partial differential equations for the
strip, gas and wall temperatures and the gas mass flow rate. The inclusion of
wall heat conduction and time variation has led to a considerably more compli-
cated set of equations that require solution. The remainder of this report, and
indeed the majority of the activity at the Study Group, involves examining these
equations in order to understand the important features of the equations and to
ultimately develop efficient methods of solution.

The following scalings are appropriate: Ts - Tsl with ~, the change in strip
temperature from top to bottom in the furnace, Tg - Tsl with ~, x with I, the
furnace length, and t with T = ljVso where Vso is a typical speed of the strip.
Then T is the transit time any point on the strip spends in the furnace. The
scaled equations then become

aTs Vs aTs alQ s
7ft - Vso ax = Vso

aTg Vg aTg {31Qgat + Vso ax = v:.o (17)

Here the nonlinear right hand sides of the equations for Ts and Tg have been
incorporated into the single terms, Q sand Q 9 respectively. They have then
been scaled with as yet unknown constants a~ and {3~. The idea of the above
scalings is that the most obvious time scale for a transient to disappear is T,

which is the time it takes for a piece of strip to pass through the furnace. We
then want to know if the heating process, as described by the right hand sides of
the equations, has much effect on this time scale. Typical values of the constants
in the above scalings are 6. = 600f(, I = 10m and Vso = 1ms-1.



One approach to estimating the timescale for transients is to consider a linear
model, which exhibits most of the features of the actual transient model. This
has the advantage that actual solutions may be obtained. Consider, for example,
a model problem where all the hot gas enters at the bottom of the furnace, as
shown in figure 3. Also, assume that no heat is lost through the furnace walls and
that the heat transfer between the strip and the gas takes the form of Newton's
law of cooling. Then the appropriate linear model equations, in dimensionless
form, are

aTs _ aTs = a(T _ T) (18)
at ax 9 s

aTg baTg = -j3(T _ T ) (19)at + ax 9 s
Both the strip and gas velocities have been taken to be constants, namely 1 and
b respectively. A value of b roughly comparable with the conditions in a real
furnace is b = 10. It is possible to obtain estimates of appropriate values for
a and j3 by "fitting" a steady state solution of the linear model equations to
the sample numerical result of the actual nonlinear steady state model. This
exercise yields the approximate values a = 0.5 and j3 = 2. The "fitted" linear
solutions for Ts and Tg are superimposed on the numerical solutions shown in
figure 2, and the comparison between the graphs is not unreasonable.

The aim of the linear model approach is to introduce a perturbation to the
strip temperature at t = 0 and determine the time required for this perturbation
to disappear. That is, we set

Ts(x, t) = Tso(x) + T:(x, t)

Tg(x,t) = Tgo(x)+ T~(x,t)

(20)

(21)

where the subscript 0 indicates a steady state solution and the primed variables
represent perturbations. The initial perturbation is defined by

Now the equations for the perturbed variables are identical to equations (18-19),
so for the remainder of this section we will drop the primes for convenience. The
appropriate boundary conditions for the perturbation variables are

Ts(x = 1) = 0

Tg(x = 0) = 0
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and solution of this system will give information about the strip temperature
at the bottom of the furnace (Ts(x = 0)). Rather than attempt solution of this
system we integrate (18-19) with respect to time, t and write

Ts(x) = 1=Ts(x, t)dt

Tg(x) = 1= Tg(x, t)dt

with the resultant equations for Ts and Tg being

dTs " "- = aCT - Ts) + 1dx 9



Solution of (23-24) and evaluation of the boundary conditions yields the following
result

1+ X(~ -1)
1+ X(e'\ - 1)

1+ ~
l+a

where A = a - f3lb is small for the values of a, f3 and b given here, which
leads to the approximate relation given above. Now if we expect that the strip
temperature at the bottom of the furnace will decay roughly exponentially, i.e.

t =100

Ts(O, t)dt '" to

so the result given by equation (26) above gives a time scale for the decay of a
perturbation in the furnace, i.e.

1+9:-
to'" __ 2 = 0(1)

l+a

This is a particularly interesting result. Firstly, it says that any perturbation to
a steady state will disappear in about the same time as it takes a piece of strip
to pass through the furnace. Secondly, this decay time depends only upon a,
to first order. This means that the rate of heat transfer to the strip is the rate
limiting mechanism, rather than the rate at which heat is supplied by the gas.
This is sensible when we know from the steady state model that only about 30%
of the heat available in the gas is transferred to the strip, with the rest going out
the top of the furnace. Finally, it is worth noting that to < 1, indicating that
the term on the right hand side contributes positively to the damping out of a
perturbation, so that to is less than the characteristic residence time of the strip.
This also is consistent with the fact that there is an excess of heat available in
the gas, so that the heat transfer to the strip can be adjusted to attain a steady
state more rapidly.

There are other methods of obtaining the same time scale as calculated here.
They include considering the Laplace transform of the linear equations or exam-
ining the appropriate Green's function solution to the equation. Attempts were
made to do this during the Study Group, and it became clear that all 3 methods
led to equivalent timescales.

The importance of this result is that it appears that the linear model, if
perturbed, will achieve a new steady state in a time comparable to the residence



time of the strip. Whilst the above linear model is a gross simplification of the
actual nonlinear model, it does maintain sufficient of the physics to allow some
relevance to be attached to the result calculated here. In other words, it is to
be expected that in the real furnace a change to a new steady state will occur
in a time comparable with the strip residence time, which is about 10 seconds
for the BlIP furnaces.

The walls of the furnace consist almost entirely of refractory material, which
is a poor conductor of heat. In the steady state model, the thermal conductivity
is, in fact assumed to be zero, so that no heat is conducted through the wall. It
is not clear whether the same assumption is appropriate in the transient case.
At first thought, it would seem that the wall conduction would not affect the
strip temperature in any way, unless it was a very large effect. This is because
there is, in general, a large surplus of heat in the gas, i.e. the majority of the
heat added to the furnace via the gas actually exits the furnace at the top.
The results of the steady state calculation show this. So the energy lost to wall
heat conduction would need to be comparable to that lost to the strip for it to
be significant. The following calculation provides some insight into the relative
effect of wall heat conduction. If the temperature at the wall (y = 0) changes
by an amount !::i.T, then the flux of heat conducted into the wall in t seconds is
approximately

.jK,pCpt::.T

Vi
where K is the thermal diffusivity of the wall material, p is its density and Cp

its specific heat. If we take K = 10-6m2 Is and pCp = 106J Ikg.K, then the rate
of wall heat conduction is

10~Tw/m2

Now if the appropriate timescale for a transient is of the order of the time for
the strip to pass through the furnace, then we should set t = lOs, and so the
rate of heat conduction is

lIw ~ 7 * 105W

for !::i.T= 100f( and a wall surface area of 20m2• This can be compared with a
typical rate of energy input from the gas, which can be obtained from the steady
state model to be approximately

lIenee the wall heat conduction is of the order of 10% of the heat input from
the gas. This is small, but it is a comparable amount to the amount of heat



transferred to the strip via radiation and conduction. Thus it is not necessarily
true that the wall heat conduction is a negligible effect. In any case, it would be
sensible to attempt a solution of the transient model equations in the absence
of heat conduction initially, because later inclusion in the solution procedure
should not require a great deal of extra work.

The solution of the complete set of equations for the transient model of the
Selas furnace, as described in section 3, needs to be done numerically. There
are at least three possible methods that could be used, namely (a) a shooting
method (b) a backward method of characteristics and (c) a Laplace transform
method. A brief description of each method follows:

The equations for the strip and gas temperatures (10-11) are discretised in
time only, using a fully implicit, backward Euler scheme i.e.

(
aT )(n+l) 1 [T(n+l) _ T(n) ]__ s _ s s _ R(n+l)
ax - V}n+l) 6.t s

(
O_T_9)(n+l) = _1_ [R(n+l) _ TJn+l) - TJn)]

ax v.(n+l) 9 6.t
9

{Bw - Bgw - qwc}(n+l) = 0

where Rs and Rg represent the terms on the right hand sides of equations (10-
11), and the superscripts (n) and (n + 1) denote solutions at times tn and tn+1

respectively. The above system of equations is now in the same form as the
steady state problem, so the same shooting method used there can be used here
to calculate 11n+l) and TJn+l). This method has the advantage that it can be
implemented by modifying currently existing software, so the development time
should be short. However, there is a disadvantage that if there is a discontinuity
in the strip thickness, then there is a corresponding discontinuity in the strip
temperature, and the shooting method will fail. In such a case, there is also
discontinuity in the wall temperature.



We define the characteristic lines Xs( (; x, t) and Xg( (; x, t), associated with
the point (x,t) by

dTs _ R
d( - s

dTg _ R
d( - 9

Then we partition the furnace length into a discrete set {xo = 0, Xl, ••• , X N = l}
and suppose that Ts, Tg and Tw are known at these points at time tn' The posi-
tions of the characteristics at time tn can be found by integrating the character-
istic equations (30-31) back from the n + 1 time level to the n time level. Then
the temperatures on the characteristics at this time level need to be determined
by interpolation from the known temperatures. Finally, equations (32-33) can be
integrated forward to the n + 1 time level to provide the solution. This method
has the advantage that it can handle a discontinuity in the strip thickness, and
hence the strip temperature.

In this method we consider perturbations to the steady state temperatures,
i.e. set

and upon substitution into the governing equations we obtain a linear system of
equations of the form

where A, Band Care 3 X 3 matrices whose coefficients depend on x, d is a vector
and u = [8Ts, 8Tg, 8Twf. Now we take the Laplace transform with respect to
time, t, yielding



where ii is the Laplace transform of u, p is the Laplace transform variable and
d' = d + Au(O). If we let U be a fundamental matrix of solutions of

ii= U j(BU)-ld'dx

The solution u is found by inverting this expression, which will require finding the
singularities in the above expression in the p-plane. This method is appropriate
for small perturbations from a steady state.

Of all of the above 3 methods, it would seem that the most appropriate
method to implement is the backward characteristics method. Of course, the
above descriptions are quite sketchy, so some more work is needed to complete
the development of each of the methods. None of the above discussion has in-
cluded the possibility of needing to calculate wall heat conduction, as described
by equations (13-14). If it is decided that this is necessary, then it is not too
difficult to include it in any of the above three methods. The wall heat conduc-
tion equation is actually decoupled from the remainder of the model equations,
so can be solved independently once Ts and Tg are known at any time level.
By assuming one dimensional heat conduction on a semi-infinite interval, the
solution to the heat conduction equation is straightforward. In particular, since
the model only requires Tw at y = 0, then the simplest approach may be to use
a boundary integral formulation. The result will be a single nonlinear integral
equation for Tw. There should be no significant difficulty in adding this to the
model solution, once the problem has been solved without wall heat conduction.

This report provides only a brief summary of the most significant discussions
at the Study Group. One of the most significant points arising from the work is
the result of the linearised model, which says that a disturbance introduced to
the strip temperature will disappear in roughly the same time as it takes a piece
of strip to pass through the furnace, i.e. of the order of 10 seconds, in the case of
a typical Selas furnace. This is a most intriguing result. It brings into question



the need to develop solutions to the fully nonlinear transient model equations,
because it appears from discussions that changes in furnace operations can often
take a few minutes to return to a steady state. It would appear, then, that
the reason for the discrepancy could be due to factors that cannot be easily
incorporated into a mathematical model, such as operator intervention or a
time delay due to turning burners on/off. If the true transient time is only'" 10
seconds, then an appropriate strategy for minimising wastage would be to set
the operating conditions to those appropriate for the expected new steady state
as soon as a change in input is detected. Only the steady state model would be
needed for such a strategy.

However, the above analysis relies on the assumption that wall heat conduc-
tion has negligible effect on the transient solution. If it does indeed have an
effect, then it is likely to increase the time needed to achieve a new steady state.
It is difficult to envisage that any such time delay would be very significant.

A flllal matter that was discussed at the Study Group was whether the
method used in the steady state model for calculation of the radiative transfer
between the gas, the strip and the wall was appropriate. Because radiative
transfer is the dominant heat transfer mechanism in the furnace, it is necessary
to have as accurate a model as possible. A suggested reference for reviewing the
currently used method is Rohsenow et al.
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