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ROLLING MILL PERFORMANCE

A rollingmill may be modelled as a number of inertial masses coupled by torsional
springs. The question considered by the Study Group was whether the parameters
of the system could be determined from measurements of the torques and accel-
erations at a number of points in the system. A number of related aspects such
as resonances, torque amplification factors and parameter identification were also
examined. The group concluded that frequency analysis and lumped mass models
were potentially useful for the analysis of rolling mill performance.

1. Introduction

A drive system for hot rolling mills can be regarded as an assemblage of rotating
inertial masses connected by torsional springs, subject to torsional forces. The peak
values of the torque in the system may be several times the steady state or mean value
and, as a consequence, it is possible the high torque values might severely stress and
damage mill components including the drive motors.

When the inertial masses (moments of inertia) and torsional spring constants are
known, it is possible to simulate the mill performance. This is essentially equivalent
to calculating the effective "mill transfer function" and such calculations are performed
routinely by Industrial Systems Ply Ltd to characterise the attainable level of perfor-
mance such as speed response (subject to constraints on maximum torque on key com-
ponents to avoid mechanical problems). In practice however the mill parameters are not
always readily available and the question posed by Industrial Systems is whether these
parameters can be deduced from measurements of instantaneous torque and acceleration
at a number of points in the system.

2. Mathematical model

The rolling mill was modelled as a system of n inertial masses coupled by n - 1
torsional springs as shown in figure 1. In addition, linear damping proportional to the
angular velocity was assumed. This leads to the system of differential equations

(1)

where
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Figure 1: Schematic Representation of Rolling Mill
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Typical values (in SI units) for mi and k, are given in table 1. Estimates for the damping
parameters b, were not available. Most investigations of the problem required solution
of (1). particularly for special cases. Some of these solutions are summarised below.
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Component Moment of Inertia Torsional Stiffness
1 Motor 24078 1.64 xlOlS
2 Motor 23911 4.28 x107
3 Coupling 1450 2.82 x107
4 Gears 5665 2.05 x106
5 Spindle 680 1.74x106

6 Pinions 133 8.84x105

7 Rolls 417

Table 1: Typical values for parameters (in SI units)

2.1 Steady state: f = constant

When f constant, the steady state solution of (1) is

~=ee, e = (1, 1, ... , II
where the angular velocity 8 can be calculated from the linear equations

The above equation also provides the solution of the relative rotation Dx.

2.2 Non-damped system: B = 0

(a) Resonance

Let 0 = Wo < WI < ... < Wn-I satisfy the generalized eigenvalue problems

w;MXk = DTKDxk.k = 0,... ,n-l

For k = 0, Wo = 0 and Xo = e which corresponds to a constant angular velocity in the
absence of a forcing term. For k > 0, Wk are the resonant frequencies since a forcing
term of these frequencies will result in a solution that increases in amplitude with time.
Specifically,

M ; +DT KDx = 2WkMxk COS(Wkt)
x(O) = 0
x'(O) = 0
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has the solution

(b) f is constant

When f is constant, the solution of

M;+DTKDx = f

x(O) = 0

x'(O) = 0

is

(2)

where

and
-1 1/2 _ 00 (_I)kAkrk+2

A (J - cos(A t» - ~ (2k + 2)!

2.3 Periodic solution (non-resonant)

When f is periodic with period T, then

and the periodic solution of (1) is given by

00 2trikt
x(t) = E PkexP(T)

k=-oo

where

Pk = [DTKD+ 2~k B_(2;k)2Mrl ak

2.4 General solution

The general solution of (1) can be calculated by inverting its Laplace transform.
Specifically, the Laplace transform is

(3)
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3. Torque amplification factor

As discussed previously, an important aspect of hot mill operation is the maximum
torque on the shafts. If the damping coefficients are small, and a constant load f is
applied to a system at rest then, from the previous section, we have

Hence, the torques on the shafts are given by

T = -KDx
= -KDA-1(1- cos(A112t))hflf.

For hot rolling, we are primarily interested in the load applied via the rolls - that is,
f = fen. The torque amplification factors are defined to be the ratios of the maximum
torque on the shafts to the applied load. Thus

l1j = suple!KDA-l(l-cos(AI12t))hflenl
t

For n = 2, it is easy to show that

{
m1(l-cosm1t)}

111 = sup
I (ml +m2)

where

Thus,
2ml

111 = < 2
(ml +m2)

and, as a consequence, the maximum torque in a system with two inertial masses can
be up to twice as large as the applied torque. For n = 3, the situation seems to be much
worse. It can be shown (see e.g. Church, 1948) that

2mlm~
111 = ------=----"-------,,..-

(ml +m2+m3)(m~- mr)
which appears to become unbounded as mz ~ ml. Similarly for n ~ 3 we can obtain
expressions for 11 by inversion of the Laplace transform (3) (with B = 0) whose numer-
ators contain products of the form I1j.dmr - mJ). These products arise as residues of
1/ det(p2M + DTKD) when Cramer's rule is used to provide a representation of [p2M +
DTKDr1en.

The question of whether torque amplification factors will become unbounded when
the resonant frequencies approach each other is clearly crucial in hot mill design. If
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this is the case, it means that the resonant frequencies need to be well separated. The
group spent a substantial amount of time on this question and reached the following
conclusions:

• no example was found for which 1]j ~ 00

• for n = 3 it is possible to construct an example (kl = k2,ml = m3,m2 ~ 00) for
which the torque amplification factor remains bounded even though liJl ~ liJ2

• for n ~ 3 it follows from (2) that the torque amplification factor is bounded if
milmi, i = 1, ... , n are bounded

• no consensus could be reached on the question of whether an unbounded torque
amplification factor is possible.

4. Parameter identification

Although it is possible, in principle, to apply loads to each component and measure
their angular velocity, it is practical to apply only a known torque at the motor and
measure its angular velocity. Intuitively, it is preferable to apply a load that is 'rich' in
high frequencies and two loads of this type were considered.

Impulsive load

If the system is at rest and an impulsive load f = Jo(t)el is applied, then the Laplace
transform of Xl is given by

XI(P) = eft ~2M+PB+DTKDrl el
Now for large p we can write

(4)

(k)
X (P) == "" Xl (0)

I L...J k+l
k~l P

In principle, we know xik)(O) and we can expand the right hand side of (4) in powers of
p-l and equate coefficients to obtain a system of nonlinear equations for the unknown
parameters. For example

Xl (0) = [lm,

allows us to calculate m 1. However the method requires the calculation of high order
derivatives at t = 0 and is clearly not practical for identifying more than the first few
parameters. Furthermore, an impulse is not a feasible input although the analysis is
easily modified for more general applied loads.
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Periodic load

As discussed previously, a periodic load of the form

21rikt
f(t) = I:elakexp( T)

will lead to a periodic solution of the form

21rikt
XI(t) = I:PkexP(T) (5)

where

If f(t) and Xl (t) are known then, in principle at least, ak and Pk can be calculated.
Thus, (5) represents an overdetermined non-linear system of equations for K, B and M.
An attempt to solve this system in a least squares sense during the Study Group was
considered to be impractical.

Generally speaking, the problem of parameter identification was thought to be diffi-
cult in practice due to the ill-posed nature of the problem. Filtering techniques (Kalman
filtering in particular) were considered but not pursued due to time constraints at the
Study Group and a lack of expertise in this area.

S. Resonance

Since an important feature of the mechanical system considered are the resonant
frequencies, the group spent some time on the determination of these frequencies. Two
approaches were pursued.

Frequency analysis

From Section 2, the periodic solution of (1) is given by

-to> (21rikt)
x(t) = I: Pk exp T

k=-

where

Pk = [DTKD+ 2~k B_(2~)2Mrl ak

When B is small, we expect that I/hl will be large when

21rik .T -OJj,} = 1,2, ... ,n-l
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Thus, if we plot IPkl2 against k we should in principle be able to identify the approximate
locations of the resonant frequencies. This idea was simulated during the Study Group
by Industrial Systems Pty Ltd using a ramp input for the torque on the motor and a
measurement of the angular velocity of the motor. That is,

f(t) = f(t)el

,
is given and er x is 'measured'. The quantity IkpI ell2 was plotted against k and it was
possible to determine the first three or four resonant freqencies. Of course, a simulation
does not address the question of noise and as no information was available on measure-
ment error this was not pursued. The group noted that frequency analysis was a well
established subject (see e.g. Randall, 1987). Industrial Systems Pty Ltd felt that this
might be a useful tool for them and they should analyse some real data with a view to
determining the low frequency resonances.

Lumped mass simplifications

The model given by (1) is a 'lumped mass' model since each of the inertial masses
will consist of a number of components. It is therefore natural to ask whether further
lumping of the inertial masses is possible to simplify the problem. Table 2 shows some
of the simplifications considered while table 3 shows the corresponding resonant fre-
quencies (in Hertz).

Model Masses Lumped
1 1 2 3 4 5 6 7
2 1,2,3 4 5,6 7
3 1,2,3 4,5 6,7
4 1,2,3 4,5,6 7
5 1 2

Table 2: Lumped mass models

Model Resonant Frequencies
1 4.7 8.6 10.9 18.8 23.8 36.4
2 4.42 8.50 9.78
3 4.52 8.46
4 5.17 8.4
5 18.6

Table 3: Frequencies for lumped mass models
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It is clear that the lower frequencies can be determined quite well with the lumped
mass simplification. In addition specific frequencies can in some instances be associated
with specific components. For example the resonance of 18.8 can clearly be associated
with the resonance of the motors in isolation.

6. Conclusions

The following conclusions were reached by the group:

• Further work is required to ascertain if identification of all parameters in a rolling
mill is practical.

• A better understanding of torque amplification factors are desirable and the fact
that two resonant frequencies are close does not necessarily mean that the ampli-
fication factor is large.

• Frequency analysis is potentially a very useful tool in mill design and its use
should be investigated.

• Lumped mass models may be useful in model simplification and thus provide
useful insight.

• Non-linear effects due to drive converters are potentially important.

• Further work is required to assess the effects of a feedback loop.
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